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    ZBasic 
    

AN-216 High Resolution Pulse Width Modulation 
 

Introduction 
The ZX series devices have at their core an Atmel ATMega32 or ATMega644 microcontroller.  These processors 
have timers that allow the user to produce hardware-based Pulse Width Modulation.  Once all the settings are 
made, the hardware outputs a square wave signal with a variable duty factor and a variable frequency.  This frees 
the processor for other tasks yet the processor can change the PWM settings whenever necessary.  PWM can be 
used for many purposes.  Some of the more common uses are for driving RC-type servos, driving DC motors via an 
H-bridge, and digital-to-analog conversion. 
 

Timer Hardware 
In its essence, a timer is simply a counter that is incremented after a certain number of cycles of the main clock.  
The number of main CPU clock cycles it takes for each increment of the timer counter is called the prescaler value.  
Prescaler values for Timer 1 are limited to 1, 8, 64, 256, and 1024 on the current core processors for the ZX 
hardware.  Other timers may have different prescaler settings.  With a prescaler value of 1, the timer is incremented 
for every main clock cycle.  When the prescaler is 1024, the timer increments once for every 1024 main clock 
cycles. The rest of the prescaler values function in a proportionally similar way.  The “timing” aspect of this comes 
about by having a “trigger” value (the actual name of this trigger value depends on the specifics of the timer 
implementation).  The trigger value is continuously compared to the current timer counter value and if the timer is 
equal to the output compare value, then an action is taken. 
 
The processor’s timers are able to operate in several different modes, of which several are useful for generating a 
PWM signal.  The PWM modes can be further divided into sub-groups.  One sub-group is called “Phase Correct 
PWM” (PC-PWM) and the other is “Fast PWM” (F-PWM).  The primary difference between these two modes is that 
in the Fast PWM mode the counter only counts in the upward direction while in the Phase Correct mode the 
counter cycles upward and downward between two limits.  The F-PWM mode can create pulses at about double 
the frequency of PC-PWM.  Figures 1 and 2 illustrate these modes of timer counting and output.  

Phase Correct PWM 
 
For Phase Correct PWM, the counter starts counting up from the Bottom value, which for both F-PWM and PC-
PWM is zero.  As the timer counts up, it eventually hits a trigger threshold.  There are two trigger values set in the 
registers OCR1A and OCR1B (this stands for Output Compare Register for timer 1 A or B).  It should be between 
the Bottom and Top values.  When the trigger value is reached an output pin is brought either high or low.  For the 
ZX-24, two output pins can be used, called OC1A and OC1B on the microcontroller hardware.  These pins are 
assigned to pin 
 

 
 

Figure 1 - Phase-correct PWM Timing Diagram 
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26 (green LED) and pin 27 respectively on the ZX-24.  This application note focuses on using Timer1 but the other 
timers in the ZX device are also capable of PWM generation.  Timer 0 is dedicated to the RTC function and 
therefore cannot readily be used for PWM generation.  Timer 2, however, may be available for PWM in your 
application.  This is left as an exercise to the reader. 
 
The OC1A pin in controlled by the OCR1A trigger point, and the OC1B is controlled by OCR1B.  Other hardware 
will have the physical pins assigned elsewhere but the pin and register names will remain the same.  After reaching 
the trigger value, and the Output Compare pin is set/cleared, then the timer continues to count upward until the 
TOP level is reached.  The Top value is set by the user in the ICR1 register (called Input Capture Register 1, but is 
not being used as such in the mode described here) of the microcontroller.  The Top value along with the prescaler 
and main clock frequency (currently always 14.7456 MHz) determine the frequency of the timer.  The Timer 1 Top 
variable is 16 bits (the other timers are 8 bits), and any value that fits in that range is allowed.  Note, however, that 
the Top value must be greater than the Trigger value.  Smaller values of the Top give lower resolution to the 
Trigger.  Therefore, the prescaler should be selected to allow the largest Top value for a given timer frequency.   
 
Often several prescaler values will result in a valid Top variable so one must choose the prescaler carefully.  See 
Table 1 for more insight into the relationship between the prescaler value, resolution and maximum frequency. As 
the table shows, there is considerable overlap between the frequencies and the bit resolutions.  To achieve the 
highest possible bit resolution, one should use the lowest prescaler value that will support the desired combination 
of resolution and frequency.    
 
 

 
Table 1a  16-Bit Output Compare Register values vs. Frequency and Prescaler 

 
 
 

1 8 32 64 128 256 1024 1 8 32 64 128 256 1024

0.1

0.2 36000

0.5 57600 14400 28799

1 57600 28800 7200 57599 14399

2 57600 28800 14400 3600 57599 28799 7199

5 46080 23040 11520 5760 1440 46079 23039 11519 2879

10 23040 11520 5760 2880 720 46079 23039 11519 5759 1439

20 46080 11520 5760 2880 1440 360 23039 11519 5759 2879 719

50 18432 4608 2304 1152 576 144 36863 9215 4607 2303 1151 287

100 9216 2304 1152 576 288 72 18431 4607 2303 1151 575 143

200 36864 4608 1152 576 288 144 36 9215 2303 1151 575 287 71

500 14745 1843 460 230 115 57 14 29490 3685 920 459 229 114 27

1000 7372 921 230 115 57 28 7 14744 1842 459 229 114 56 13

2000 3686 460 115 57 28 14 3 7371 920 229 114 56 27 6

5000 1474 184 46 23 11 5 1 2948 367 91 45 22 10 1

10000 737 92 23 11 5 2 1473 183 45 22 10 4 0

20000 368 46 11 5 2 1 736 91 22 10 4 1

50000 147 18 4 2 1 293 35 8 3 1 0

100000 73 9 2 1 146 17 3 1 0

200000 36 4 1 72 8 1 0

500000 14 1 28 2

1000000 7 13 0

2000000 3 6

5000000 1 1

Cutoff 112.5 14.06 3.516 1.758 0.879 0.439 0.110 225.0 28.13 7.031 3.516 1.758 0.879 0.220

16-bit Counter:  Fast PWM

Prescaler ValuesFrequency Prescaler Values

16-bit Counter:  Phase Correct
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Table 1b  8-Bit Output Compare Register values vs. Frequency and Prescaler  
 

 
Once the Top value is reached, the timer counts backward toward zero.  When the counter hits the trigger again, 
the output pin is toggled to the opposite value and the counter continues decrementing to zero.  When zero is 
reached, it begins to count upward, and the sequence repeats.   
 
The reason that this mode is called “phase correct” is that it is technically possible to change the Top and Trigger 
values on the fly.  The ZX implementation may not have the speed that is required to do this properly, but when 
code is written in Assembler for the raw AVR hardware, for frequencies up to a few hundred KHz, the pulse width 
can be adjusted on a per-pulse basis.  Using PC-PWM, the symmetry of the spacing before and after each pulse is 
maintained.  When filtered properly, it is possible to create a pseudo-sine wave signal.  Therefore, within the audio 
spectrum, it is possible to create a useful complex sound. 
 
 
Fast PWM 
 
This mode functions the same as PC-PWM except that the counter does not count backward after reaching the 
TOP value.  The timer starts counting at zero.  When it reaches the trigger value set in OCR1A or OCR1B it then 
sets the corresponding output pin in the same manner as PC-PWM.  When the counter reaches the TOP value, the 
output pin is toggled.  On the next clock cycle the counter rolls over to zero.  Because the timer does not need to 
count backward to zero, it is able to run at about double the frequency of PC-PWM.  It is important to understand 
that Fast PWM mode does not have resolution equal to TOP steps.  Rather, it has TOP+1 steps because it counts 
zero as a step.    For example, if Top is set to five, the F-PWM counter will count 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, etc.  
This makes 12 steps for two cycles, or TOP+1 steps when counting from zero to Top.  In contrast, in PC-PWM 
mode the counting would be 0, 1, 2, 3, 4, 5, 4, 3, 2, 1.  This makes 10 steps for a full cycle, or only TOP steps when 
counting from 0 to TOP.  This difference in counting makes the ratio of the frequencies not exactly 2:1. 
 

1 8 32 64 128 256 1024 1 8 32 64 128 256 1024

1

2

5

10

20

50 144

100 72 143

200 144 36 71

500 230 115 57 14 229 114 27

1000 230 115 57 28 7 229 114 56 13

2000 115 57 28 14 3 229 114 56 27 6

5000 184 46 23 11 5 1 91 45 22 10 1

10000 92 23 11 5 2 183 45 22 10 4 0

20000 46 11 5 2 1 91 22 10 4 1

50000 147 18 4 2 1 35 8 3 1 0

100000 73 9 2 1 146 17 3 1 0

200000 36 4 1 72 8 1 0

500000 14 1 28 2

1000000 7 13 0

2000000 3 6

5000000 1 1

Cutoff 28913 3614 903.5 451.8 225.9 112.9 28.24 57600 7200 1800 900 450 225 56.25

8-bit Counter:  Fast PWM
Frequency

8-bit Counter:  Phase Correct
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Figure 2 - Fast PWM Timing Diagram 
 
 
 
 
The mathematical equations that apply to the two PWM modes are as follows: 
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clkF  is the clock frequency of the processor (14.7456 MHz), Pre is the prescaler that has been chosen, and Top is 

the selected maximum count of the timer. 
 
Commonly, you will decide on a certain PWM frequency and determine the Top value that will provide that 
frequency.  Equations 1 and 2 can be rearranged for this purpose, resulting in Equations 3 and 4. 
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The optimum prescaler can be determined by iteratively trying prescaler values starting with the lowest until the 
largest Top value less than 65536 (2^16) is obtained.  This iterative technique can be used in a ZBasic subroutine 
example as illustrated below. 
 
Sub Calc_PC_PWM_Settings ( ByRef  Freq as UnsignedLong ,  _ 

   ByRef  Top as UnsignedInteger ,  _ 
   ByRef  Pre as UnsignedInteger ) 
 

' this subroutine is given Frequency in the range of 1 to 7,373,800 (or MainClock/2) 
'it returns Top and Pre with both selected to allow  as large a Top value as possible 

    
Dim Temp_UL as  UnsignedLong  'use a UL because we need the extra digits 
Dim CLK As UnsignedLong  'standard is 14,745,600 
CLK = Register.CPUFrequency 'do NOT assume it will alway s be 14.7Mhz! 
Pre = 1    'start with the lowest prescaler 
Temp_UL = CLK \( 2* CULng( Pre )* Freq )    'calculate the Top value 
 
If  Temp_UL > 2^16 then                'check to see if it is too large 
 Pre = 8 
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 Temp_Ul = CLK \( 2* CULng( Pre )* Freq )    'try the next larger prescaler 
 
 If  Temp_UL > 2^16 then  
  Pre = 64 
  Temp_Ul = CLK \( 2* CULng( Pre )* Freq )    'and so-on 
 
  If  Temp_UL > 2^16 then  

 Pre = 256 
 Temp_Ul = CLK \( 2* CULng( Pre )* Freq )  

 
   If  Temp_UL > 2^16 then  
    Pre = 1024  
    Temp_Ul = CLK \( 2* CULng( Pre )* Freq )  
 
    If  Temp_UL > 2^16 then  'ERROR Too high a requested Frequency 
     Temp_UL = 0  'Zero is returned if there is an error 
     Pre = 0 
    End If  

 End  If  
  End  If  
 End  If  
End If  
TOP = CUInt ( Temp_Ul )   'this is tested to be within the magnitude of UI                            
End Sub 

Programming 
 
To begin PWM generation, the Timer Mode, Prescaler, Top, Trigger, and starting count values need to be set.  
These values are set in several CPU registers.  Confusingly, two of these registers carry several of these values 
simultaneously, and the Mode value is split across two of registers.  This makes the operation of setting the 
parameters somewhat non-intuitive, particularly for the Mode. 
 
The timer mode, OC1A/B pin modes, and the prescaler are set in the two Timer/Counter Control Registers 
(TCCR1A and TCCR1B, which stands for Timer/Counter Control Register 1 A/B).  For the modes described in this 
application note, the Top value will be set in ICR1.  The trigger values will be set in the OCR1A and OCR1B 
(Output Compare Register 1 A/B). The current count for the timer is TCCNT1.  While it is not strictly necessary to 
change TCCNT1, when you are setting ICR1 it is probably best to set the count back to zero as well. 
 
The bits in each register are used as follows: 

 BIT FIELD 
Register 7 6 5 4 3 2 1 0 
TCCR1A OC1A 

Mode 
OC1A 
Mode 

OC1B 
Mode 

OC1B 
Mode 

NA NA Timer 
Mode:3 

Timer 
Mode:2 

TCCR1B NA NA NA Timer 
Mode:1 

Timer 
Mode:0 

Prescaler Prescaler Prescaler 

OCR1A/B Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
ICR1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TCCNT1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
 

Table 2 – Timer1 Control Register Bit Assignments 
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Variable Bit 3 Bit 2 Bit 1 Bit 0 
Output Compare Mode:  Normal - - 1 1 
Output Compare Mode: Inverted - - 1 0 
Output Compare Mode: Disabled - - 0 0 
     
Timer  Mode: F-PWM 1 1 1 0 
Timer  Mode: PC-PWM 1 0 1 0 
     
Prescale: Timer Disabled - 0 0 0 
Prescale: 1 - 0 0 1 
Prescale: 8 - 0 1 0 
Prescale: 64 - 0 1 1 
Prescale: 256 - 1 0 0 
Prescale:1024 - 1 0 1 
     

Table 3 – Bit Maps of Function Assignments 
 
 

Exercise: Driving a Servo 
 
Typical RC servos require a control pulse lasting from 1 millisecond to 2 milliseconds, with the center position being 
defined as about 1.5mS.  The frequency should be about 50 Hz.  
 
Equations 2 and 3 can be used to determine that the optimum mode for this application is Fast PWM with a 
prescaler of 8 and a Top count of 36863.  Since the period of 50Hz is 20 milliseconds, the shortest allowed pulse 
width of 1mS is equal to a duty factor of 0.05 (1/20), which corresponds to a count of 1843.  The longest allowed 
pulse width of 2mS is a duty factor of 0.10 (2/20), corresponding to a count of 3686. By subtracting these two 
values, the full rotation range of the servo is determined to be about 1843 steps. For a servo capable of 60 degrees 
of swing each way each step corresponds to approximately 0.065 degrees. 
 
The code fragments below can be used to set the parameters to drive two independent servos.  The first fragment 
defines a group of constants that are useful to manipulate the timer. 
 
Public Const pre_mask     as Byte = &B0000_0111 
Public Const pre_8     as Byte = &B0000_0010 
Public Const oc1a_mask    as Byte = &B1100_0000 
Public Const oc1b_mask    as Byte = &B0011_0000 
Public Const oc1a_norm    as Byte = &B1000_0000 
Public Const oc1a_invert  as Byte = &B1100_0000 
Public Const oc1b_norm    as Byte = &B0010_0000 
Public Const oc1b_invert  as Byte = &B0011_0000 
Public Const t_mode_maska as Byte = &B0000_0011 
Public Const t_mode_maskb as Byte = &B0001_1000 
Public Const f_pwm_modea  as Byte = &B0000_0010 
Public Const f_pwm_modeb  as Byte = &B0001_1000 
Public Const pc_pwm_modea as Byte = &B0000_0010 
Public Const pc_pwm_modeb as Byte = &B0001_0000 
 
 
The  following code fragment shows how the timer can be prepared to drive the servo using Fast PWM.  The PWM 
duty cycle is initialized for the center position for one servo and the zero position for the other. 
 
 
'clearing the prescaler will stop the timer 
Call SetBits(Register.tccr1b, PRE_MASK, &B0000_0000 ) 
 
'set the timer mode to F-PWM 
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Call SetBits(Register.tccr1a, t_mode_maska, f_pwm_m odea) 
Call SetBits(Register.tccr1b, t_mode_maskb, f_pwm_m odeb) 
 
'set the output compare modes to normal 
Call SetBits(Register.tccr1a, oc1a_mask, oc1a_norm)  
Call SetBits(Register.tccr1a, oc1b_mask, oc1b_norm)  
 
'set the top value to give 50 hz when combined with  a prescale of 8 
Register.icr1 = 36863  
 
'set the timer count to zero 
Register.tcnt1 = 0 
 
'set OCR1a to place the servo at the middle positio n (1.5mS) 
'50Hz has a period of 20.0 milliseconds 
Register.ocr1a = CUInt (36863.0  * 1.5  / 20.0 ) 
 
'set OCR1b to place the servo to one extreme side 
Register.ocr1b = CUInt (36863.0  * 1.0  / 20.0 ) 
 
'LAST, set the prescaler to 8, and timing will comm ence 
Call SetBits(Register.tccr1b, PRE_MASK, PRE_8)  
 
Once this is done, you can easily change the servo positions by just changing the OCR1A and OCR1B registers. 
 
 
'set OCR1a to place the servo at the 25% position ( 1.25mS) 
Register.ocr1a = CUInt (36863.0  * 1.25  / 20.0 ) 
 
'set OCR1b to place the servo at the 75% position ( 1.75mS) 
Register.ocr1b = CUInt (36863.0  * 1.75  / 20.0 ) 
 
 
To achieve the greatest precision, you may need to calculate the ACTUAL frequency at which the timer is working.  
It is unlikely to be precisely the intended frequency, but most likely is quite close.  Using Equation 2, the actual 
timer frequency in the above exercise is 50.0027 Hz.   Therefore, simply using 50Hz in calculations would probably 
be sufficient, but using the true frequency will give the best possible accuracy in setting the servo positions. 
 
 

Exercise:  DAC Output 
 
Theory 
 
It is possible to create a pseudo-analog output voltage by averaging the digital output.  Since it is not possible to 
vary the voltage of the digital output (it is either ON or OFF), we must vary the duration of the ON and OFF times.  
The duty factor is the ratio of the ON time to the total ON + OFF time, and it determines the average voltage output.  
For instance if the duty factor is 50% the output pin will spend half its time at zero volts, and the other half at 5 volts 
and the average voltage is 2.5 volts.  When viewed on a sufficiently small time scale, the output is simply either 
zero or 5 volts, and nothing in between, but with averaging we lose sight of the ON and OFF peaks and valleys. 
 
A capacitor can be used to create the simplest averaging filter.  It will store the charge (and therefore the voltage) 
over time creating the averaging effect.  The capacitor can be thought of as a voltage reservoir.  When the output is 
high, the charge flows into the capacitor, gradually increasing its voltage.  Then when the output is low, it will draw 
the charge out of the capacitor, lowering its voltage.  If the flow is too fast, it will fill the capacitor instantly and it will 
instantly rise to maximum voltage.  Then when the flow is reversed, it will instantly drain to zero volts.  We need a 
way to make the filling and draining more gradual.  This can be achieved by adding a resistor between the output 
pin and the capacitor.  This slows the change in the voltage of the capacitor and allows it to hold the simply average 
voltage.   Because the charge is constantly going in or out, we can never make the voltage perfectly stable.  The 
more stable we try to make the voltage (i.e. less ripple in the voltage), the more slowly the capacitor is able to 
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change its voltage when the user changes the duty factor.  Because we live in an imperfect world, we can not have 
perfectly instantaneous response to changes, and have perfectly stable voltage as well.  We must compromise.  
Exactly where the compromise is made depends on the user’s needs.  Some requirements are diametrically 
opposed, for instance accuracy of the averaging vs. the speed that the filter can deliver the correct average voltage.  
High frequency vs. number of steps in the duty cycle (granularity).  Simplicity of the circuit vs. quality of filtering.  
Size and expense of the components vs. quality of filtering. 
 
As can be seen from this list, one of the major concerns is “quality of filtering”.  This can be defined in many ways, 
but one of the more important quality concerns is the ripple of the output voltage.  This ripple is the residual effect of 
the peaks and valleys from the input square wave.  It is never possible to eliminate them completely, but they can 
be reduced to any arbitrarily small amount.  How small is small enough?  That depends on the particular 
application, but here are some ideas. 
 
One way we could determine the acceptable limit on ripple would be based on the resolution of any Analog-to-
Digital converter we might be using.  For example the ZX hardware has 10 bit (0-1023 counts) ADC hardware.  
Ripple of less than 1 part in 1024 would be invisible.  If we are using a 5 volt system, then 1/1024 equates to about 
5 millivolts.  For a filter, the attenuation is usually measurement in “db”, 1/1024 = -60.2 db. [db = 20 Log10(Vout/vin)] 
If we were willing to accept 50mV of ripple, we would only need 40 db of attenuation.  It would probably be a good 
idea to add a few extra db of attenuation just to be sure that the ripple does not exceed the upper limit.  If you had a 
16 bit ADC, then you would need to limit the ripple to better than 1/65536.  This is –96db.  With a few extra db 
thrown in, you would need a nice round –100db.  This might be hard to do with a second order filter, but it is a piece 
of cake for a fourth order filter.    A “quad” op-amp could allow up to an 8th order filter using the one device (plus 12 
resistors and 8 capacitors). An 8th order filter will have a very steep drop-off in the voltage above the cut-off 
frequency (-48db/octave).  This allows the use of a higher cut-off.  See the discussion below regarding filter design 
software and yet further below regarding settling time. 
 
What about the other constraints?  Many books have been written about the pro’s and con’s of various designs of 
filters which will be summarized here.  A good compromise in simplicity vs. quality is a “second-order” filter which 
delivers double the db value of attenuation (square the voltage value of attenuation) compared to the most simple 
single resistor and capacitor first-order filter.  A Bessel filter gives better control of transients than a Butterworth 
filter.  A multiple feedback topology also gives better control than single feedback topology (Sallen-Key). An active 
filter, using an op-amp as a part of the filtering process, will allow smaller components and still provide a low 
impedance output. 
 
There are various filter design programs available free from semiconductor manufacturers that allow you to set the 
constraints, and it will give you the schematic for the active filter circuit.  Filter-Pro from Texas Instruments was 
used as a major source for the following circuits, and can help you with variations in filter design, particularly higher 
order circuits using more than one op-amp stage. 
 
Now we reach the question of the granularity of the duty factor.  In general, the DAC clock should run at the highest 
possible frequency to allow the smallest possible capacitors.  The current ZX devices have a 14.7456 MHz clock.  
This means that each step in the duty factor must be a minimum of 0.0678 uS.  If we want 256 steps (0-255) in the 
duty cycle, then the period must be 256 clock cycles long.  This equates to 17.29uS or 57,600 Hz.  See the 
following table. 
 
 

 Duty Factor Step Resolution 
 256 1,024 4,096 16,384 65536 

Frequency 57,600 Hz 14,400 Hz 3,600 Hz 900 Hz 225Hz 
Table 4 – Relationship Between Step Resolution and Frequency 

 
How many steps of in duty factor adjustment should be used?  Two numbers that might make sense are either 256 
or 65536 because those will fit in a byte or an integer respectively.  But, 65536 steps might be an excessively large 
number considering that the ADC hardware of the ZX can only measure voltages with 10 bits of accuracy!  Also, 
the highest step resolution must run at the rather low frequency of 255 Hz, making filtering more difficult.  
Nevertheless, some ADC hardware is fully capable of measuring with 16 bits of resolution, so 65535 steps may be 
necessary.  [If one were to apply the Nyquist theorem, it might be best to run the DAC with double the duty cycle 
resolution as compared to the resolution of the voltage measurement hardware.] 
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The last issue is the “settling time”.  This is the time it takes the output to settle to a new pseudo-voltage after 
changing the duty factor.  The settling time is proportional to the turn-over frequency (Fc) [Remember, the turn-over 
frequency is based on the number of steps in the duty factor as well as the amount of ripple in the output].    The 
settling time is also proportional to the accuracy required from the measurement of the pseudo-analog signal.  The 
more accuracy that is needed the longer it takes to fully settle.  The controlling equation is 0.6933 * Nbits / (2 * PI* 
Fc).  Table 5 gives the settling time for various combinations.  If you are using the ZX hardware to read the voltage, 
then use the 10-bit column for the settling time.   
 
 
 

 Settling Time 
2nd Order Bessel Turn-Over Freq. 8 bits 10 bits 12 bits 16 bits 
4.7 Hz     (-63 db @ 225 Hz) 188 mS 235 mS 282 mS 376 mS 
15 Hz      (-43 db @ 225 Hz) 58.8 mS 73.6 mS 88.3 mS 118 mS 
300 Hz    (-63db @ 14.4 KHz) 2.94 mS 3.68 mS 4.41 mS 5.88 mS 
960 Hz    (-43 db @ 14.4 KHz) 0.92 mS 1.15 mS 1.38 mS 1.84 mS 
1.3 KHz   (-63 db @ 57.6 KHz) 0.68 mS 0.85 mS 1.02 mS 1.36 mS 
4.0 KHz   (-43 db @ 57.6 KHz) 0.221 mS 0.276 mS 331 mS 0.441 mS 

Table 5 – Settling Times for Various Configurations 
 
As this table shows, 8 bit resolution at 57.6 KHz has about 550 times faster settling time than 16 bits at 225 Hz.  
This allows much faster response time if the speed of the response is a critical issue.  Allowing ten times as much 
ripple in the output will allow about 3 times faster response time. 
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Figure 3 - Second Order Bessel Filters Tuned for Various Cut-off Frequencies 

 
 

Exercise:  Driving an H-Bridge 
 
In the simplest view, an H-Bridge is a transistor circuit that has two inputs and can be used to drive a DC electric 
motor in both directions.  Depending on which input is high, the motor will rotate one direction or the other.  But, if 
both inputs are high simultaneously, a short circuit is created and the H-Bridge circuitry may be destroyed.  When 
both inputs are low, there is no power to the motor at all. 
 
In order to avoid the possibly destructive effects of having both inputs high simultaneously special purpose logic is 
often used.  There are several commercially available H-Bridge driver IC’s as well as more complex devices on a 
printed circuit.  These will not be discussed in detail here.   
 
Usually the H-Bridge circuits have two direction inputs as well as an “enable” input.  There are various techniques 
used to drive the H-Bridge at less than 100% speed while preserving torque.  The simplest technique of using PWM 
pulsing of the “enable” input, similar to the preceding DAC example, may be adequate in some situations.  More 
often somewhat more complicated techniques are used. 
 
One variant of the DAC-style PWM technique uses a constant frequency with only the duty factor changing for the 
middle of the speed range.  At the higher and lower ends, frequency may also be changed so that the Off time is 
adjusted instead of the On time.  Again, the “enable” input to the H-Bridge is pulsed.  Experimentation may be 
necessary to determine the optimal frequency to give good motor torque. 
 
A third technique that is reported to work well is “Locked Anti-Phase”.  This does not pulse the “enable” pin on the 
H-Bridge, but instead drives the motor forward and backward at high frequency so that it averages out.  At 50% 
duty factor, the motor is driven equally forward and backward so it comes to a standstill, with braking.  At 100% 
duty, the motor will turn at full speed forward.  At 0% duty, it turns backward at full speed.  If the “enable” pin is off, 
then the motor coasts to a standstill. 
 
This technique seems to have the most promise due to positive reports of its actual operation.  To achieve this 
without any extra external logic, a two-channel timer must be used.  On the ATMega32-based ZX hardware, only 
Timer 1 has two channels.  On the ATMega644, all 3 timers have two channels, Timer 0 is used by the RTC, but 
Timer 2 can be used with 8-bit precision.  (Note:  this may conflict with the software UART channels which also use 
Timer 2.) 
 
The two channels are set up with opposite outputs and with opposite modes (Normal and Inverted).  When the 
timer sets and clears the two channels, it will happen simultaneously and they will be locked in “anti-phase”.  If 
there is any error in the setup of the two channels, then there is the risk of driving both channels high at the same 
time, thereby destroying an unprotected H-Bridge. 
 
It is probably better to use a single PWM output and run the signal straight to one H-Bridge input, and through an 
inverter to the other output.  Technically, the inverter causes a slight propagation delay, on the order of 15 to 20nS 
(depending on the logic family).  This means that for 15nS or so, the two H-Bridge inputs will have the same value.  
Probably this will not do any damage for such a brief interval, but it may be safer to send the PWM output to two 2-
input XOR logic gates.  The second input of one of the gates is connected to the positive voltage input, and the 
other gate has its second input connected to ground.  In this manner one gate will always output the opposite value 
of the other for the same PWM input,  and there will be equal propagation delay.  
 
My source on this subject had good results with a PWM frequency of a few KHz.  Commercial PWM devices 
frequently use tens of KHz.  It is feasible to drive the H-Bridge with locked anti-pahse at 57,600 Hz with 256 steps 
of resolution (128 in each direction).  Again some experimentation may show how motor torque changes across 
PWM frequencies. 
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Programming 
 
Here is a subroutine using the second PWM technique listed above.  It will calculate the PWM frequency given a 
specific duty factor, based on the constants of minimum pulse width, and the middle-range frequency.  There are 
practical limits to the duty factor.  The relationship of duty factor and motor speed is probably not linear particularly 
at the extremes of the duty factor.  It might be worthwhile to create a correction factor look-up table, or just avoid 
the use of rather high or low duty factors.  A working example of this technique is found in the sample code for this 
application note. 
 
'some arbitrary values.  Test others! 
Private Const MiddleFreq as Single = 57600.0    'Hz 
Private Const MinPulse   as Single = 3.47e -6   'seconds 
 
Public Function CalcPWMFreq ( ByVal Speed as Single ) as Single 
   If (Speed < (MiddleFreq * MinPulse )) then 
       CalcPWMFreq = Speed / MinPulse 
   ElseIf (Speed > (1.0  - (MiddleFreq * MinPulse ))) Then 
       CalcPWMFreq = (1.0  - Speed ) / MinPulse 
   Else  
       CalcPWMFreq = MiddleFreq 
   End If   
End Function 
 

Summary 
 
In the preceding discussion and examples, it can be seen that PWM techniques have many uses.  Programming 
the Timers to provide a wide variety of frequencies and duty factors is reasonably simple once the use of hardware 
registers is understood. 
 
It is expected that interested readers will use this material as an overview of the subject matter and use the sample 
programs to provide only a starting point for further development tailored to specific needs. 
 

Author 
Anthony Rhodes is an amateur programmer with a special interest in microcontrollers.  He has written several modules to 
interface support hardware to the ZX platform.  Many of them actually work! 
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