

Copyright © 2006 Mike Perks Published March 2006

 Application Note
 ZBasic

AN-214 Interfacing with the LCD03 Text Display

Introduction
This application note describes how to connect and use the Devantech LCD03 text display (see http://www.robot-
electronics.co.uk/shop/I2C_Serial_Display_LCD032058.htm). This device is a standard 20*4 LCD text display with a PIC
microcontroller chip that provides both a serial and I2C interface. The PIC provides cursor and text formatting functions,
custom characters, keypad connectivity, and a 64 byte FIFO buffer to ensure a minimum of delay in writing to the display.

Hardware Hookup
For this application the ZX chip is connected to the LCD03 display using the I2C serial protocol. The I2C SDA and
SCL pins are connected to the ZX hardware-based I2C on the ZX-24 pins 11 and 12 respectively. For a ZX-40
these are pins 23 and 22, and for a ZX-44 the corresponding pins are 20 and 19. Don’t forget the pullup resistors
on the SDA and SCL pins – any value between 1.8K and 6.8K should be sufficient.

Note that with a ZX-24, the standard SDA/SCL pins overlap with interrupt 1 and input capture. The other alternative
of using the software-based I2C “uses up” the Timer1 resource. This resource issue is much less of a problem with
ZX-40 and ZX-44.

AN-214 Interfacing with the LCD03 Text Display

Copyright © 2006 Mike Perks -2- Published March 2006

Software
This application note also comes with some ZBasic software. The file LCD03.bas is an interface module for the
LCD03 display and the file AN214.bas is a test program for the display. Because the display supports a relatively
large number of functions, this application notes first describes the public interface provided by the LCD03.bas
module and then has additional sections to describe some of the special implementation features. All the source
code can be found in the zip file associated with this application note.

The sixteen public functions implemented by LCD03.bas module are shown in the table below. Note that the
LCD03 device does not support text scrolling or a block cursor.

Name Description Parameters and any Result
LCDBacklight Turns the backlight on and off backlight as Boolean
LCDBackspace() Deletes the preceding character on the display None
LCDClearScreen() Erases the screen None
LCDCursorHome() Moves the cursor to top left home position None
LCDDefineCustomCharacter() Defines one of 6 custom characters char As Byte

bitMap() As Byte
LCDGetVersion() Gets the version number for the PIC

microcontroller software
returns byte

LCDInitialize() Initializes the I2C interface and resets the LCD
display

checkBuffer as Boolean

LCDMoveCursor() Moves cursor to specified row and column row as Byte
col as Byte

LCDSetCursorStyle() Sets the cursor style to be hidden, blinking, or
underline

style As LCDCursorStyle (see
below)

LCDSetPosition() Sets the cursor absolute position on the display pos as Byte
LCDSmartLinefeed() Moves the cursor down one line in the same

column
None

LCDTabCursor() Moves the cursor right one tab None
LCDVerticalTabCursor() Moves the cursor down one line None
LCDTabSize() Sets the horizontal tab size in characters size as Byte
LCDTerminate() Stops using the LCD display None
LCDWriteString Writes a string at the current cursor position text as String

The public interface provided by LCD03.bas also includes the following constants and an enumeration for
LCDCursorStyle:

' Display is 20 columns x 4 rows.
Public Const LCDMaxColumn As Byte = 20
Public Const LCDMaxRow As Byte = 4

' Custom characters are in the range 128 to 133
Public Const LCDFirstCustomChar as Byte = 128
Public Const LCDLastCustomChar as Byte = 133

' Enumeration for SetLCDCursorStyle
Public Enum LCDCursorStyle
 HiddenCursor = 4
 UnderlineCursor = 5
 BlinkingCursor = 6
End Enum

Initializing and Terminating use of the LCD Display
The LCDInitialize() subroutine is used to initialize the I2C channel for the LCD display. The I2C channel is
hardcoded to be channel 0 which uses the underlying hardware-based I2C support. This was a deliberate design
decision so that the Timer1 resource is available for other uses. Note that the LCD03 device does not work reliably
above a 100 KHz I2C clock. The initialization routine also configures the LCD display, clears the display, moves the
cursor to the home position and turns off the backlight. In addition it defines two custom characters that are used for

AN-214 Interfacing with the LCD03 Text Display

Copyright © 2006 Mike Perks -3- Published March 2006

“Writing Text to the Display”. The corresponding LCDTerminate() subroutine is used to close the I2C channel
and turn off the backlight.

Positioning the Cursor
A number of the routines in the public interface are used to position the cursor is different ways such as
LCDBackspace(), LCDCursorHome(), LCDMoveCursor(), LCDSetPosition(),
LCDSmartLinefeed(), LCDTabCursor(), and LCDVerticalTabCursor(). These routines reflect
underlying command codes that can be sent to the PIC microcontroller on the LCD device.

A common private function called sendCmd() is used to send these one byte commands to the LCD display. Here
is an example of its invocation and implementation:

Public Sub LCDNextLine()
 Call lcdCmd(NEXT_LINE)
End Sub

Private Sub lcdCmd(ByVal command as Byte)
 Dim cmd(1 to 2) as Byte
 Dim rc as Integer

 cmd(1) = REG_CMD
 cmd(2) = command
 rc = cmdWait(CByte(SizeOf(cmd)), cmd)
 If rc < 0 Then
 Debug.Print "Command "; CStr(command); " returned ";CStr(rc)
 End if
End Sub

The implementation of these functions is rather simple and could be simplified by making lcdCmd() a public
routine. However the idea is to provide a level of information hiding so that the LCD interface or even LCD itself
could be changed without affecting the calling application code. The private function cmdWait() is explained later.

Writing Text to the LCD Display
The subroutine LCDWriteString() is used to write text to the LCD display. The text sent to the display needs to
be prefixed by the I2C command register. Rather than allocate a buffer of up to 65 bytes, a smaller buffer is chosen
and the text string separated into chunks. The private constant BUFFER_SIZE is used to control the chunk size and
is set to 8 in the supplied code.

The LCD displays the incorrect symbols for backslash (\) and tilde (~) so LCDWriteString() remaps these
character codes to two custom character codes so that the correct symbol is displayed for backslash and tilde.

Public Sub LCDWriteString(ByVal text as String)
 Dim buffer(1 to BUFFER_SIZE+1) as Byte
 Dim i as Integer, rc as Integer
 Dim length As Byte, char as Byte

 ' initialize standard part of buffer
 buffer(1) = REG_CMD

 ' break up string into parts rather than send one l ong command
 ' each part is BUFFER_SIZE characters long
 i = 0
 length = 1
 Do While i < len(text)
 ' next character
 i = i + 1
 length = length + 1

 ' translate character for two special cases \ and ~
 char = asc(text, i)
 If char = ASCIITilde Then
 char = LCDtilde

AN-214 Interfacing with the LCD03 Text Display

Copyright © 2006 Mike Perks -4- Published March 2006

 ElseIf char = ASCIIbackslash Then
 char = LCDbackslash
 End If

 ' add character to buffer and see if it is time to output the string
 buffer(length) = char
 If (length = BUFFER_SIZE+1) Or (i = len(text)) Then
 rc = sendCmd(length, buffer)
 If rc < 0 Then
 Debug.Print "LCDWriteString i2cmd returned ";CStr(rc)
 End if

 ' reset the length for the next buffer of character s
 length = 1
 End If
 Loop
End Sub

Defining Custom Symbols
The public routine LCDDefineCustomCharacter() supports defining up to 6 custom symbols (characters). See
the online documentation (http://www.robot-electronics.co.uk/shop/I2C_Serial_Display_LCD032058.htm) for an
explanation of how to define custom characters.

The LCDDefineCustomCharacter() routine shown below checks for a valid character code and then calls an
internal routine to define the character. The reason for the internal routine is so that it can be used by
LCDInitialize() without going through the check for valid character codes.

Public Sub LCDDefineCustomCharacter(ByVal code As Byte, ByRef bitMap() As Byte)
 ' validate the custom character code
 If (code < LCDFirstCustomChar) Or (code > LCDLastCustomChar) Then
 Debug.Print "LCDDefineCustomCharacter invalid character code"
 Exit Sub
 End If

 ' call the internal routine that does the work
 Call defineCharacter(code, bitmap)
End Sub

The code for private defineCharacter() subroutine is not described further. See the attached zip file for details.

Overflowing the Command Buffer
All of routines that send commands to the LCD03 device use a common internal function called sendCmd() shown
below. This function can optionally check the size of the LCD FIFO buffer and wait until there is enough space
before sending the command. The Boolean parameter for LCDInitialize() is used to control if the buffer check
is performed by sendCmd().

Private Function sendCmd(ByVal writeCnt as Byte, ByRef writeData() as Byte) as Integer
 Dim rc as Integer
 Dim reg as Byte, freeSpace as Byte
 reg = REG_FREE

 ' check if buffer too big to even fit
 If writeCnt > MAX_FIFO_SIZE Then
 Debug.Print "Too much data for LCD03"
 sendCmd = -1
 Exit Function
 End If

 ' do buffer check if needed
 If needBufferCheck Then
 ' check to see if there is enough room in the FIFO buffer for the command
 Do
 rc = I2CCmd(channel, ADDRESS, CByte(SizeOf(reg)), reg, 1, freeSpace)

AN-214 Interfacing with the LCD03 Text Display

Copyright © 2006 Mike Perks -5- Published March 2006

 If rc < 1 Then
 Debug.Print "Get FIFO buffer bytes free count i2cmd returned ";CStr(rc)
 freeSpace = 0
 End If
 'Debug.Print "Sizeof free buffer is ";CStr(freeSpac e)

 If freeSpace < writeCnt Then
 Call Sleep(delayTime)
 End If
 Loop Until freeSpace >= writeCnt
 End If

 ' now send the command to the LCD display
 sendCmd = I2CCmd(channel, ADDRESS, writeCnt, writeData, 0, 0)
End Function

So far in my testing I have not ever had to wait for the LCD03 device. It seems to be able to keep up with the I2C
datastream. However I decided to keep this code to show how it could be done. If desired you could remove it in
your own implementation.

Using the LCD Display Interface
Here is some code extracted from AN214.bas that demonstrates how to use the public interface implemented by
LCD03.bas:

Sub Main()
 ' start test
 Call LCDInitialize(false)

 ' write test string and demonstrate tilde and backs lash character remapping
 Call LCDTabSize(4)
 Call LCDMoveCursor(2, 5)
 Call LCDVerticalTabCursor()
 Call LCDTabCursor()
 Call LCDSmartLineFeed()
 Call LCDBackSpace()
 Call LCDWriteString("~Test\String")
 Call LCDSetPosition(61)
 Call LCDWriteString("Software Version: " & CStr(LCDGetVersion()))
 Call LCDSetCursorStyle(UnderlineCursor)
End Sub

Other Considerations
This application note uses I2C to communicate with the LCD03 display. I have not tested the serial connection but I
believe it should be possible to replace the implementation of the public interface with one that uses the serial port.
I have not implemented or tested the use of a keypad attached to the LCD03 device.

Author
Mike Perks is a professional software engineer who became interested in microcontrollers a few years ago. Mike
has written a number of articles, projects and application notes related to ZBasic, BasicX and AVR microcontrollers.
Mike is also the owner of Oak Micros which specializes in AVR-based devices including his own ZX-based
products. You may contact Mike at mikep@oakmicros.com or visit his website http://oakmicros.com.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this document
or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information presented. The
Company reserves the right to change the information described herein at any time without notice and does not make any commitment to
update the information contained herein. No license to use proprietary information belonging to the Company or other parties is expressed or
implied.

Copyright © Mike Perks 2006. All rights reserved. ZBasic, ZX-24, ZX-40, ZX-44 and combinations thereof are trademarks of Elba Corp. or its
subsidiaries. Other terms and product names may be trademarks of other parties.

