

Copyright © 2009 Mike Perks Published January 2009

 Application Note
 ZBasic

AN-221 Interfacing Rotary Encoders

Introduction

This application note describes how to interface ZX devices with one or more rotary encoders. A rotary encoder such as
the Bourns PEC12 (http://www.bourns.com/data/global/pdfs/PEC12.pdf) is a continuous rotation mechanical device that
outputs a 2-bit Gray code (quadrature) signal that changes as the shaft is rotated. Encoders typically have 12 or 24
detents and may also include a SPST momentary push button.

This application note contains ready to use interface code for rotary encoders including a software switch debouncer and
an example of how to use the interface. The code uses some of the more advanced features of the ZBasic language such
as structures, based variables, aliased variables, and the “bit” subtype. The use of each feature is explained so that
readers can try using these features in their own code.

Hardware Hookup
Three I/O connections are needed to connect a rotary encoder that includes a push button to a microcontroller. The
example schematic below shows port C on an Oak Micros ZX-24ne device connected to two encoders named E1 and E2.

The Gray code output is available on pins A and B of the encoder. Pin C is the common and is normally connected
to ground. The encoder switch is available on pins S1 and S2 with S2 connected to ground. The internal pull-ups on
the ZX-24ne are used thus avoiding the requirement for additional resistors.

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -2- Published January 2009

Reading the Encoder
Encoders output a Gray code as depicted on its schematic symbol above. The two waveforms from the A and B
pins result from turning the encoder clockwise or anti-clockwise. The direction determines the order of the 2-bit
Gray code as shown below:

Clockwise Rotation ->

00 01 11 10 00

<- Counter Clockwise Rotation

If the output is 00 and goes to 01, then the encoder has moved one “tick” clockwise. If it goes from 00 to 10 then it
moved one tick anti-clockwise. If there is contact bounce between two positions then the encoder will read
clockwise and anti-clockwise ticks that cancel each other out. If the output goes from 00 to 11 then a position has
been skipped and in this case the simplest solution is to simply ignore any ticks. Below is a diagrammatic view of
what the tracks might look like on a 24 detent decoder.

With ZX devices there are several ways to read an encoder. One method is to use interrupts whenever the state of
an I/O pin changes. A comparison of the previous state and current state can be used to determine what happened.
The shortcoming of this approach is that you may be restricted to only one encoder on those ZX devices that have
a limited number of interrupt pins or do not support pin change interrupts.

As an alternative the most direct approach is to sample the I/O pins and look for a change in the state. It is
sufficient to sample the encoder every 5 milliseconds because the number of changes per second is relatively
small. This technique is generally not applicable for optical encoders used for measuring the rotation of a wheel,
which usually has a larger number of codes per revolution and spins much faster.

The algorithm to detect changes in the encoder makes use of the XOR (⊕⊕⊕⊕) function and comparing the current
state with the previous state. Assume states Tn, Tn+1, Tn+2 etc where the inputs A and B change according to the
direction of rotation and the state of A and B are labeled An, Bn, An+1, Bn+1 etc. For clockwise (CW) rotation the
following truth table can be written:

State An Bn An ⊕⊕⊕⊕ Bn An-1 An ⊕⊕⊕⊕ An-1
Tn 0 0 0 0 0

Tn+1 1 0 1 0 1

Tn+2 1 1 0 1 0

Tn+3 0 1 1 1 1

And for counter clockwise (CCW) rotation the following truth table can be written:

State An Bn An ⊕⊕⊕⊕ Bn An-1 An ⊕⊕⊕⊕ An-1
Tn 0 0 0 1 1

Tn+1 0 1 1 0 0

Tn+2 1 1 0 0 1

Tn+3 1 0 1 1 0

By observation the two XOR columns are the same the clockwise rotation and different for counter-clockwise
rotation. This fact can be used to either increment or decrement the tick counter each time there is a change in
either A or B. Note that if a clockwise rotation produces a negative tick count then it is likely that pins A and B have
been swapped when connected to the ZX device.

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -3- Published January 2009

Translating this into what is required for ZX devices, a mechanism is needed to simultaneously read both A and B
inputs, determine if there is a change and then increment or decrement the tick counter. The standard routine to
read the value of an I/O pin (GetPin) cannot be used to simultaneously read two I/O pins. Fortunately it is possible
by using the Register.PinX control program variable where X represents one of the standard AVR ports such as A,
B, C etc. The following code illustrates the algorithm using port C where the encoder pins A and B are connected to
I/O pins 6 and 7 respectively. The PIN register value is ANDed with a mask (&hC0) so that only the two relevant I/O
bits are extracted.

Private tickCount as Integer
Private old_value as Byte

Public Sub CheckEncoders()

 Dim new_value as Byte

 Dim old_bits(0 to 7) as Bit Alias old_value

 Dim new_bits(0 to 7) as Bit Alias new_value

 new_value = Register.PinC And &hC0

 ' Check if something changed on the I/O port

 If (old_value Xor new_value) <> 0 Then

 ' update encoder tick count if something changed

 If (new_bits(6) Xor old_bits(6)) = (new_bits(6) Xor new_bits(7)) Then

 tickCount = tickCount + 1

 Else

 tickCount = tickCount - 1

 End If

 ' update the old value

 old_value = new_value

 End If

End Sub

The new_value byte variable contains the current state of the A and B encoder pins and the old_value byte variable
contains the previous value. The ZBasic library routine GetBit() could be used to extract the required bit values from
each byte value as follows:

 If (GetBit(new_value, 6) Xor GetBit(old_value, 6)) = _

 (GetBit(new_value, 6) Xor GetBit(new_value, 7)) Then

A more readable mechanism is available by using the “bit” subtype and aliasing as shown in code above. A byte
can be considered as an array of 8 bits indexed from 0 to 7. The “alias” feature overlays the bit array on top of a
byte, thus simplifying access to each bit. The two alias definitions above for the old_bits and new_bits arrays do not
use any additional RAM and the ZBasic compiler provides all of the “magic” to generate the correct code which
uses the GetBit() function under the covers.

Encoder Software Interface
The file encoder.bas from the ZIP file accompanying this application note contains the encoder interface and
software implementation. The encoder public interface consists of a structure named Encoder and the following
public routines:

• InitEncoder()

• GetEncoderButton()

• GetEncoderTicks()

• ResetEncoder()

• UpdateEncoder()

The data structure and public functions are described in each of the sections below. Note that a semaphore is used
for the last four routines to protect the private data from multiple updates by different tasks. Application note AN210
(Sharing Data Between Tasks) gives more details on using semaphores and other techniques for sharing data.

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -4- Published January 2009

Encoder Data Structure

The Encoder data structure is used help abstract out how the encoders are connected to the ZX device and remove
any hard-coding of I/O ports and pin numbers. The structure is declared Public so it is visible outside of the encoder
software interface and is a parameter to the InitEncoder() subroutine. Some members of the structure are declared
Public and some are declared Private. This means that only the public members are available outside of
Encoder.bas module whereas both the public and private members are available from within the Encoder.bas
module. This mechanism provides some degree of protection and encapsulation for the private part of the Encoder
data structure. Here is the full declaration of the 15 byte data structure:

Public Structure Encoder

 ' Public members help define the configuration of the encoder

 Public encoderPort as UnsignedInteger

 Public pinA as Byte

 Public pinB as Byte

 Public buttonPort as UnsignedInteger

 Public buttonPin as Byte

 ' Private members are mainly used for the encoder current state

 Private tickCount as Integer

 Private encoderMask as Byte

 Private oldEncoderValue as Byte

 Private buttonMask as Byte

 Private buttonCount as Byte

 Private buttonPressed as Boolean

 Private buttonPreviousState as Boolean

End Structure

As remarked by the comments in the code above, the public members of the data structure are used to define the
configuration of the encoder and the private members are used to hold the current state. The public members are
used to define:

• The address of the Register.PinX used for the encoder A and B pins.

• The port bit number used for pin A.

• The port bit number used for pin B.

• The address of the Register.PinX used for the encoder button. It can be a different port to the one used for
the encoder A and B pins. A special constant named NO_ENCODER_BUTTON can be used to signify that
the encoder button is not required.

• The port bit number used for the button.

Below is a typical encoder configuration for two encoders taken from the example code (AN221.bas) provided with
this application note. In this example two encoders are connected to Port C on the ZX device but the button on the
second encoder is not used.

 Dim config(1 to 2) as Encoder

 config(1).encoderPort = Register.PinC.DataAddress

 config(1).pinA = 7

 config(1).pinB = 6

 config(1).buttonPort = Register.PinC.DataAddress

 config(1).buttonPin = 3

 config(2).encoderPort = Register.PinC.DataAddress

 config(2).pinA = 5

 config(2).pinB = 4

 config(2).buttonPort = NO_ENCODER_BUTTON

 config(2).buttonPin = 2

InitEncoder() Subroutine

The InitEncoder public subroutine is used to initialize one or more encoders. It takes two parameters, one is the
address of an array of Encoder structures and the other is the number of elements in the array. Passing the
address of the array means that the structure does not need to be copied over and avoids the requirement of

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -5- Published January 2009

declaring either a fixed size array or using memory from the heap. Declaring a fixed size array “inside” the Encoder
software interface is wasteful of memory as the maximum size is not known in advance.

Below is the relevant code that stores the InitEncoder() parameters and provides array addressing into the encoder
array.

Private configAddress as UnsignedInteger

Private encoderData() as Encoder Based configAddress

Private encoderCount as Byte

Public Sub InitEncoder(ByVal configAddr as UnsignedInteger, ByVal size as Byte)

 encoderCount = size

 configAddress = configAddr

End Sub

The two private variables configAddress and encoderCount are used to store the parameters to InitEncoder(). The
variable named encoderData provides direct array indexing into the array of Encoder data structures pointed to the
configAddress variable. This is achieved by declaring it as a “based” variable giving the address (configAddress).
Notice that the encoderData variable contains empty array indices as the size of the array is not known prior to
runtime. Another way to look at this is that the encoderData declaration is providing the “type” of the data
addressed by configAddress. No additional memory is used by the encoderData variable and the ZBasic compiler
provides all of the “magic” to generate the correct code to access the data. Because arrays in ZBasic have a start
index of 1 by default, the first Encoder data structure is accessed using the expression encoderData(1).

The majority of the InitEncoder() routine is used to initialize the remainder of the Encoder data structure and setup
the port (or ports) I/O pins used for the encoder(s) as inputs with a pullups. As a recap of the AVR architecture, to
setup an input I/O pin with a pullup, the appropriate bit of the corresponding data direction register (DDR) is set to 0
and the bit on the PORT register is set to 1.

The code in the InitEncoder() subroutine makes use of the fact that the PIN, DDR, and PORT registers for a given
I/O port are almost always at consecutive RAM addresses and therefore the DDR and PORT registers can be
addressed given only the address of the PIN register. There is one known exception to this rule that is PORTF on
the mega128 and special code is included for this case.

The InitEncoder() subroutine uses another “based” variable named reg to access a given DDR or PORT register.
The reg variable is based on an address variable named addr. By varying the value of addr, the appropriate register
can be used. Here is the relevant code from InitEncoder(), where i is the current index to the array of Encoder data
structures:

 Dim addr as UnsignedInteger

 Dim reg as Byte Based addr

 ' calculate register mask

 mask = Shl(1, encoderData(i).pinA) Or Shl(1, encoderData(i).pinB)

 ' set DDR and PORT registers (address based on PIN register)

 addr = encoderData(i).encoderPort + 1

 Call SetBits(reg, mask, &H0)

 addr = addr + 1

 Call SetBits(reg, mask, &HFF)

Similar code is also used to setup the mask and DDR/PORT registers for the encoder button and can be found in
Encoder.bas module in the ZIP file associated with this application note.

The final step of InitEncoder() subroutine is to initialize the encoder tick count by using the UpdateEncoder() and
ResetEncoder() routines as shown below:

 ' initialize encoder tick counters

 Call UpdateEncoder()

 For i = 1 to encoderCount

 ResetEncoder(i)

 Next i

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -6- Published January 2009

ResetEncoder() Subroutine

The ResetEncoder() subroutine is used to simply reset the tick count for a given encoder.

UpdateEncoder() Subroutine

The UpdateEncoder() public subroutine is used to update the tick counts for the configured encoders and buttons. It
should be called at least every 5 milliseconds. The core algorithm for this routine has already been described in
previous section titled “Reading the Encoder”. The main difference in the final implementation as shown below is
that the fields in the Encoder data structure are used to reference the port PIN register, mask, and I/O bit numbers.

In this case the RAMPeek() system library function is used to read the PIN register. The end result is the same as
using a based variable and is shown as an alternative implementation. The PIN register address is taken from the
Encoder structure rather than using a hard-coded system variable such as Register.PINC.

Public Sub UpdateEncoder()

 Dim new_value as Byte, old_value as Byte, i as Byte

 Dim old_bits(0 to 7) as Bit Alias old_value

 Dim new_bits(0 to 7) as Bit Alias new_value

 For i = 1 to encoderCount

 new_value = RamPeek(encoderData(i).encoderPort) And encoderData(i).encoderMask

 old_value = encoderData(i).oldEncoderValue

 ' Check if something changed on the I/O port

 If (old_value Xor new_value) <> 0 Then

 ' Update encoder tick count if something changed

 Dim pinA as Byte

 PinA = encoderData(i).pinA

 If (new_bits(pinA) Xor old_bits(pinA)) = _

 (new_bits(pinA) Xor new_bits(encoderData(i).pinB)) Then

 encoderData(i).tickCount = encoderData(i).tickCount + 1

 Else

 encoderData(i).tickCount = encoderData(i).tickCount - 1

 End If

 End If

 ' Save the old value for next time

 encoderData(i).oldEncoderValue = new_value

 Next i

End Sub

GetEncoderTicks() Function

The GetEncoderTicks() function as shown below returns the current value of ticks for the encoder and resets the
tick count back to 0. The calling code determines what to do with the tick count and usually adds it to some kind of
accumulator.

Public Function GetEncoderTicks(ByVal i as Byte) as Integer

 GetEncoderTicks = encoderData(i).tickCount

 encoderData(i).tickCount = 0

End Function

The example code for this application note shows how the speed of rotating the encoder can be used to
proportionally affect a value i.e. the faster the encoder knob is rotated, the faster the value changes. This can be
very useful for quickly changing a value that has a large range but yet still have fine control over the value.

In a given time interval, the faster the encoder is rotated, the higher the tick count. A scaling factor can then be
applied to that value depending on its magnitude. Here is an example scaling routine provided in example
AN221.bas that applies a simple proportional factor to the encoder tick count:

Private Function scaleTickCount(ByVal tickCount as Integer) as Integer

 If abs(tickCount) <= 2 Then

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -7- Published January 2009

 scaleTickCount = tickCount

 ElseIf abs(tickCount) <= 3 Then

 scaleTickCount = tickCount * 2

 ElseIf abs(tickCount) <= 4 Then

 scaleTickCount = tickCount * 4

 ElseIf abs(tickCount) <= 6 Then

 scaleTickCount = tickCount * 8

 Else

 scaleTickCount = tickCount * 16

 End If

End Function

And here is an example usage for the scaling routine. The range for the value v1 is between 0 and 300. The Max()
and Min() system library routines are used to keep the value within the range no matter how far the encoder is
rotated.

 Dim e1 as Integer

 e1 = GetEncoderTicks(1)

 If e1 <> 0 Then

 v1 = Min(Max(scaleTickCount(e1) + v1, 0), 300)

 Debug.Print "Value 1:"; v1

 End If

GetEncoderButton() Function

The GetEncoderButton() function as shown below returns the current state of the button in the buttonPressed
variable and if the button state changed since the last call to the routine. The current and previous state of the
encoder button is stored in the Encoder data structure.

Public Function GetEncoderButton(ByVal i as Byte, ByRef buttonPressed as Boolean) as Boolean

 GetEncoderButton = FALSE

 buttonPressed = encoderData(i).buttonPressed

 If encoderData(i).buttonPreviousState <> buttonPressed Then

 GetEncoderButton = TRUE

 encoderData(i).buttonPreviousState = buttonPressed

 End If

End Function

The current state of the button is decided using a ZBasic implementation of a software debouncing function as
described on page 19 of "A Guide to Debouncing" (see http://www.ganssle.com/debouncing.pdf). This function is
modified from the original in three main ways as shown in the source code below:

• The debouncing is based on a counter rather than a timer. A counter is used for debouncing to avoid the
issues of trying to setup a timer interval in ZBasic. The debounce initial counter values for pressing and
releasing a button are configured depending on whether a ZVM or native mode ZX device is used.

• The configuration and status of the encoder button is used from the Encoder data structure.

• The changed value variable is not used and is returned by GetEncoderButton().

Private Sub debounceEncoderButton(ByVal i as Byte)

 Dim rawState as Boolean

 Dim count as Byte

 rawState = ((RamPeek(encoderData(i).buttonPort) And encoderData(i).buttonMask) = 0)

 If rawState = encoderData(i).buttonPressed Then

 ' set the counter for the given state

 If encoderData(i).buttonPressed Then

 count = DEBOUNCE_RELEASED_COUNT

 Else

 count = DEBOUNCE_PRESSED_COUNT

 End If

 Else

 ' count is finished so record button state change

 count = encoderData(i).buttonCount - 1

 If count = 0 Then

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -8- Published January 2009

 encoderData(i).buttonPressed = rawState

 ' reset the counter for the given state

 If rawState Then

 count = DEBOUNCE_RELEASED_COUNT

 Else

 count = DEBOUNCE_PRESSED_COUNT

 End If

 End If

 End If

 ' save the count in the encoder structure for the next invocation

 encoderData(i).buttonCount = count

End Sub

The debouncing private routine is called from the UpdateEncoders() function for each available encoder button as
shown below:

 If encoderData(i).buttonPort <> NO_ENCODER_BUTTON Then

 Call debounceEncoderButton(i)

 End If

Using the Encoder Software Interface
The AN221.bas that is part of the associated ZIP file with this application note gives an example of how to use the
encoder software interface. For this example two encoders are used and the button on the second encoder is not
used. The hardware and corresponding software configuration have already been given in earlier sections of this
application note.

To use the encoder a separate task is used to call the UpdateEncoder() function as often as possible as shown
below:

Private Sub processEncoders()

 Do

 ' update value of rotary encoders and buttons

 Call UpdateEncoder()

 ' let other tasks do some work

 Call Sleep(0)

 Loop

End Sub

The main task is used to query the two encoder tick counts, button status and process the results. In this example
the button is used to switch between two modes 0 and 1. For mode 0, each encoder output is scaled and restricted
within a range so that a clockwise rotation cannot exceed a maximum and a counter-clockwise rotation cannot be
less than a minimum of zero. For mode 1, only one encoder output is used to continuously rotate within a range of
0 to 4 regardless of the direction of rotation, i.e. that is there is no minimum value and the next value after a 0 is a
4 for a counter-clockwise rotation. Here is part of the code from AN221.bas for the second encoder:

 ' process encoder 2 value

 If e2 <> 0 Then

 If mode = 0 Then

 ' update value 2 with a scaled tick count, within limits

 v2 = Min(Max(scaleTickCount(e2) + v2, 0), 200)

 Debug.Print "Value 2: "; v2

 Else

 ' update menu selection value

 m2 = (e2 + m2) mod 5

 ' deal with going negative

 If m2 < 0 Then

 m2 = m2 + 5

 End If

 Debug.Print "Menu option: "; m2

 End If

 End If

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -9- Published January 2009

An example use of these two modes is for a digital power supply. One encoder is used for voltage setting and the
other for current setting. Pressing the encoder button switches into a menu mode and now rotation of the other
encoder is used to switch menus. Feedback of the mode, menu selection, voltage, and current is given on a LCD
display as shown in the photographs below. In this way a pair of encoders can replace a multitude of buttons and
simplify a device user interface.

Loading in a saved Voltage and Current Setting

Power Supply with 2 Rotary Encoders

Default mode with variable Voltage and Current
(Current limit is 150mA, actual is 10mA)

Because the processing in the main task may take some while it is wise every so often to give control back to the
processEncoders() task so that no encoder ticks or button changes are missed. The simplest way to do this is to
use the ResumeTask system library function. An extract of the code is shown below:

 #if Option.TargetCode="ZVM"

 Private Const taskStackSize as Integer = 70

 #else

 Private Const taskStackSize as Integer = 100

 #endif

 Private taskStack(1 to taskStackSize) as Byte

 ' call task that keeps the encoders updated

 CallTask processEncoders(), taskStack

 Do

 ' ResumeTask for the processEncoders task can be called

 ' at any time as a way of yielding control to that task

 Call ResumeTask(taskStack)

 ' No more work to do so go to sleep for a while. If there was

 ' more work such as updating a LCD display, that could be done

 ' here, interspersed with calls to ResumeTask as necessary.

 Call Sleep(10)

 Loop

Here is some sample output from the AN221.bas example program. It starts in mode 0. Encoder 1 is rotated to
value 51 and encoder 2 is rotated to its end stop of 200. Then mode 1 is selected using encoder 1 button and
encoder 2 is rotated until item 3 is selected. The encoder 1 button is then pressed to return to mode 0.

Mode 0 (Input)

Value 1: 2

Value 1: 8

Value 1: 24

Value 1: 40

Value 1: 46

Value 1: 48

Value 1: 49

AN-221 Interfacing Rotary Encoders

Copyright © 2009 Mike Perks -10- Published January 2009

Value 1: 50

Value 1: 51

Value 1: 52

Value 1: 51

Value 2: 78

Value 2: 84

Value 2: 100

Value 2: 140

Value 2: 200

Value 2: 200

Mode 1 (Menu)

Menu option: 1

Menu option: 2

Menu option: 3

Mode 0 (Input)

Summary
This application note addresses the problem of interfacing a sophisticated input device to a ZX device. The
Encoder.bas module provides a reusable software interface for rotary encoders that is hardware independent and
could be used directly in production level code. Using rotary encoders opens up new possibilities for user-friendly
hardware devices and tools.

Author
Mike Perks is a professional software engineer who became interested in microcontrollers. Mike has written a number of
articles, projects and application notes related to ZBasic, BasicX and AVR microcontrollers. Mike is also the owner of Oak
Micros which specializes in AVR-based devices including his own ZX-based products. You may contact Mike at
mikep@oakmicros.com or visit his website http://oakmicros.com.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular purpose of the information in this document
or the techniques described herein. The reader assumes the entire responsibility for the evaluation of and use of the information presented. The
Company reserves the right to change the information described herein at any time without notice and does not make any commitment to
update the information contained herein. No license to use proprietary information belonging to the Company or other parties is expressed or
implied.

Copyright © Mike Perks 2009. All rights reserved. ZBasic, ZX-24, ZX-40, ZX-44, ZX-1281, ZX-1280 and combinations or variations thereof are
trademarks of Elba Corp. or its subsidiaries. Other terms and product names may be trademarks of other parties.

