

Copyright © 2006 Mike Perks Published January 2006

 Application Note
 ZBasic

AN-212 Getting Hot with the TPA81 Thermal Sensor

Introduction
This application note describes how to connect and use the Devantech TPA81 Thermal Sensor (see http://www.robot-
electronics.co.uk/htm/tpa81tech.htm). This device contains an array of eight infrared thermometers arranged in a row and
can return the temperatures measured by each thermometer together with the ambient room temperature. The TPA81
can also control a servo to pan the module which can be used to build a thermal image. An on-board PIC microcontroller
calculates the temperatures and provides an I2C control interface.

The TPA81 device can also be used to measure temperatures colder than room temperature but this was not verified in
the production of this application note.

Hardware Hookup
The ZX chip is connected to the TPA81 Thermal Sensor using the I2C serial protocol. The I2C SDA and SCL pins
are connected to the ZX hardware-based I2C on the ZX-24 pins 11 and 12 respectively. For a ZX-40 these are pins
23 and 22, and for a ZX-44 the corresponding pins are 20 and 19. Don’t forget the pullup resistors on the SDA and
SCL pins – any value between 1.8K and 6.8K should be sufficient.

Note that with a ZX-24, the standard SDA/SCL pins overlap with interrupt 1 and input capture. The other alternative
of using the software-based I2C “uses up” the Timer1 resource. This resource issue is much less of a problem with
ZX-40 and ZX-44.

AN-212 Getting Hot with the TPA81 Thermal Sensor

Copyright © 2006 Mike Perks -2- Published January 2006

Software
This application note also comes with some ZBasic software. The file TPA81.bas is an interface module for the
TPA81 Thermal Sensor and the file AN212.bas is a test program for the TPA81.bas module. The public interface
implemented by the TPA81.bas module consists of nine public routines named InitTPA81() , TermTPA81() ,
GetTPA81AmbientTemperature() , GetTPA81Temperatures() , GetTPA81TemperatureFlags() ,
GetTPA81Version() , SetTPA81ServoPosition() , SetTPA81ServoRange() , and SetTPA81Address().

The InitTPA81() subroutine is used to initialize the I2C channel as shown in the source code below. The I2C
channel is hardcoded to be channel 0 which uses the underlying hardware-based I2C support. This was a
deliberate design decision so that the Timer1 resource is available for other uses. The TPA81 device works at
ZBasic I2C default speed of 100Khz but does not work at maximum supported speed of 410 KHz. The second
parameter is used to set the temperature units of Centigrade or Fahrenheit that is used by the other routines.

Public Const TPA81_UNITS_CENTIGRADE as Byte = 80
Public Const TPA81_UNITS_FAHRENHEIT as Byte = 81

Public Sub InitTPA81 (ByVal addr as Byte, ByVal units as Byte)
 ' save data for later use
 address = addr
 temperatureUnits = units
 ' open the I2C channel
 Call OpenI2C (channel , sdaPin , sclPin)
End Sub

The corresponding subroutine TermTPA81() is used to stop using the I2C channel for the TPA81 device. The
source code for this subroutine can be found in the zip file associated with this application note.

The function GetTPA81AmbientTemperature() can be used to retrieve the ambient temperature around the
TPA81 device and is used to determine if a significant heat source is being detected by the TPA81. An extract of
the source code is shown below including the conversion to Fahrenheit.

Public Function GetTPA81AmbientTemperature () as Byte
 Dim rc as Integer
 Dim reg as Byte
 reg = REG_AMBIENT
 rc = I2CCmd (channel , address , CByte (SizeOf (reg)), reg , 1, GetTPA81AmbientTemperature)

 If temperatureUnits = TPA81_UNITS_FAHRENHEIT Then
 GetTPA81AmbientTemperature = CByte (CSng(GetTPA81AmbientTemperature) * 1.8 + 32.0)
 End If
End Function

The subroutine GetTPA81Temperatures() is the heart of the TPA81 interface. This subroutine (not function)
takes a single parameter which is a reference to an array of 8 bytes to hold the temperature detected by the TPA81
device. The source code including the conversion to Fahrenheit is shown below. The I2CCmd ZBasic system
function handles all the work of retrieving the 8 bytes from the TPA81 device.

Public Sub GetTPA81Temperatures (ByRef temps () as Byte)
 Dim rc as Integer
 Dim reg as Byte

 reg = REG_TEMP
 rc = I2CCmd (channel , address , CByte (SizeOf (reg)), reg , 8, temps)

 If temperatureUnits = TPA81_UNITS_FAHRENHEIT Then
 Dim i as Byte
 For i =1 to 8
 temps (i) = CByte (CSng(temps (i)) * 1.8 + 32.0)
 Next
 End If
End Sub

AN-212 Getting Hot with the TPA81 Thermal Sensor

Copyright © 2006 Mike Perks -3- Published January 2006

Sometimes the actual temperatures are not needed and it is useful just to find out if there is a hot (or cold) source
nearby. This is done using the GetTPA81TemperatureFlags() function and can be used to detect a human,
animal or other heat source. This function takes a delta temperature parameter in the units used by InitTPA81 and
sets bits in a single byte for each thermometer when the temperature difference is greater than the delta. The
source code below shows how this works using the bit array and alias features of the ZBasic language.

Public Function GetTPA81TemperatureFlags (ByVal Delta as Byte) as Byte
 Dim t (1 to 8) as Byte, i as Byte, ambient as Byte

 ' setup an array of 8 bits to alias the returned by te
 Dim b (1 to 8) as Bit Alias GetTPA81TemperatureFlags

 ' retrieve the temperatures and ambient temperature
 Call GetTPA81Temperatures (t)
 ambient = GetTPA81AmbientTemperature ()

 GetTPA81TemperatureFlags = 0
 For i =1 to 8
 ' set the bit flag if the temperature difference ex ceeds the delta
 If Abs (CInt (t (i)) - CInt (ambient)) > CInt (Delta) Then
 b (i) = 1
 End If
 Next
End Function

Taking the Temperature
An extract of the example test program (AN212.bas) below shows how to invoke the interface to the TPA81 device
as described previously. The GetTPA81Version() function is used to get the software version for the TPA81
device and source can be found in the associated zip file.

Private Const addr As Byte = &HD0 ' default I2C Address
Private Const stopPin as Byte = A.2 ' just used for testing purposes
Private temps (1 to 8) as Byte

Sub Main ()
 Dim i as Byte

 ' start test
 Debug.Print "Start of TPA81 test"
 Call Sleep (0.25) ' wait for TPA81 to wakeup

 ' initialize TPA81 and get software version number
 Call InitTPA81 (addr , TPA81_UNITS_FAHRENHEIT)
 Debug.Print "Software Version: " ;CStr (GetTPA81Version (addr))

 ' main test loop which gets the temperature reading s every second
 ' until the stop button is pressed
 Do While GetPin (stopPin) = 1
 ' Print out the ambient temperature and hex value o f the temperature flags
 Debug.Print "Ambient Temperature: " ;CStr (GetTPA81AmbientTemperature ());
 Debug.Print " Flags: " ; CStrHex (GetTPA81TemperatureFlags (25)); ' delta is 25F

 ' Print out the temperature array in a row
 Call GetTPA81Temperatures (temps)
 Debug.Print " Temperatures:" ;
 For i = 1 to 8
 Debug.Print " " ;CStr (temps (i));
 Next
 Debug.Print
 Call Sleep (1.0)
 Loop
 ' stop using the TPA81
 Call TermTPA81 ()
 Debug.Print "TPA81 test finished"
End Sub

AN-212 Getting Hot with the TPA81 Thermal Sensor

Copyright © 2006 Mike Perks -4- Published January 2006

The output of the test program is shown below. The temperature flags were triggered at 25 degrees Fahrenheit
above the ambient temperature by placing a desk lamp light bulb near the TPA81 device. In real application this
could be a heat source such as a fire for a fire-fighting robot.

Start of TPA81 test
Software Version: 7
Ambient Temperature: 72 Flags: 00 Temperatures: 97 97 95 97 95 97 95 97
Ambient Temperature: 72 Flags: 00 Temperatures: 97 97 95 95 93 95 95 97
Ambient Temperature: 72 Flags: 8f Temperatures: 100 100 99 99 97 97 97 99
Ambient Temperature: 72 Flags: ff Temperatures: 108 106 104 102 102 102 100 102
Ambient Temperature: 73 Flags: ff Temperatures: 115 115 113 109 108 108 106 111
Ambient Temperature: 73 Flags: ff Temperatures: 120 118 117 115 111 111 109 113
Ambient Temperature: 73 Flags: ff Temperatures: 124 122 118 117 115 113 115 118
Ambient Temperature: 73 Flags: ff Temperatures: 117 117 113 113 109 109 109 109
Ambient Temperature: 73 Flags: 7f Temperatures: 111 111 109 108 106 104 99 93
TPA81 test finished

Using the TPA81 Servo Support
The TPA81 device also supports driving a servo which can be used to rotate the TPA81 into position to take
temperatures. The SetTPA81ServoPosition() subroutine as shown below is used to position the servo in one
of 32 different positions. The sendCmd() function is a private helper routine which also appears in some other I2C
application notes.

Public Sub SetTPA81ServoPosition (ByVal pos as Byte)
 If pos < 0 or pos > 31 Then
 Debug.Print "Invalid position parameter for SetTPA81ServoPositi on"
 Else
 If sendCmd (address , REG_CMD, pos) < 0 Then
 Debug.Print "SetTPA81ServoPosition i2cmd returned error"
 End If
 End If
End Sub

The range of the servo stepping in microseconds can also be changed using the SetTPA81ServoRange()
subroutine. The two parameters to the subroutine specify the servo range in microseconds around the center point
of 1500us. The SetTPA81ServoRange() routine then calculates and sets the required servo range value for the
TPA81 device as shown in the code below.

Public Sub SetTPA81ServoRange (ByVal range1 as Integer, ByVal range2 as Integer)
 Dim range as Byte

 range = CByte (min (abs (range1 -RANGE_MIDPOINT), abs (range2 -RANGE_MIDPOINT)) * 4 \ 31)
 If sendCmd (address , REG_RANGE, range) < 0 Then
 Debug.Print "SetTPA81ServoRange i2cmd returned error"
 End If
End Sub

Here is an extract of the AN212.bas that illustrates how to use these servo routines. The test function
findHotSpot() is used to move the servo to each position and calculate which one is the hottest.

Sub Main ()
 …
 ' scan area using servo to get hottest spot
 ' and move servo to that position for rest of measu rements
 Debug.Print "Hottest position is " ; CStr (findHotSpot ())
 …
End Sub

Private Function findHotSpot () as Byte
 Dim maxHeat as Integer, heat as Integer
 Dim i as Byte, p as Byte

 ' set the servo range - this is particular to a ser vo

AN-212 Getting Hot with the TPA81 Thermal Sensor

Copyright © 2006 Mike Perks -5- Published January 2006

 SetTPA81ServoRange (50)

 ' get the temperature for each of the 32 servo posi tions
 maxHeat = 0
 findHotSpot = 0
 For p =0 to 31
 ' set the position and wait 40ms for the TPA81 sens or
 Call SetTPA81ServoPosition (p)
 Call Sleep (0.04)

 ' get the temperature and calculate how hot it is b y simply
 ' aggregating the eight temperatures
 Call GetTPA81Temperatures (temps)
 heat = 0
 For i = 1 to 8
 heat = CInt (temps (i)) + heat
 Next

 ' see if this is the "hottest" position so far
 If heat > maxHeat Then
 maxHeat = heat
 findHotSpot = p
 End If
 Next

 ' move the servo to the hottest position
 Call SetTPA81ServoPosition (findHotSpot)
End Function

When the test program is run, the servo moves to each position, calculates the hottest spot and then moves the
servo to that position. From that point on the test program continues to measure temperatures until the stop button
is pressed. The resulting output from the test program is the single additional print line that may look like this:

Hottest position is 29

Multiple TPA81 Device Support
An alternative to moving the sensor on a servo is to measure temperatures using more than one TPA81 device. Up
to 8 are supported, each with a different I2C address. The SetTPA81Address() function is used to change the
address of a particular TPA81 device and only needs to be done once per device. The code for
SetTPA81Address() is the same as that for SetSRFAddress() in application note AN208 and is not repeated
here for brevity.

Note that the implementation of the TPA81 interface routines presented in this application note will need to be
updated to support multiple TPA81 devices. This could be done by supporting the I2C address parameter for every
routine or by gathering the temperature data for all the devices at once.

Author
Mike Perks is a professional software engineer who became interested in microcontrollers a few years ago. Mike
has written a number of articles, projects and application notes related to ZBasic, BasicX and AVR microcontrollers.
Mike is also the owner of Oak Micros which specializes in AVR-based devices including his own ZX-based
products. You may contact Mike at mikep@oakmicros.com or visit his website http://oakmicros.com.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this document
or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information presented. The
Company reserves the right to change the information described herein at any time without notice and does not make any commitment to
update the information contained herein. No license to use proprietary information belonging to the Company or other parties is expressed or
implied.

Copyright © Mike Perks 2006. All rights reserved. ZBasic, ZX-24, ZX-40 and combinations thereof are trademarks of Elba Corp. or its
subsidiaries. Other terms and product names may be trademarks of other parties.

