

Copyright © 2006 Mike Perks Published January 2006

 Application Note
 ZBasic

AN-210 Sharing Data between Tasks

Introduction
Application note AN-209 discussed various methods of managing tasks in ZBasic. Unless everything is done by a
single task, the various tasks in a ZBasic application also need to share data. The methods presented in this
application note to share data between tasks are standard in multitasking operating systems but have been
adapted to ZBasic.

The Data Sharing Problem
The example program below (Problem.bas) illustrates the problem of sharing data between tasks. Main() starts a
task that increments a global integer called count. The main routine then waits for a period of time and calls the
same counter() routine as the other task. An extract of the code is shown below:

Private TaskStack(1 to 50) as Byte ' task stack
Private count as Integer ' counter

' main routine
Public Sub Main()
 Dim time as Single
 time = Timer()

 count = 0
 CallTask "counter", TaskStack

 Call Sleep(20) ' change this value to see different results
 Call Counter()

 ' Wait for second task to finish if it hasn't alrea dy
 Call Sleep(1.0)
 Debug.Print "Final count is "; CStr(count); " after "; CStr(Fmt(Timer()- time, 2)); " seconds"
End Sub

' common counting routine
Private Sub counter()
 Dim I as Integer
 Dim tempCount as Integer
 For I= 1 to 10
 tempCount = count
 Call Sleep(2)
 If (tempCount <> count) Then
 Debug.print CStr(Register.TaskCurrent); " wrong value"
 End If
 count = tempCount + 1
 Next
End Sub

The example is contrived but it illustrates the main aspects of the problem. The call to Sleep(2) in the
counter() routine is meant to simulate work or some other ZBasic function call that could allow another task to
run. The result of running the above program is as follows:

Final count is 20 after 1.09 seconds

In this case the second task ran to completion before Main() had a chance to call the counter() routine. When
the sleep time in Main() is reduced from 20 to 10 the following output is received. The first number is the address
of the task stack and is used to simply differentiate between the two tasks.

212 wrong value
160 wrong value
212 wrong value
160 wrong value
212 wrong value

AN-210 Sharing Data between Tasks

Copyright © 2006 Mike Perks -2- Published January 2006

Final count is 14 after 1.09 seconds

In this second case the two tasks tried to update count at the same time and sometimes the value was overwritten
with a lower value from the other task. You can try different delay times between the tasks and different delay times
within the counter() routine to see various results. The net effect is the same - both tasks are trying to write to
the same value causing a “multiple update” problem. The following sections describe various solutions to the
problem of data sharing between tasks.

Single Writer, Many Readers
A simple solution is to only allow one task to write the shared value and other tasks can only read the value. The
other tasks read the last value written and may in fact read the same value multiple times until the “write” task
updates the value. An example of using a single writer is shown in Application Note AN-208 (Using I2C with
Devantech Ultrasonic Range Finders). The following amended code (SingleWriter.bas) illustrates this idea with
unmodified code shown in gray.

Private TaskStack(1 to 50) as Byte ' task stack
Private count as Integer ' counter

' main routine
Public Sub Main()
 Dim time as Single
 time = Timer()

 count = 0
 CallTask "counter", TaskStack

 Call Sleep(0)
 Call Counter()

 ' Wait for second task to finish if it hasn't alrea dy
 Call Sleep(1.0)
 Debug.Print "Final count is ";CStr(count);" after ";CStr(Fmt(Timer()-time,2));" seconds"
End Sub

' common counting routine
Private Sub counter()
 Dim I as Integer
 Dim tempCount as Integer
 For I= 1 to 10
 tempCount = count
 Call Sleep(2)
 If Register.TaskCurrent = 160 Then
 ' write to count
 count = tempCount + 1
 Else
 ' reads count
 If (tempCount <> count) Then
 Debug.print "count changed"
 End If
 End If
 Next
End Sub

In this case task 160 (the one using TaskStack) is updating the value and the Main task (212) is only reading it. The
value of 160 is hardcoded for simplicity in the example code. The following output shows there were five occasions
when the value changed from one read to the next. This illustrates that when using multi-tasking you should not rely
on execution order or timing between tasks as you can never tell when a task may run in relationship to others in
the system.

212 count changed
212 count changed
212 count changed
212 count changed
212 count changed
Final count is 10 after 1.08 seconds

Using Semaphores
In many cases only having one writer is too restrictive. Semaphores allow multiple tasks to access the same
resource by serializing the access so that in effect there is only one writer at a time. Because ZBasic supports

AN-210 Sharing Data between Tasks

Copyright © 2006 Mike Perks -3- Published January 2006

multiple tasks it is also provides a system library function for semaphores. The modification to the counter()
routine (Semaphore.bas) and the global declaration of the semaphore is shown below.

Private sem as Boolean

' main routine
Public Sub Main()
…
End Sub

' common counting routine
Private Sub counter()
 Dim I as Integer
 Dim tempCount as Integer
 For I= 1 to 10
 ' wait for semaphore
 Do While (Not Semaphore(sem))
 Call Sleep(0)
 Loop
 ' update counter
 tempCount = count
 Call Sleep(2)
 If (tempCount <> count) Then
 Debug.print CStr(Register.TaskCurrent); " wrong value"
 End If
 count = tempCount + 1
 ' reset semaphore
 sem = False
 Next
End Sub

The required result is shown in the output below. The performance overhead of using the semaphore is not
noticeable. Notice that the condition “If (tempCount <> count) Then“ is never true and could be removed.

Final count is 20 after 1.09 seconds

In the code above the almost empty do while loop is required to wait for the semaphore. A sleep or delay is
important to allow the other tasks to run and hopefully free up the semaphore.

Semaphores can be used to also enforce single-threaded access to other kinds of system resources such as an
I2C channel or timer. However semaphores need to be used with care as it is possible to get into a deadlock (or
deadly embrace) situation where two or more tasks are waiting for each other’s semaphores. The “deadly embrace”
terminology comes from fighting scorpions where neither can let go for fear of being stung.

Using Atomic ZBasic Operations
Multitasking in all single processor machines is actually a façade implemented by the operating system or runtime.
Under the covers each task that is ready to run is given some time to run and then another task is given the
opportunity to run. Sophisticated implementations such as the Windows operating system allow for task
prioritization and can “preempt” one task to run another or service an interrupt. In all cases the actual processor is
only executing one instruction at a time from one task.

Within the ZBasic runtime a similar situation applies. The ZBasic virtual machine is only executing one ZBasic
instruction at a time even though this may require multiple AVR processor instructions. We can make use of this
fact to allow multiple writers of shared data providing that a particular write to a shared data item is an atomic
ZBasic instruction. Here is an example (Atomic.bas) which shows multiple writers:

' common counting routine
Private Sub counter()
 Dim I as Integer
 Dim tempCount as Integer
 For I= 1 to 10
 ' update counter
 tempCount = count
 Call Sleep(2)
 If (tempCount <> count) Then
 Debug.print CStr(Register.TaskCurrent); " wrong value"
 End If

AN-210 Sharing Data between Tasks

Copyright © 2006 Mike Perks -4- Published January 2006

 count = count + 1
 Next
End Sub

Below is the output from this program.

160 wrong value
212 wrong value
160 wrong value
212 wrong value
160 wrong value
212 wrong value
160 wrong value
212 wrong value
160 wrong value
Final count is 20 after 1.08 seconds

Even though the program reports that the value has not changed, the answer is correct. This is because the real
access happens in the modified line “count = count + 1“. It works because incrementing the count variable is
actually only a single atomic instruction in ZBasic as can be seen from this extract of the ZBasic listing file:

 count = count + 1
00b7 e5d200 INCA_W 00d2

The atomic ZBasic operations which write to shared data are:

� Write to any data local or global variable or array element except strings
� Increment or decrement of any variable or array element
� Most system library functions except InputCapture and GetADC

Using a Critical Section
In computer science terminology a critical section is a segment of code that is executed without interruption from
other tasks thus forming an atomic operation. A critical section can be used to allow a task to have sole access to
data and might be useful for multiple updates to a complex data structure.

In ZBasic critical sections are implemented using the System Library functions LockTask() and UnlockTask().
Note that there are restrictions on how long a task can remain locked. In particular for our example there is a call to
Sleep(2) in the counter() routine which will unlock the task and allow another task to run. Hence in our case
wrapping the critical code that gets and sets the count variable with calls to LockTask() and UnlockTask() does not
provide a solution to the data sharing problem presented in this application note. The circumstances of your
application may be different. For completeness the changes to counter() for LockTask()and UnlockTask()
are given in CriticalSection.bas in the attached zip file.

Using Queues
Queues are another data construct that can be used to control shared access to a resource. Multiple producers can
put data onto the queue and a single consumer takes data off the queue. This works in a multi-tasking environment
only if the runtime can guarantee that a producer can put a complete packet on the queue in a single operation.
Fortunately in ZBasic the system library functions PutQueue(), PutQueueStr, and PutQueueByte() are all atomic as
far as the user program is concerned and a semaphore is not needed. An example of using a queue between two
tasks is shown in Application Note AN-204 (Input Capture and Multi-tasking for IR Remote Controls).

In the example code below (Queue.bas) an additional task has been added to receive commands from the other
tasks via a queue. In this case the command is simply a request to increment the count.

' private data for command queue
Private Const incCommand as Byte = &H80
Private cmdQueue(1 to 20) as Byte
Private cmdProcessorStack(1 to 80) as Byte

' routine to process commands
Private Sub cmdProcessor()
 Dim cmd as Byte
 Do
 Call GetQueue(cmdQueue, cmd, 1) ' wait for command to process
 If cmd = incCommand Then
 ' do counter increment here

AN-210 Sharing Data between Tasks

Copyright © 2006 Mike Perks -5- Published January 2006

 count = count + 1
 End If
 Loop
End Sub

Private TaskStack(1 to 50) as Byte ' task stack
Private count as Integer ' counter

' main routine
Public Sub Main()
 Dim time as Single
 time = Timer()

 ' start command processor task
 Call OpenQueue(cmdQueue, Sizeof(cmdQueue))
 CallTask "cmdProcessor", cmdProcessorStack

 count = 0
 CallTask "counter", TaskStack

 Call Sleep(0)
 Call Counter()

 ' Wait for second task to finish if it hasn't alrea dy
 Call Sleep(1.0)
 Debug.Print "Final count is "; CStr(count); " after "; CStr(Fmt(Timer()- time, 2)); " seconds"
End Sub

' common counting routine
Private Sub counter()
 Dim I as Integer
 Dim tempCount as Integer
 For I= 1 to 10
 ' update counter
 tempCount = count
 Call Sleep(2)
 If (tempCount <> count) Then
 Debug.print CStr(Register.TaskCurrent); " wrong value"
 End If
 Call PutQueueByte(cmdQueue, incCommand)
 Next
End Sub

Note that queues in the opposite direction to get the value of count are not needed in this case as this is a single
writer, multiple reader scenario as described previously. In the output below the value is changing quickly and each
task never quite has the latest value updated by the queue consumer task. The cost of using the flexibility of
queues is additional memory and slower performance.

312 wrong value260
 wrong value312 wrong value

260 wrong value312 wrong value

260 wrong value312
 wrong value260
 wrong value
312 wrong value
260 wrong value312
 wrong value
260 wrong value312
 wrong value
260 wrong value312
 wrong value260 wrong value

312 wrong value260 wrong value

Final count is 20 after 1.17 seconds

At first glance you might think that I have garbled the output from the program but it is correct and illustrates
another instance of a shared resource multitasking problem. The line

AN-210 Sharing Data between Tasks

Copyright © 2006 Mike Perks -6- Published January 2006

“Debug.print CStr(Register.TaskCurrent); " wrong value"“ in the program above actually gets
broken down into three calls to the ZBasic runtime; one for each of the two parts of the debug string separated by a
semicolon and one for the <CR><LF> added at the end. Here is the generated annotated ZBasic code:

PSHA_W 0x0072 (114) ' Register.TaskCurrent
SCALL CVTS_W
SCALL OUTSTR ' Output String
PSHI_S " wrong value"
SCALL OUTSTR ' Output String
SCALL OUTEOL ' Output <CR><LF>

It would appear that by the time the “ wrong value” string is queued on the output queue for the serial port, it is time
for another task to run and it also outputs some text. At some later point the original task runs again and finally
outputs the <CR><LF>. The problem is that the context of a single output message is lost when using Debug.Print.

There are several solutions to this problem including using a semaphore or using one output string by
concatenating everything including the <CR><LF> together into one string as follows:

Debug.Print CStr(Register.TaskCurrent) & " wrong value" & Chr(&H0d) & Chr(&H0a);

The output is now correct and readable as shown below.

312 wrong value
260 wrong value
312 wrong value
260 wrong value
312 wrong value
260 wrong value
260 wrong value
312 wrong value
312 wrong value
260 wrong value
…
260 wrong value
Final count is 20 after 1.18 seconds

Summary
Multi-tasking is a powerful feature of ZBasic that demands some additional thought by the programmer on the use
and sharing of data between tasks. This application note explains the problem of data sharing when using multiple
tasks in ZBasic and describes various solutions. The best solution depends on the circumstances of your particular
application. One writer, multiple readers is the simplest but least flexible. Semaphores require a task to wait before
being able to share a resource whereas queues can be used by multiple producers without waiting at the expense
of additional memory and slower performance. Locking a task in memory may also be a viable alternative to using a
semaphore.

Author
Mike Perks is a professional software engineer who became interested in microcontrollers a few years ago. Mike
has written a number of articles, projects and application notes related to ZBasic, BasicX and AVR microcontrollers.
Mike is also the owner of Oak Micros which specializes in AVR-based devices including his own ZX-based
products. You may contact Mike at mikep@oakmicros.com or visit his website http://oakmicros.com.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this document
or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information presented. The
Company reserves the right to change the information described herein at any time without notice and does not make any commitment to
update the information contained herein. No license to use proprietary information belonging to the Company or other parties is expressed or
implied.

Copyright © Mike Perks 2006. All rights reserved. ZBasic, ZX-24, ZX-40 and combinations thereof are trademarks of Elba Corp. or its
subsidiaries. Other terms and product names may be trademarks of other parties.

