

Copyright © 2007 Mike Perks Published January 2007

 Application Note
 ZBasic

AN-218 Implementing a RS-485 Multi-drop Network

Introduction
This application note describes how to interface ZX devices with a RS-485 multi-drop network. RS-485 networks
are used by many industrial applications including process control, building automation and even the control of
lights at a concert. A RS-485 header board and example hookup is provided to explain the simple hardware
required to get started with networking ZX devices. The software included with this application note gives a sample
application and a reusable set of APIs to send and receive messages on a RS-485 network. Here is a table of
contents to help with document navigation.

Overview of RS-485..1
Hardware Interfacing...2

RS-485 Header Board...2
Example RS-485 Network ...3

Software ..4
Software Requirements and Protocol Stack ...4
Serial Interface ..5

RS485Init ...5
RS485Term ...5
RS485Start ..6
RS485Stop ..6
RS485Send ...6
RS485FinishReceive ...7
RS485Receive...8

Sample Application..10
Sample Output...10
Address Resolution..11
Implementation of Master ..12
Implementation of each Slave ...13

Development Considerations ..14
Debugging Network Applications...14
Incremental Design and Coding ..15
Network Performance..16

Summary...16

Overview of RS-485
RS-485 differs from the more familiar RS-232 standard is a number of ways. Below is summary table of the
electrical differences.

 RS-232 RS-485

Number of Devices 2 (point to point) Up to 32 (multi-drop)

Mode of Operation Single-ended relative to common ground Differential voltage on two wires A and B

Signaling +5 to +15V is a digital 0
-5 to -15V is a digital 1

B > A is a digital 0
A > B is a digital 1

Simultaneous send and
receive

Full duplex via TX and RX wires Half duplex but full duplex is possible using
two pairs of A and B wires

Maximum Cable Length 50 feet 4000 feet

Official Standard Name EIA-232 EIA-485

In a RS-485 network if two devices try to talk at the same time, the signals will interfere with each other – this is
termed bus contention. A similar network that also suffers from bus contention is Ethernet. Ethernet solves the

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -2- Published January 2007

problem by first detecting the bus contention and then using a “back-off” algorithm to try again later. RS-485 has a
much simpler approach to this problem by designating a master and the master orchestrates all network traffic. The
other devices are termed slaves and slaves only talk in response to a request from the master. This ensures that
only one device at a time is driving the network. There are algorithms for one device to “take over” mastery of the
RS-485 network but this is outside the scope of this application note.

A balanced-line driver for RS-485 network has an enable signal. When disabled the line driver is not connected to
the network and the A and B lines are tri-stated. There is also a balanced line receiver that also has an enable
signal. With proper coordination between the various drops using the master-slave idea, it is possible for only one
device to be driving the network at any one time and all the other devices are listening.

It is good practice to also include termination at each end of the transmission line especially for either high data
rates or long wiring runs. In this case high transmission rates means > 19200 baud and long wiring runs means
tens or even hundreds of meters. The common signal ground is also recommended to keep the signaling voltages
on the A and B lines within tolerance.

When all the drops are in listen mode, there isn’t an active driver and therefore the A and B lines tend to float. To
avoid this condition it is common practice to add “bias” resistors to tie the A line to ground (pull-down) and the B line
to positive voltage (pull-up).

Additional hardware considerations for surge suppression, isolation, transient protection and faults are outside the
scope of this application note. A good resource more details is the “RS-422 and RS-485 Application Note” from
B&B Electronics (http://www.bb-elec.com/bb-elec/literature/tech/485appnote.pdf).

Hardware Interfacing
Many chip manufacturers make line driver/receiver (transceiver) chips for RS-485 networks. The author has
successfully used the ST Microelectronics ST485. There are up to four connections required to a microcontroller
that include the driver logic input, receiver logic output, enable line for the driver and enable line for the receiver.
Because the two enable lines have opposite polarity, it is common practice to tie the two enable lines together so
that one signal can control either driver enabled (logic 1) or receiver enabled (logic 0).

RS-485 Header Board

Below is an example RS-485 circuit that can either be used as a stand-alone “header” board or can be added to an
existing microcontroller system. The schematic in EAGLE format is included in the associated ZIP file. The author
can be contacted for the RS485 EAGLE part.

JP1A and JP1B are the connections to the RS-485 network. The author used 0.1” headers to aid with “daisy-
chaining” of headers together but it is also common practice to use screw terminals. The RS-485 common ground
(also called “C”) is connected into the local ground through R2 to limit ground currents. In some cases there may
already be a common ground (e.g. same voltage source) and this line is not needed.

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -3- Published January 2007

JP2 is the connection to the ZX microcontroller via 3 I/O pins one of which controls the enable/disable of the driver.
A LED is used to indicate whenever the RS-485 line driver is enabled. The TX/RX signals should be connected to
any pair of I/O pins that can provide logic level serial data. This could be a ZBasic logical serial port (COM3-6) or an
USART port such as COM1.

Jumper JP3 and its associated resistor R1 provide optional line termination. The optional resistor R6 is used to
ensure that the default mode for the RS-485 transceiver is receiving. The two resistors R3 and R4 are the biasing
resistors for the network and only need to be included on one of the header circuit boards. Because the Master is
always needed for any RS-485 network, it is convenient to include the bias resistors at this drop. The header JP4 is
used to provide power to the header board and the de-coupling capacitor C1 is optional.

Example RS-485 Network

The schematic below shows my test setup for a RS-485 network. It is not a complete circuit but shows the
important details. Other variations are discussed later in this section.

There are 3 RS-485 transceivers (IC3-5) connected together into a RS-485 network. Two are connected to the
COM1 ports of ZX-24ae devices (IC1-2) and the third to a standard MAX232 RS-232 dual transceiver chip (IC6).
The RS-232 serial line is connected to the host computer and can be used to monitor the RS-485 network. In other
applications it can be the master for the RS-485 network and the RTS line is often used to control the RS-485 driver
enable. Line termination (R1-2) and bias resistors (R3-4) are also shown.

Of the two ZX-24ae devices, IC1 is configured to be the master and IC2 to be the slave. The switch on the ZX-24ae
devices needs to be in the “logic level” position so that serial data is presented to the RS-485 transceiver via pins
19 and 20 of each ZX-24ae device. Pin D.4 is used as the RS-485 driver enable line. This example circuit uses
ZX-24ae devices because they allow both high-speed serial transfers via COM1 and the ability to quickly “flip the
switch” to download updated code from the host PC. This feature speeds code development.

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -4- Published January 2007

IC7 is a non-inverting tri-state buffer with a active low enable (e.g. 74HC244) that is used to connect a pair of 4-way
DIP switches to each of the ZX-24ae devices. RN1 and RN2 are 10K resistor arrays which are used to pull up the
lines to 5V. The enable for the buffer is connected to pin D.6 of the ZX-24ae devices and pins B.0 to B.3 are used
to set the address of the device. The device address is the inverse of the value of these 4 bits. In the schematic
below the master (IC1) is address 0 and the slave (IC2) is address 2.

The high-speed logical COM1 port is also available on other ZX devices such as the ZX-44, ZX-44a, ZX-40,
ZX-40a, and ZX-24e. It is possible to use the COM1 port on a ZX-24 or ZX-24a device with the addition of RS-232
to RS-485 protocol converter or a RS232 transceiver. If network speed is less important then the ZBasic logical
COM ports (COM3-6) can be used instead which is supported on all ZX devices.

The tri-state buffers are used to read in the state of the DIP switches at application startup and are not used again.
Providing that the switch values do not affect anything else, these I/O pins can be reused in the application. These
buffers could be removed entirely and the switch state read directly from pins B.0 to B.3. There are numerous
variations here on how the address of the device can be given to it including reading it from EEPROM.

Software
A key part of this application note is the associated ZBasic software, which is split into three modules. The main
module of interest is RS485serial.bas which implements a reusable API for sending and receiving messages over
a RS-485 multi-drop network. AN218.bas contains a sample application that exercises the API and
DebugPrint.bas implements a debugging interface over a RS-232 serial line that does not have to be COM1.

The software in the associated ZIP file requires ZBasic version 2.0.0 or greater and a VM version 2.0.0 or greater.
The source code is distributed with a BSD license (http://www.opensource.org/licenses/bsd-license.php). Please
contact the author if you need a commercial license for this code.

Software Requirements and Protocol Stack

An overview of hardware and electrical connections for a RS-485 network is described on page 1 and is termed the
physical layer in the 7-layer ISO networking model (http://en.wikipedia.org/wiki/OSI_model). The first layer of
software on top is the datalink layer and describes how data bytes are transmitted on the network. From the
hardware description above it should be obvious that serial data is transmitted on a RS-485 network in a similar
way to a RS-232 connection using a start bit, 7 or 8 data bits, an optional parity bit, and one or two stop bits.

In the next protocol layer up, which is also part of the datalink layer, the format of data packets is defined. There are
four parts to this packet definition:

• Packet Size The maximum size of any data packet is 256 bytes.

• Packet Header The packet header is a single byte with a value from 1 to 255 that identifies the slave
address. An address of 0 is a broadcast message to all slaves. A slave response
contains the address of the slave.

• Packet Content The packet content (or message) is up to 253 bytes long and the format is defined by
the application.

• Packet Tail The packet tail is 2 bytes long consisting of a 16-bit CRC value of the packet header
and packet data. The CRC algorithm used is the same as the one used for Modbus.

Once a slave receives a data packet, it verifies the CRC and checks the packet header to determine if it should
process the message. A slave should process packets addressed to it and send a response back to the master.
The master in the meantime should wait for a response and timeout if no response is received within a certain time
limit. A lack of response from any message except a broadcast message means that the slave is not connected to
the network. A slave should still respond if it is busy processing a previous message and cannot respond to the
new one. The situation with a bad CRC is more difficult because the packet header could be in doubt. For the
sample application code, slaves assume that the packet header is correct and only send a response to the master
when the CRC is correct.

The application layer defines the content of data packets and how responses and errors are sent back to the
master. For the sample application, the message content and response are very simple. In a future application
note, an implementation of a Modbus (http://www.modbus.org) slave will be presented. The Modbus specification
defines a structure for packets of data and how commands, values and errors are formatted in data packets. The

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -5- Published January 2007

packet definition in this application note is based on the Modbus RDU serial protocol. This was done because it is
both a reasonable packet definition and is needed for a Modbus slave implementation.

Serial Interface

The RS-485 serial interface in RS485serial.bas supports the following public routines:

• RS485Init

• RS485Term

• RS485Start

• RS485Stop

• RS485Send

• RS485Receive

• RS485FinishReceive

The following sections give the API signature and an abbreviated implementation code for each routine. Full source
code can be found in the attached ZIP file.

RS485Init

This subroutine opens the RS-485 serial communication channel. It assumes that the caller has already defined the
communications channel using the DefineCom or DefineCom3 library function. The output queue for the serial
communication channel is hard-coded to 32 bytes not including the queue overhead. The programmer can define
the size of the output queue and RS485Init() routine creates the output queue from dynamic memory. The reason is
that the minimum size of the output queue is highly dependent on the data packet size and the baud rate. See page
16 for a discussion of network performance.

Public Sub RS485Init(ByVal serialChannel as Byte, ByVal baud as Long, _

 ByVal sendReceive as Byte, ByVal queueSize as UnsignedInteger)

 ' store configuration values for later use

 channel = serialChannel

 baudrate = baud

 sendReceivePin = sendReceive

 ' just to be sure, enable RS485 receiver and disable the driver

 Call PutPin(sendReceivePin, zxOutputLow)

 ' create storage for queue dynamically

 inQueueAddr = System.Alloc(queueSize+9)

 ' open the serial port

 Call OpenQueue(CByteArray(inQueueAddr), queueSize+9)

 Call OpenQueue(outQueue, sizeof(outQueue))

 Call OpenCom(channel, baudRate, CByteArray(inQueueAddr), outQueue)

 ' check that the serial channel correctly opened

 If StatusCom(channel) <> 3 Then

 Call DebugPrint("Could not open serial channel " & CStr(channel) & CRLF)

 channel = 0

 End If

End Sub

RS485Term

This subroutine closes the RS-485 serial communication channel and should be paired with RS485Init().

Public Sub RS485Term()

 Call CloseCom(channel, CByteArray(inQueueAddr), outQueue)

 Call System.Free(inQueueAddr)

End Sub

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -6- Published January 2007

RS485Start

This subroutine starts the RS-485 serial communication channel and a task to receive data packets. An important
part of this subroutine is that the caller creates the buffer which is used by the message receive code.

Public Sub RS485Start(ByRef buffer() as Byte, ByVal size as UnsignedInteger, _

 ByVal addr as Byte)

 ' make sure channel exists

 If channel <> 0 Then

 ' save configuration data

 bufAddress = buffer.DataAddress

 bufSize = size

 deviceAddress = addr

 ' Calculate receive the message frame timeout in clock ticks.

 ' The timeout is at least 3.5 characters and is dependent

 ' on baud rate. Minimum value is at least 1 tick (1.95 ms)
 messageFrameInterval=CByte(3.5*11.0*CSng(Register.RTCTickFrequency)/CSng(baudrate))+1

 ' clear the semaphore for message receiving

 bufLocked = False

 ' start state for receive task

 status = Waiting

 error = NoData

 ' enable RS485 receiver

 Call PutPin(sendReceivePin, zxOutputLow)

 ' start the task to receive RS485 messages

 CallTask "receiveDataPacket", receiveTaskStack

 End If

End Sub

RS485Stop

This subroutine stops a RS-485 serial communication channel and should be paired with RS485Start(). At this point
the receive task is halted and the buffer allocated by the caller is no longer used by the receive task.

Public Sub RS485Stop()

 ' make sure channel exists

 If channel <> 0 Then

 ' exit the RS485 task to receive RS485 messages and clear the semaphore

 ExitTask receiveTaskStack

 bufLocked = False

 End If

End Sub

RS485Send

This subroutine sends a message on the RS-485 serial channel. The CRC for the message is calculated and added
before sending the message. There are two key parts to the implementation of this routine:

1. If the message buffer is larger than the output queue then it is broken up into “chunks” where each chunk is
at most half of the output queue size. When the output queue is less than half full, another chunk is added
to the queue. This keeps the output queue fed with data.

2. If the output queue is more than half full, then the send routine waits until it is less than half full. The sleep
time is calculated based on the baud rate of the serial channel. If the output queue is still more than half
full, then the routine continues waiting. There is no timeout on this wait as the RS-485 transceiver can send
data even if no other device is listening. For the last chunk of data the routine waits until the output queue
is empty and the final stop bit has been sent on the network. The internal subroutine waitForSend(), which
is not listed here, performs the actual wait for a given buffer size.

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -7- Published January 2007

Public Sub RS485Send(ByRef buffer() as Byte, ByVal length as UnsignedInteger)

 ' setup pointer to buffer

 Dim addr as UnsignedInteger

 Dim data as Byte Based addr

 ' calculate and add CRC as last two bytes of buffer

 Dim CRC as UnsignedInteger

 CRC = CRC16(buffer, length, &H8005, &Hffff, &H03)

 addr = buffer.DataAddress+length

 data = LoByte(CRC)

 addr = addr + 1

 data = HiByte(CRC)

 length = length + 2

 ' start sending of message by enabling RS485 driver

 Call PutPin(sendReceivePin, zxOutputHigh)

 ' send half a transmit buffer's worth of data at a time until everything is sent

 addr = buffer.DataAddress

 Do While length <> 0

 ' calculate how much more data to send

 Dim chunkSize as UnsignedInteger

 If length > OUTPUT_BUFSIZE \ 2 Then

 chunkSize = OUTPUT_BUFSIZE \ 2

 Else

 chunkSize = length

 End If

 length = length - chunkSize

 ' queue up next chunk of data

 Call PutQueue(outQueue, data, chunkSize)

 addr = addr + chunkSize

 ' wait until the transmit buffer is less than half full

 Call waitForSend(CINT(OUTPUT_BUFSIZE \ 2))

 Loop

 ' wait for remaining bytes to finish sending i.e. transmit buffer is empty

 Call waitForSend(0)

 Call Sleep(messageFrameInterval)

 ' disable the RS485 driver and re-enable the receiver

 Call PutPin(sendReceivePin, zxOutputLow)

End Sub

RS485FinishReceive

This subroutine must always be called after an RS485Receive() to free up the system resources and error status
for the next receive.

Public Sub RS485FinishReceive()

 ' resets the state for the next receive

 status = Waiting

 error = NoData

 ' clears the semaphore

 bufLocked = False

End Sub

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -8- Published January 2007

RS485Receive

This function attempts to receive some data from the RS-485 serial channel. It either returns the size of the data
received or an error code (which is > &HFFF0). As mentioned earlier the receive function depends heavily on a
separate task to retrieve the data packet from the network.

The RS485Receive() function determines if the receive task is in the middle of receiving or has just received a
message. In this case the function waits on a shared semaphore and then retrieves either the size of the message
or an error code. Otherwise the function returns either the last error code that defaults to no data received.

Public Function RS485Receive() as UnsignedInteger

 ' make sure channel exists

 If channel = 0 Then

 RS485Receive = CUInt(RS485ErrorStatus.NoConnection)

 Exit Function

 End If

 ' If there is no current error then we are either in the

 ' middle of receiving data or have already received it

 If error = NoError Then

 ' Wait until the receiveDataPacket task releases the semaphore.

 Do While Not Semaphore(bufLocked)

 Call Sleep(SEM_WAIT_TIME)

 Loop

 ' if the data is ready then return size of message

 ' not including the final 2 bytes of the CRC

 If status = BufReady Then

 RS485Receive = dataSize - 2

 Else

 ' Otherwise return the error code and clear the semaphore.

 ' It is possible but very unlikely that no error code

 ' has been set by this time. This would be an internal logic error

 RS485Receive = CUInt(error)

 bufLocked = false

 End If

 Else

 ' Otherwise return the current error (defaults to NoData)

 RS485Receive = CUInt(error)

 End If

End Function

Note that if there is an error, it is cast from the ErrorStatus enum to an UnsignedInteger so that this function can
return either a length or an error. Here is the definition of the various error status codes.

Public Enum RS485ErrorStatus

 NoError = &HFFF0 ' used if there is valid data i.e. no error

 NoConnection ' used if serial channel did not open correctly

 NoData ' default error if there is no data

 BufTooSmall ' this is a programmer error that needs correcting

 BadCRC ' the CRC is incorrect for the received message

 Overrun ' used if a message is received while the

 ' application task has the semaphore i.e. is busy

End Enum

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -9- Published January 2007

The receive message task is a state machine that is a composition of two state variables called status and error
that have corresponding enum types named receiveStatus and errorStatus. Receive status (or simply status) has
two main states of either idle or Receiving data bytes from the input queue. The idle state has two sub-states that
represent either the successful receipt of a message (BufReady) or waiting for the next message (Waiting). Error
status (or simply error) has two main states or NoError and error. The error state has sub-states for each of the
different error conditions including BufTooSmall, BadCRC, Overrun, and NoData. Although the NoData error status
is not an error in application terms, it is considered one to simplify the state machine.

The diagram below shows the interaction of the status and error composite states. Each state rectangle shows the
receive status and the error status. The color of the rectangle indicates if the task is at idle (green) or is actively
receiving (yellow). Loops on states are not shown. The text on each transition indicates when the state machine
moves to a new composite state.

Waiting,

NoData

BufReady,
NoError

Receiving,
NoError

Receiving,
Overrun

Receiving,
BufTooSmall

Waiting,
Overrun

Waiting,
BufTooSmall

Waiting,
BadCRC

FinishReceive

FinishReceive

FinishReceive

FinishReceive

Data Receive

Semaphore Not Free

End of Data
End of Data
Good CRC

End of Data

Buffer
Too Small

End of Data
Bad CRC

Data Receive
Semaphore Free

A semaphore is used between the user task and the receiveDataPacket() task to manage sharing of the data buffer
and the error status. Assuming the semaphore is not set, the receiveDataPacket() task tries to get the semaphore
when data is first received in the input queue. If the user task has the semaphore then the receive status is set to
overrun. Otherwise the semaphore is cleared after the receiveDataPacket() task has received the current packet.
The semaphore cleared even if the data packet was received with an error. The user task now has an opportunity
to get the semaphore, process the data or error status and release the semaphore by calling the
RS485FinishReceive() routine.

Note that there are three conditions under which the receive message task takes bytes from the input queue and
puts them into the receive buffer. In other cases or when there is an error, then the input queue is simply cleared.
The three conditions are:
1. This device’s address is zero, which means it is the master
2. This device’s address matches the address in the message, which means the message is for this slave.
3. This address in the message is zero, which means this is a broadcast message

The code for the receive message task is not included and it is left as an exercise for the reader to relate the
various parts of the receiveDataPacket() subroutine back to the description above.

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -10- Published January 2007

Sample Application

The code for the sample application is in the AN218.bas module. The purpose of the application is for the master to
send multiple messages to each of the slaves on a RS-485 network and note which slaves receive all of the
messages. Then the master waits a while and starts over trying all of the slaves that did not successfully receive all
of the messages. The sections below show some sample output and describe the algorithms used for address
resolution, master, and slave.

Here is the common master and slave code from the Main() subroutine. The getAddress2() function which is
described in the section on address resolution determines if the master() or slave() subroutine should be called.

Public Sub Main()

 ' Sleep before getting things started

 ' This is a must-have if using COM1 for RS-485

 Call PutPin(Pin.GreenLED, zxOutputHigh)

 Call PutPin(Pin.RedLED, zxOutputHigh)

 Call Sleep(2.0)

 ' Configure serial port for debug output, In this case

 ' we are using COM1 and the pin number is not necesary

 Call DefineDebugPort(DEBUG_CHANNEL, 19200, DEBUG_PIN)

 ' retrieve the device id, 0 means master

 Dim id as Byte

 id = getBufferedAddress()

 ' define the serial port and open a RS-485 serial channel with

 ' 8 bits, no parity and one stop bit

 Call CloseCom(RS485_CHANNEL, 0, 0)

 Call DefineCom(RS485_CHANNEL, RX_PIN, TX_PIN, &H08)

 Call RS485Init(RS485_CHANNEL, BAUDRATE, EN_PIN, QUEUESIZE)

 Call RS485Start(buffer, BUFSIZE, id)

 ' depending on the id, call the master or slave routine

 If id = 0 Then

 Call master()

 Else

 Call slave(id)

 End If

 ' we are done so close the RS-485 serial channel

 Call RS485Stop()

 Call RS485Term()

End Sub

Sample Output

Here is some sample output from the Master. It first succeeds in sending data to slave #2 and then on the next
round it succeeds with slave #4.

Starting master

Status: 0001

Sending data to slave 1...failed to receive data

Sending data to slave 2...data received successfully

Sending data to slave 3...failed to receive data

Sending data to slave 4...failed to receive data

Sending data to slave 5...failed to receive data

.

.

Sending data to slave 14...failed to receive data

Sending data to slave 15...failed to receive data

Status: 0005

Sending data to slave 1...failed to receive data

Sending data to slave 3...failed to receive data

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -11- Published January 2007

Sending data to slave 4...data received successfully

Sending data to slave 5...failed to receive data

.

.

Sending data to slave 14...failed to receive data

Sending data to slave 15...failed to receive data

Status: 0015

Here is the corresponding output for the slave with address 2. Slave 4 has similar output.

Starting slave 2

126 bytes in packet 1 Received

126 bytes in packet 2 Received

126 bytes in packet 3 Received

126 bytes in packet 4 Received

126 bytes in packet 5 Received

126 bytes in packet 6 Received

126 bytes in packet 7 Received

126 bytes in packet 8 Received

126 bytes in packet 9 Received

126 bytes in packet 10 Received

While the application is running, various LEDs are used to signal activity, success and failure. The “transmit” LEDs
on the RS-485 header boards show when the corresponding ZX device has enabled the RS-485 driver. Except for
very low baud rates it appears that the master and slave LEDs are on at the same time because the slave response
message is very short.

The green LED on the slave is lit as each data packet is successfully received and stays lit after all the data
packets have been received. The red LED on the slave is used to indicate when there is a receive error.

The green LED on the master is used to indicate that the status bits have changed from one cycle around the
slaves. The LED is off until all the slaves have been sent at least one data packet, is lit during the wait time if there
has been a change and is then turned off again for the next cycle. If all the slaves receive the data successfully
then the green LED is permanently lit and the master stops sending data.

In order to fully appreciate the sequence of events between the master and a slave, a low-resolution video has
been included in the associated ZIP file that shows a successful send of data to a single slave. The best way to
view the video and the associated documentation is to open the html file in a browser.

Address Resolution

The same source module (AN218.bas) is used for both the master and slave code. Each slave is assigned an
address in the range 1 to 15 and the master has an address of 0. The idea is that the same code can be loaded
into any of the ZX devices on the network and they will use an external mechanism to determine their address. As
an alternative the address could be “burnt” into EEPROM.

Because the range of addresses is 0 to 15, four I/O lines are required to determine a unique address. Connecting
I/O pins to ground and using the built-in AVR chip pull-up resistors is a very easy way to achieve this. Here is code
from the sample application that implements this function. It is assumed that if no inputs are connected to ground
then this is the master so the bit pattern is complemented to retrieve the address.

Private Function getAddress() as Byte

 Call PutPin(B.0, zxInputPullup)

 Call PutPin(B.1, zxInputPullup)

 Call PutPin(B.2, zxInputPullup)

 Call PutPin(B.3, zxInputPullup)

 getAddress = Not(Register.PINB) And MAX_SLAVES

End Function

An alternative mechanism, which only requires one I/O pin, is to use a tri-state buffer and pull in the value of the
four I/O pins after briefly enabling the buffer. The RS-485 network example on page 3 uses DIP switches and a
non-inverting tri-state buffer. These I/O pins can be used later in the application for other purposes either using a
second tri-state buffer or by simply connecting directly to the I/O pins. Here is code from the sample application that
implements this function. In this example the D.6 pin is used to enable and disable the tri-state input buffer.

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -12- Published January 2007

Private Function getBufferedAddress() as Byte

 ' set 4 bits as input

 Call PutPin(B.0, zxInputTristate)

 Call PutPin(B.1, zxInputTristate)

 Call PutPin(B.2, zxInputTristate)

 Call PutPin(B.3, zxInputTristate)

 ' Enable tristate buffer and read value.

 ' Note that it uses inverse logic - 0V means a 1

 Call PutPin(TRISTATE_PIN, zxOutputLow)

 getBufferedAddress = Not(Register.PINB) And MAX_SLAVES

 ' disable tristate buffer

 Call PutPin(TRISTATE_PIN, zxOutputHigh)

End Function

Implementation of Master

The master() subroutine is responsible for keeping track of which slaves have received all of the data messages
and looping around until all the slaves have received the data. The dataSent variable is a bit mask that tracks the
slave status and the green LED is lit if there is a status change at the end of an iteration around the slaves.

Private Sub master()

 Call DebugPrint("Starting master" & CRLF)

 ' each bit represents slaves 1 to 15, bit 0 is the master

 Dim dataSent as UnsignedInteger, oldDataSent as UnsignedInteger

 dataSent = 0

 ' mark the master bit as set

 Call PutBit(dataSent, 0, 1)

 Call DebugPrint("Status: " & CStrHex(dataSent) & CRLF)

 oldDataSent = dataSent

 ' keep sending until every slave has received the data

 Do While dataSent <> &HFFFF

 ' turn off LED

 Call PutPin(Pin.GreenLED, zxOutputHigh)

 ' Try to send data to each slave in turn

 Dim s as Byte

 For s = 1 to MAX_SLAVES

 If GetBit(dataSent, s) = 0 Then

 Call PutBit(dataSent, s, sendDataToSlave(s))

 End If

 Next s

 ' turn on green LED if something changed

 Call DebugPrint("Status: " & CStrHex(dataSent) & CRLF)

 If dataSent <> oldDataSent Then

 oldDataSent = dataSent

 Call PutPin(Pin.GreenLED, zxOutputLow)

 End If

 ' sleep for a bit before trying the remaining slaves

 If dataSent <> &HFFFF Then

 Call Sleep(2.0)

 End If

 Loop

End Sub

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -13- Published January 2007

The sendDataToSlave() function is responsible for attempting to send data to a slave and returning the status of
that attempt. If the first data packet is received then the remaining packets are tried one at a time until either one
fails or they are all successful. The actual content of each data packet is dummied data. The most crucial byte is
the first byte after the packet header indicates the packet number. In more sophisticated application protocols such
as Modbus this byte is usually a command code that is used by the slave to determine the format of the rest of the
packet and the function/command that the slave should perform.

Within the sendDataToSlave() function, RS485Receive() is called every retry interval until either the timeout
expires, an error occurs or a packet is received with a good CRC. If error or a data packet is received then the
RS485FinishReceive() is called to complete the receive process. The source code for sendDataToSlave() is not
presented here and it left as an exercise for the reader to determine how RS485Receive(), RS485FinishReceive()
and error statuses are used to determine if the data packet was successfully received by the slave.

For the sample application the timeout for a slave response is set for 100 clock ticks with a retry interval of every 10
clock ticks. For very slow baud rates (i.e. less than 1200 baud) the timeout should be increased to 500 clock ticks.
The timeout may also need to be increased if it is known that the slave may take a long time to respond because of
internal processing. There is a tradeoff here of how long to wait before deciding a slave is not responding versus a
slave taking a long time to respond. This is where good protocol design is essential.

Implementation of each Slave

The function of each slave is to receive data packets and send a response to the master. The slave subroutine
never exits and simply waits for data packets from the master. A bit mask is used to keep track of which data
packets have been received. A more sophisticated application may implement a mechanism to only resend the
missing packets or start from where the last packet failed.

The processing for each data packet is very simple in this sample application. The slave sets the bit in the packet
bit mask and then responds to the master. The slave response is a very short five byte packet that consists of the
slave address, packet number, number of bytes received, and the CRC. The message receive buffer is reused for
the response and then FinishReceive() is called to indicate that the buffer is now free for the receive task to use.

Private Sub slave(id as Byte)

 Call DebugPrint("Starting slave " & CStr(id) & CRLF)

 ' keep track of packets received

 Dim packets as UnsignedInteger

 packets = Not (CUInt(Pow(2.0, CSng(PACKETCOUNT+1))) - 1)

 ' packet numbering starts at 1 so set 0 bit

 Call PutBit(packets, 0, 1)

 ' keep going forever listening and processing messages from the master

 Do

 ' check if all packets received and set status LEDS

 If packets = &HFFFF Then

 Call PutPin(Pin.GreenLED, zxOutputLow)

 Else

 Call PutPin(Pin.GreenLED, zxOutputHigh)

 End If

 Call PutPin(Pin.RedLED, zxOutputHigh)

 ' try to receive some data

 Dim size as UnsignedInteger

 size = RS485Receive()

 ' check for an error code

 If Size > CUInt(RS485ErrorStatus.NoError) Then

 ' if real error (not just no data), then turn on error LED

 ' and tell receive routine that we saw the error code

 If size <> CUInt(RS485ErrorStatus.NoData) Then

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -14- Published January 2007

 Call PutPin(Pin.RedLED, zxOutputLow)

 Call RS485FinishReceive()

 Call DebugPrint("Received error " & CStrHex(size) & CRLF)

 End If

 Else

 ' we received a valid transmission so turn on valid packet LED

 Call PutPin(Pin.GreenLED, zxOutputLow)

 Call DebugPrint(CStr(size)&" bytes in packet "&CSTR(buffer(2))&" Received"&CRLF)

 ' Now process this message by setting the packet bit

 Call PutBit(packets, buffer(2), 1)

 ' For packet 3 we are going to introduce a slight delay to simulate

 ' slave activity.

 If buffer(2) = 3 Then

 Call Sleep(20)

 End If

 ' Send a simple response to the master as follows:

 ' byte 1 is slave ID - already set

 ' byte 2 is packet number - already set

 ' byte 3 is number of bytes received

 buffer(3) = CByte(size)

 Call RS485Send(buffer, 3)

 Call RS485FinishReceive()

 End If

 ' wait for next transmission

 Call Sleep(TRANSMISSION_GAP)

 Loop

End Sub

Development Considerations

This section contains some additional material that might be useful for either modifying or developing your own
network code.

Debugging Network Applications

During the development of this application note, several debugging “tricks” were developed to help with two major
problems:

1. Multiple devices executing different code
2. The COM1 port used for RS-485 networking rather than debugging with Debug.Print.

The solutions to these problems should be useful for other application development and are presented here for
reference purposes. It might also be helpful to develop an Application Note for ZBasic debugging.

A host PC with multiple serial ports is essential for developing this type of application. A multi-port serial card or
USB to serial port adapters can be used to overcome the hardware serial port limitations of many modern PCs and
laptops. One of the serial ports should be reserved for programming the ZBasic device via the IDE.

In order to capture the data transmitted on the RS-485 network, a good serial port monitor such as HHD Software’s
freeware Serial Monitor should be utilized. The Serial Monitor needs to be started first and then any simple serial
port application such as Microsoft Terminal is used to open the serial port. The Microsoft terminal output is not very
helpful but the hex output from the Serial Monitor shows exactly what is being transmitted on the bus.

A ZBasic logical serial port (e.g. COM3) can be used for network speeds up to 19,200 baud. For faster speeds
COM1 is needed for the RS-485 transceiver. In this case you may still want debug output from the application. The
DebugPrint.bas module contains some simple routines and constants that facilitate debug output via a logical
COM port. The subroutine DefineDebugPort() defines the COM port and speed to use. For compatibility, even
COM1 can be defined as the debug port. The second subroutine DebugPrint() is named to be similar to the

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -15- Published January 2007

Debug.Print library routine but is not quite as versatile. It requires a single string parameter with extra characters for
the carriage return and line feed.

Note that if you are using COM1 for the RS-485 network, then you may experience difficulties in downloading a
new ZBasic program to the master because of a conflict on the same COM1 port. The sample application includes
a two second startup delay and delays between iterations when the COM1 port is idle so that there is time to get a
request to the ZBasic bootloader to download a new program. If you get stuck and the EEPROM is socketed as on
the ZX-24ae then it is always possible to reprogram the SPI EEPROM to facilitate a ZBasic program download.

Incremental Design and Coding

Because of the nature of this problem, it can only really be tested with multiple devices interacting at the same time.
This means that the code needs to be developed incrementally. It is not productive to write all the code and then try
to figure out why is doesn’t work. The author’s approach was to write small pieces of new function that whenever
possible only affected either the slave or the master. For example a master listening for a slave response was
implemented quite late and only after the slave listening to the master was completely tested. For instructional
purposes here is the list of high-level increments that were implemented. The items that span both columns were
done on the master and slave at the same time. Monitoring of the RS-485 network is also helpful in this case.

Master Slave

1. Used a Modbus test framework on the host PC as a
temporary master.

2. Basic message receive in the same task as the
main slave at 9600 baud on COM3

3. Added table-driven CalcCRC16() function to
validate a complete message. Later CRC function
was added to the ZBasic.

4. Developed packet format and master code to send
10 dummy packets to a single slave.

5. Master was configured by grounding a single I/O pin

 6. Changed slave to receive new packet format and
light green LED if successful.

7. Added support for configurable slave address.

8. Changed speed to 19,200 baud

9. Added support for configurable master/slave
address.

10. Moved receive code into a separate task and added
a semaphore between the main task
(RS485Receive) and the receive task. This code
was difficult to get right and there were several
iterations on the correct design of the receive status
and error status state machine.

11. Added slave response packet using existing code
from master to send a packet (RS485Send).

12. Added receive code to master to look for slave
response and track received packets.

13. Loop to cycle around 15 slaves and use green LED
to indicate success.

14. Added debugging to COM4 port in preparation for
using COM1 port for faster networking

15. Added COM4 debugging code to slave.

16. Tested various speeds over 19,200 baud and spent some time debugging mainly the slave code. Some baud
speed specific code was made more generalized.

17. Tried progressively lower speeds down to 300 baud. Only change required was timeout for master receive.

 18. Implemented complete tri-state buffer input
mechanism rather than simply grounding I/O pins.

19. Fine-tuning of code - mostly variable name changes and adding more comments to code.

AN-218 Implementing a RS-485 Multi-drop Network

Copyright © 2007 Mike Perks -16- Published January 2007

Network Performance

The serial interface has been tested with baud rates between 300 and 460,800 and with different size data packets
from 32 bytes to 512 bytes. The table below shows the input queue size needed to achieve "sustained" transfers at
a given baud rate and packet size. Sustained because the master sends a packet, waits for a slave
acknowledgement and then sends the next packet with very little wait time between each transfer. A transmission is
deemed successful if ten data packets are sent and the slave acknowledges every packet.

 Packet Size

Baud Rate 32 128 192 256

57,600 32 32 32 32
76,800 32 48 64 64
115,200 32 48 80 Fails
230,400 32 96 Fails Fails
460,800 32 Fails Fails Fails

The default input queue size is 32 bytes. As the baud rate or packet size is increased the input queue size needs to
be increased. At some point there is a failure mode and the data transfers are no longer successful - even when the
input queue size is increased to a very large size. This is probably because the ZBasic code cannot keep up with
the demand of receiving so much data so quickly.

The good news is that up to 460,800 baud is possible with a small enough packet size (32 bytes) and a fairly fast
data rate of 57,600 baud can handle any packet size up to 256 bytes with only a 32 byte input queue. Even if the
packet size is increased to 512 bytes, 57,600 baud still only requires a 48 byte input queue.

Summary
This application note addresses the complex problem of networking ZX devices so that they can work
collaboratively. It pushes the envelope of what ZBasic can do and shows something more than just simple
interfacing to another device. The RS485Serial.bas module is production level code that could be used in an
industrial application.

This application note also lays the foundation for further work such as implementations of a Modbus master and
slave. The author is also investigating how a master can replicate its ZBasic program to all the slaves on a network
by sending multiple packets of data to each slave using a mechanism similar to the sample application.

Author
Mike Perks is a professional software engineer who became interested in microcontrollers a few years ago. Mike has
written a number of articles, projects and application notes related to ZBasic, BasicX and AVR microcontrollers. Mike is
also the owner of Oak Micros which specializes in AVR-based devices including his own ZX-based products. You may
contact Mike at mikep@oakmicros.com or visit his website http://oakmicros.com.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this document
or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information presented. The
Company reserves the right to change the information described herein at any time without notice and does not make any commitment to
update the information contained herein. No license to use proprietary information belonging to the Company or other parties is expressed or
implied.

Copyright © Mike Perks 2007. All rights reserved. ZBasic, ZX-24, ZX-40, ZX-44 and combinations or variations thereof are trademarks of Elba
Corp. or its subsidiaries. Other terms and product names may be trademarks of other parties.

