

Copyright © 2005 Mike Perks Published December 2005

 Application Note
 ZBasic

AN-207 Interfacing to SpeakJet Voice and Sound Synthesizer

Introduction
This application note describes how to interface a SpeakJet with a ZX chip and use ZBasic to generate speech or
sounds using the SpeakJet chip. The SpeakJet (from Magnevation LLC) is a completely self contained, single chip
voice and complex sound synthesizer. The SpeakJet has a built in library of 72 speech elements (allophones), 43
sound effects, and 12 DTMF Touch Tones. The SpeakJet can be controlled by a serial data line from a ZX chip.
Other features include an internal 64 byte input buffer, internal programmable EEPROM, three programmable
outputs, and direct user access to the internal five channel sound synthesizer. More information can be found at the
SpeakJet website (http://www.SpeakJet.com). There are other more capable speech synthesizers in the market but
they are much more expensive and are restricted to speech only. The SpeakJet represents a reasonable
compromise of voice/sound function and price.

Hardware Hookup
The SpeakJet chip can be connected to a host PC or a ZX chip with very little effort. The simplest connection apart
from power can be done with one wire to receive data from a serial connection. The schematic below shows how to
connect the SpeakJet to a ZX chip.

Because the SpeakJet is driven from a ZX chip, the event inputs E0-E7 are not used and connected to ground.
Although the mode input pins M0 and M1 could be controlled from ZBasic this is unnecessary in most
circumstances and therefore M0 and M1 are hardwired to ground and 5V respectively. The output signal from the
SpeakJet (VOUT) is connected to a low-pass filter to “round-off” the square-wave-based signal which is then
amplified using a standard LM386 circuit and connected to a speaker. The low-pass filter is not strictly necessary
but it does result in a less robotic sound.

The ZX-24 (or ZX-40) is connected to the SpeakJet using two wires. The most important connection is the serial
transmit connected to receive (pin 10) of the SpeakJet. Optionally the D2 output from the SpeakJet can be

AN-207 Interfacing to SpeakJet Voice and Sound Synthesizer

Copyright © 2005 Mike Perks -2- Published December 2005

connected to the ZX chip (pin 19 here) to provide flow control. This line is high when the SpeakJet buffer is more
than half full and can be used by ZBasic to control the transmissions to the SpeakJet.

A simple active-low switch is used on pin 18 of the ZX-24 to end the test routine. For brevity the rest of the standard
connections to the ZX-24 are omitted. A similar circuit can also be used with a ZX-40.

It is believed that the SpeakJet is based on a PIC 18Fxxxx chip partly because of the placement of +V, ground,
VOUT and RX. The Reset line (/RESET) is a software-based reset. The actual PIC reset pin (MCLR) is E3 and
although the reset function is turned off, this pin in particular should never be connected to a negative voltage.

Software
This application note also comes with some ZBasic software to drive the SpeakJet. The file SpeakJet.bas is an
interface module for the SpeakJet and the file AN207.bas tests the SpeakJet module with some example phrases.

The public interface to the SpeakJet module consists of constants for SpeakJet control codes and three
subroutines named InitSpeakJet, TermSpeakJet, and Speak.

The subroutine InitSpeakJet creates a queue and serial port on a given pin for transmitting data to the SpeakJet.
InitSpeakJet also sends some startup control messages to the SpeakJet to set the initial volume (100%) and
configure the SpeakJet output pins. Here is the essential code for InitSpeakJet:

' Needed to save values from initialization
Private cts as Byte
Private sjPort as Byte

' Assume maximum message we will send is 32 bytes (half SpeakJet buffer)
Private Const maxBuffer as Integer = 32

' Queue can be small because Speakjet has a large b uffer
Private speakQueue (1 to 10) as Byte

' *** ************
' Sub InitSpeakJet
'
' Initialize SpeakJet by setting up serial queue an d port
' Parm1 is the serial port number e.g. 3
' Parm2 is the transmit pin to the SpeakJet
' Parm3 is the cts (or flow control pin) input from the SpeakJet
'** ************
Public Sub InitSpeakJet (ByVal comPort as Byte, ByVal txPin as Byte, ByVal ctsPin as Byte)
 sjPort = comPort
 cts = ctsPin

 Call OpenQueue (speakQueue , Sizeof (speakQueue))
 Call DefineCom (sjPort , 0, txPin , &H08)
 Call OpenCom(sjPort , 9600, 0, speakQueue)

 Call sendControlCodes (resetSJ.DataAddress , SizeOf (resetSJ))
 Call sendControlCodes (config.DataAddress , SizeOf (config))
 Call sendControlCodes (defaults.DataAddress , SizeOf (defaults))
End Sub

The private subroutine sendControlCodes is used by InitSpeakJet and Speak subroutines to copy data out of
EEPROM (program memory) and send the bytes to the SpeakJet. . To save valuable RAM the command codes are
loaded out of EEPROM into the SpeakJet transmit queue one byte at a time. Because of the slow speed of the
connection (9600 baud), this is more than fast enough for the SpeakJet. The public subroutine TermSpeakJet
simply closes the serial port (sjPort) specified by InitSpeakJet.

AN-207 Interfacing to SpeakJet Voice and Sound Synthesizer

Copyright © 2005 Mike Perks -3- Published December 2005

The public subroutine Speak does all of the work to send a byte array of codes to the SpeakJet and can operate in
three different modes depending on the setting of the ctsPin (saved from InitSpeakJet subroutine) and the
waitNeeded boolean parameter to Speak. The three modes are as follows:

ctsPin waitNeeded Description of Mode

0

N/A

No flow control is done and the command codes are put on the SpeakJet transmit
queue. If the queue is full for any reason, then the task suspends waiting until all the
bytes can be put on the queue.

not 0

true

Flow control is done from the SpeakJet. If the SpeakJet is busy then the Speak
subroutine waits until the SpeakJet is not busy (less than half of the buffer is used) to
send the command codes to the SpeakJet.

not 0

false

Flow control is done from the SpeakJet. If the SpeakJet is busy then the SpeakJet
buffer is flushed and the command codes sent to the SpeakJet. This allows for always
the latest output to be presented cutting off any existing output.

The code for the Speak subroutine is shown below.

' *** ************
' Sub Speak
'
' Send command string to SpeakJet
' Parm 1 is the address in EEPROM of the array of b yte to send
' Parm 2 is the length (size) of the array of bytes
' Parm 3 is a boolean to control how to process the buffer half
' full flow control
'
'** ************
Public Sub Speak (ByVal eepromAddress as Long, ByVal length as Integer, _
 ByVal waitNeeded as Boolean)

 ' make sure don't overfill the SpeakJet buffer
 If (length > maxBuffer) Then
 Debug.Print "SpeakJet message too long"
 length = maxBuffer
 End If

 ' perform flow control if the pin is set
 If cts <> 0 Then
 If GetPin (cts) = 1 Then
 ' wait for SpeakJet buffer to be less than half-ful l
 If waitNeeded Then
 Debug.Print "Wait for SpeakJet"
 Do While GetPin (cts) = 1
 Call Sleep (10)
 Loop
 ' otherwise simply flush any existing contents
 Else
 Debug.Print "SpeakJet busy so flush buffers"
 Call ClearQueue (speakQueue)
 ' command is executed immediately by SpeakJet
 Call sendControlCodes (flushSJ.DataAddress , SizeOf (flushSJ))
 ' wait for SpeakJet flush to complete
 Call Sleep (10)
 End If
 End If
 End If

 ' send message to SpeakJet
 Call sendControlCodes (eepromAddress , length)
End Sub

AN-207 Interfacing to SpeakJet Voice and Sound Synthesizer

Copyright © 2005 Mike Perks -4- Published December 2005

Getting Speech from the SpeakJet
The code with this application note concentrates on speech output but it is also possible to use the SpeakJet to
generate sounds. Speech is generated by the SpeakJet by sending it command codes that correspond to elements
of speech called allophones. For example the short E vowel sound in words such as “met” or “red” is the “EH”
allophone which has a SpeakJet code of 131. The PhraseAlator software from Magevation (see the TigerRobotics
support page: http://www.tigerbotics.com/support/speakjet.htm) can be used to test out the SpeakJet from a PC
and also create spoken words and phrases from allophones. A built-in dictionary of 1400 words provides a good
start to creating SpeakJet command codes for speech. An example of the unfiltered output from the SpeakJet for a
custom phrase is in zip file associated with this application note.

The codes for common commands, sounds and all the speech elements (allophones) are available as public
constants in SpeakJet.bas. Here is an extract of some of the constants:

Public Const PA0 as Byte = 0 ' pauses
Public Const PA1 as Byte = 1
Public Const Fast as Byte = 7
Public Const Slow as Byte = 8
Public Const Stress as Byte = 14
Public Const Relax as Byte = 15
Public Const EY as Byte = 130
Public Const EH as Byte = 131
Public Const D0 as Byte = 240 ' DTMF tones
Public Const D1 as Byte = 241
Public Const D2 as Byte = 242
Public Const M0 as Byte = 252 ' sonar pin

Phrases can either be sent directly to the SpeakJet from ZBasic or a command can be sent to invoke a phrase
preprogrammed in the SpeakJet EEPROM. The example test program (AN207.bas) shows both methods and how
to invoke the interface to the SpeakJet module described previously. Here is an extract of this test code:

' change this constant to alter the behavior of sen ding data to the SpeakJet
Private Const doWait as Boolean = false

Private Const serialPort as Byte = 3 ' com3
Private Const tx as Byte = 20 ' serial port transmit
Private Const cts as Byte = 19 ' optional for flow control from SpeakJet
Private Const stopPin as Byte = 18 ' just used for testing purpose

' preprogrammed phrase #5
Private countdown as ByteVectorData ({29, 5})
' custom phrase “Welcome to ZBasic”
Private welcome as ByteVectorData ({WW, EH, LE , PA4 , KO, AW, MM, PA5 , TT , IHWW, PA5 ,
 ZZ , IY , PA5 , BE , EYIY , SE , IH , Fast , PA4 , OK, PA5 , EOS})

Public Sub Main ()
 ' start test by initializing SpeakJet
 Call InitSpeakJet (serialPort , tx , cts)
 ' main test loop
 Do While GetPin (stopPin) = 1
 Debug.Print "Sending welcome message to SpeakJet"
 Call Speak (welcome.DataAddress ,SizeOf (welcome), doWait)
 Debug.Print "Sending countdown message to SpeakJet"
 Call Speak (countdown.DataAddress ,SizeOf (countdown), doWait)
 Call Sleep (2.0)
 Loop
 ' stop test by closing down SpeakJet
 Call TermSpeakJet ()
End Sub
Here is the console output from the above program showing how the SpeakJet is buffer is emptied when it is full
and still speaking a different phrase. The audio output gets cut off midstream and the new phrase is started.

AN-207 Interfacing to SpeakJet Voice and Sound Synthesizer

Copyright © 2005 Mike Perks -5- Published December 2005

ZBasic v1.1
Start of SpeakJet test and don't wait for message t o complete
Sending welcome message (23 bytes) to SpeakJet
Sending countdown message (2 bytes) to SpeakJet
SpeakJet busy so reset
Sending welcome message (23 bytes) to SpeakJet
Sending countdown message (2 bytes) to SpeakJet
Sending welcome message (23 bytes) to SpeakJet
Sending countdown message (2 bytes) to SpeakJet
SpeakJet busy so reset
End of SpeakJet test

Author
Mike Perks is a professional software engineer who became interested in microcontrollers a few years ago. Mike
has written a number of articles, projects and application notes related to ZBasic, BasicX and AVR microcontrollers.
Mike is also the owner of Oak Micros which specializes in AVR-based devices including his own ZX-based
products. You may contact Mike at mikep@oakmicros.com or visit his website http://oakmicros.com.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this document
or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information presented. The
Company reserves the right to change the information described herein at any time without notice and does not make any commitment to
update the information contained herein. No license to use proprietary information belonging to the Company or other parties is expressed or
implied.

Copyright © Mike Perks 2005. All rights reserved. ZBasic, ZX-24, ZX-40 and combinations thereof are trademarks of Elba Corp. or its
subsidiaries. Other terms and product names may be trademarks of other parties.

