

Copyright © 2008 Elba Corp. Published June 2008

 Application Note
 ZBasic

AN-220 Interfacing a Parallel LCD

Introduction
Many microcontroller projects require some type of display device in order to indicate system status or provide
feedback to the user. There are many choices for such a display but often a small character oriented display,
perhaps 2 lines by 16 characters, serves quite well. This type of display is readily available from a variety of
sources (e.g. Spark Fun Electronics or Goldmine Electronics).

Typically, the interface to these displays is a parallel interface (4 or 8 data bits and three control lines) but they
are also available with a “backpack” that presents a serial interface requiring fewer I/O lines. The raw displays,
i.e., those without the additional serial interface, are usually quite a bit less expensive - 2 to 5 dollars vs. 15 to
20 dollars – so it is often desirable to use the less expensive types. This application note illustrates several
methods for connecting a parallel LCD to a ZX microcontroller.

Overview of a Typical Parallel LCD
Many of the inexpensive character oriented LCDs that are available support the Hitachi 44780 controller
interface. The LCD may or may not actually have the Hitachi controller chip on it – the HD44780 interface has
become a de facto standard for small character oriented LCDs. The Hitachi 44780 interface is usually
presented on 14 pins arranged in a 2x7 or a 1x14 format with 0.100” spacing. The standard signal assignment
for those pins is shown in the table below. Occasionally, you’ll find a parallel LCD with 16 pins where the first 14
match the table below.

Table 1: Hitachi 44780 Pinout
Pin Function Pin Function
1 Ground 8 Data Bit 1
2 Power (+5 volts) 9 Data Bit 2
3 Contrast 10 Data Bit 3
4 Register Select (0= command, 1= data) 11 Data Bit 4
5 R/W (0=write, 1=read) 12 Data Bit 5
6 Enable Strobe 13 Data Bit 6
7 Data Bit 0 14 Data Bit 7

The HD44780 interface may be operated in either 8-bit or 4-bit data mode. All of the interface methods
presented in this application note use the 4-bit data mode so data bits 0-3 are connected to ground. The
HD44780 interface may be operated in “write only” mode or in read-write mode. If the write-only mode is
chosen, the R/W signal should be connected to ground. Since this prevents the interface software from reading
the display status, delays must be built into the interface code to allow time for the display to process the
commands sent. All of the interface methods described in this application note connect the R/W signal to the
interface circuitry but the example code can (except for one case) be configured to read the display status or
implement the necessary delays.

Communication with the LCD is performed by setting the states of the Register Select (RS), R/W and data
signals and then pulsing the Enable strobe. A typical minimum pulse width for the Enable strobe is 250nS. In
read mode, the data lines must be read while the Enable strobe is active (high).

The example software that accompanies this application note can be configured for each of the interface
methods presented in this application note.

AN-220 Interfacing a Parallel LCD

Copyright © 2008 Elba Corp. -2- Published June 2008

LCD Initialization

The recommended method for initializing the LCD in 4-bit data mode is described in various documents
available on the Internet including at http://www.myke.com/lcd.htm. Essentially, a special value is written to the
LCD multiples times with intervening delays and then, finally, a command is written to the LCD to enable 4-bit
mode. This method is implemented in the example code accompanying this application note.

Example Interface – Direct Connection

The most straightforward method to use to connect a parallel LCD to a ZX microcontroller is to make direct
connections between ZX I/O lines and the control/data lines of the LCD. This requires 7 I/O lines when
implementing a read-write interface or 6 when implementing a write-only interface. The schematic below
illustrates the direct connection method. Note that the contrast signal is derived from a 10K potentiometer that
is also connected to +5/ground. The 47K pull-down resistor on the Enable signal may not be required but is
included for completeness – it ensures that the Enable signal is held inactive prior to the I/O lines being
initialized.

Direct Connection LCD Interface

The example code included with this application note is by default configured for the direct connection. The
LCD is initialized by invoking the subroutine InitLCD(). The applicable code in InitLCD() is reproduced below.

 ' initialize the LCD interface pins
 Register.PortA = Register.PortA And &H01
 Register.DDRA = Register.DDRA Or &Hfe

 ' delay for power-on initialization
 Call Delay(LCD_POWER_ON_DELAY)

 ' put the display in 4-bit mode
 Call SetBits(Register.PortA, LCD_DATA_MASK, LCD_4BIT_INIT_CMD1)
 For i = 1 to 3
 Call PulseOut(pinE, ePulseWidth, 1)
 Call PulseOut(0, 5.0e-3, 0)
 Next i
 Call SetBits(Register.PortA, LCD_DATA_MASK, LCD_4BIT_INIT_CMD2)
 Call PulseOut(pinE, ePulseWidth, 1)

AN-220 Interfacing a Parallel LCD

Copyright © 2008 Elba Corp. -3- Published June 2008

The first two lines of code configure the 7 I/O lines as outputs while the third implements the delay that is
necessary to allow the LCD to initialize itself. The remainder of the code writes the special initialization
sequence to put the LCD in 4-bit interface mode.

The remainder of the example code provides several routines for managing the display as shown in the table
below.

Table 2: Display Subroutines
Name Description
DisplayClear Clears the LCD of all characters.
DisplaySetPos Sets the cursor to a given row/column position.
DisplayChar Displays a character at the current cursor position.
DisplayCharAt Displays a character at a specified row/column.
DisplayStr Displays a string beginning at the current cursor position.
DisplayStrAt Displays a string at a specified row/column.
DisplayByteDec Displays the decimal value of a byte at the cursor position.

Most of the display subroutines eventually call a low level subroutine named lcdSend() that sends either a
command or data to the LCD. The core of this routine for the directly connection method is shown in the code
excerpt below.

 ' set the control lines
 Call SetBits(Register.PortA, &H0e, mode)

 ' send the high 4 bits
 Call SetBits(Register.PortA, LCD_DATA_MASK, bval And LCD_DATA_MASK)
 Call PulseOut(pinE, ePulseWidth, 1)

 ' send the low 4 bits
 Call SetBits(Register.PortA, LCD_DATA_MASK, Shl(bval, 4) And LCD_DATA_MASK)
 Call PulseOut(pinE, ePulseWidth, 1)

The first line sets the state of the Register Select line (the ‘mode’ value having been previously masked down to
just that bit). The next two lines output the most significant 4 bits of the command/data value and then pulse the
Enable strobe. Finally, the least significant 4 bits of the command data value are output and the Enable strobe
pulsed again.

The code excerpt above is surrounded by additional logic that, depending on the configuration, either queries
the LCD status before beginning the code sequence or implements the required delay after the command/data
value is written.

Example Interface – 3-wire Interface Using a Shift Register
The primary advantage of the 3-wire interface as compared to the direct connection method is that the number
of I/O lines required is reduced from seven to three. The downside is that the communication with the display
takes somewhat longer because the data must be shifted out serially. The schematic below illustrates this
technique.

This circuit uses a shift register to hold the Register Select, R/W and data signals and a directly connected
Enable strobe. The Enable strobe cannot be derived directly from the shift register because the bits “ripple”
through it during the shift cycle. This would cause unwanted transitions on the Enable signal during the shifting.

The example code for this connection method always shifts out 8 bits to the shift register. By rearranging the
assignments of the signals to the shift register outputs so that the least significant 6 outputs are used, the shift
count could be reduced by 25% resulting in slightly faster operation. The connection assignment shown was
chosen due to its similarity to the other connection methods, resulting in simpler multi-interface code.

AN-220 Interfacing a Parallel LCD

Copyright © 2008 Elba Corp. -4- Published June 2008

Note that this connection method results in an write-only interface. It is not possible to implement the LCD
status checking without employing additional circuitry. Because of this, the R/W connection could be eliminated;
reducing to five the number of bits needed in the shift register.

3-wire Serial Interface Using a Shift Register

Example Interface – 2-wire Interface Using an I2C I /O Expander
The primary advantage of using this interface method is a further reduction in the number of ZX I/O lines
required – just two. If you are already using other I2C devices in your application the LCD can be added with no
net increase in the number of I/O lines used since the SDA and SCL lines can serve multiple devices. The
disadvantage of this technique, illustrated in the schematic below, is the relatively slow maximum shift rate that
is supported by the I/O Expander used in this example. It is limited to 100KHz maximum.

LCD Interface Using an I2C I/O Expander

AN-220 Interfacing a Parallel LCD

Copyright © 2008 Elba Corp. -5- Published June 2008

The example code for operating the 2-wire interface is quite similar to that for the 3-wire interface; the ideas are
the same but different ZBasic System Library calls are used for initializing the LCD and sending it commands
and data.

Software
A key part of this application note is the ZBasic software provided in the associated .zip file. The project is
named LCD_4P.pjt (denoting a 4-bit parallel interface). The file LCD_4P.bas contains all of the code for all of
the interfacing methods described in this application note with code specific to each interface method contained
within conditional constructs. The software is configured for a particular interface method by manipulating the
#define constructs excerpted below. If the first one is uncommented, the code will be configured for the I2C
interface. If the first one is commented out and the second one is not, the code will be configured for the 3-wire
serial interface. If both are commented out the code will be configured for the direct connection method. The
third #define construct controls whether the LCD status will be checked or if delays will be used to allow the
LCD time to complete its operations.

' Uncomment the following line to configure for the I2C interface.
'#define LCD_I2C

' Uncomment the following line to configure for a 3 -wire interface
' using the 74LS164 shift register.
'#define LCD_3WIRE

' Uncomment the following line to implement status checking.
' Otherwise, post-operation delays are used. The l atter method
' allows operation with the R/W line wired to logic zero. This
' cannot be used with the 3-wire interface.
'#define CHECK_BUSY

Author
Don Kinzer is the founder and CEO of Elba Corporation. He has extensive experience in both hardware and software
aspects of microprocessors, microcontrollers and general-purpose computers. Don can be contacted via email at
dkinzer@zbasic.net.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this
document or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information
presented. The Company reserves the right to change the information described herein at any time without notice and does not make any
commitment to update the information contained herein. No license to use proprietary information belonging to the Company or other
parties is expressed or implied.

Copyright © 2008 Elba Corp. All rights reserved. ZBasic, ZX-24, ZX-40, ZX-44, ZX-1281, ZX-1280 and combinations or variations thereof
are trademarks of Elba Corp. or its subsidiaries. Other terms and product names may be trademarks of other parties.

