
 
 
 
 
 
 
 
 
 

ZBasic for the ESP8266 
 
 
 
 
 
 
 

Version 1.0.0 

 
 
 
 



Copyright © 2015 Elba Corp.  All rights Reserved. 
 
 
Publication History 
 
September 2015 First publication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Disclaimer 
 

Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular 
purpose of the information in this document or the techniques described herein. The 
reader assumes the entire responsibility for the evaluation of and use of the information 
presented.  The Company reserves the right to change the information described herein 
at any time without notice and does not make any commitment to update the 
information contained herein.  No license to use proprietary information belonging to the 
Company or other parties is expressed or implied. 
 
 
Critical Applications Disclaimer 
 

ELBA CORP. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE 
OR TO BE USED IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, 
SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III 
MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE 
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS WHERE DEFECT 
OR FAILURE COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE 
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, 
“CRITICAL APPLICATIONS”). FURTHERMORE, ELBA CORP. PRODUCTS ARE NOT 
DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT 
CONTROL OF A VEHICLE OR AIRCRAFT. CUSTOMER AGREES, PRIOR TO USING 
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE ELBA CORP. 
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO 
THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER 
ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF ELBA CORP. 
PRODUCTS IN CRITICAL APPLICATIONS. 



ZBasic System Library  ZBasic Microcontrollers 

 
iv 

Trademarks 
 

ZBasic, ZX-24, ZX-24a, ZX-24n, ZX-24p, ZX-24r, ZX-24s, ZX-24t, ZX-24x, ZX-24u, ZX-40, ZX-40a, ZX-40n, ZX-40p, 
ZX-40r, ZX-40s, ZX-40t, ZX-44, ZX-44a, ZX-44n, ZX-44p, ZX-44r, ZX-44s, ZX-44t, ZX-328n, ZX-328l, ZX-32n, 
ZX-32l, ZX-1280, ZX-1280n, ZX-1281, ZX-1281n, ZX-32a4, ZX-128a4u and ZX-128a1 are trademarks of Elba 
Corp. 

ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-24xu, ZX-328nu, ZX-128e, ZX-
128ne, ZX-1281e and ZX-1281ne are trademarks of Oak Micros used under license from Elba Corp. 

AVR is a registered trademark of Atmel Corp. 
BasicX, BX-24 and BX-35 are trademarks of NetMedia, Inc. 
PBasic is a trademark and Basic Stamp is a registered trademark of Parallax, Inc. 
Visual Basic is a registered trademark of Microsoft Corp. 
Arduino is a trademark of the Arduino Team. 
Other brand and product names are trademarks or registered trademarks of their respective owners. 



ZBasic System Library  ZBasic Microcontrollers 

 
iii 

Table of Contents 
 

Introduction....................................................................................................................................1 

ESP8266 Pin Mapping ................................................................................................................2 

ZBasic Compiler Directives.........................................................................................................3 

Downloading ESP8266 Applications to the Device ................................................................5 

Pins Supported for I/O Routines ................................................................................................8 

Differences in System Library Routines ...................................................................................8 

System Library Routines Not Available for the ESP8266......................................................9 

New Subroutines and Functions for the ESP8266 ...............................................................10 

DeepSleep..............................................................................................................................11 

File.Close ................................................................................................................................12 

File.Delete...............................................................................................................................13 

File.Error .................................................................................................................................14 

File.Mount ...............................................................................................................................15 

File.Open.................................................................................................................................16 

File.Read.................................................................................................................................17 

File.Rename ...........................................................................................................................18 

File.Seek .................................................................................................................................19 

File.Size...................................................................................................................................20 

File.Write .................................................................................................................................21 

Flash.Erase.............................................................................................................................22 

Flash.Read .............................................................................................................................23 

Flash.Write..............................................................................................................................24 

Net.Address ............................................................................................................................25 

Net.Close ................................................................................................................................26 

Net.Connect............................................................................................................................27 

Net.Disconnect.......................................................................................................................28 

Net.GetHostByName.............................................................................................................29 

Net.Listen................................................................................................................................30 

Net.Open.................................................................................................................................31 

Net.RemoteHost ....................................................................................................................32 

Net.SendData.........................................................................................................................33 

Net.SendProgData ................................................................................................................34 

Net.SendStr ............................................................................................................................35 

Net.SetCallback .....................................................................................................................36 

Net.SetTimeout ......................................................................................................................37 

Net.Status ...............................................................................................................................38 

PinChange.Handler ...............................................................................................................39 

PinChange.Mode ...................................................................................................................40 

RTC.MemRead ......................................................................................................................41 



ZBasic System Library  ZBasic Microcontrollers 

 
iv 

RTC.MemWrite ......................................................................................................................42 

Wifi.Connect ...........................................................................................................................43 

Wifi.Disconnect ......................................................................................................................44 

Wifi.GetConfig ........................................................................................................................45 

Wifi.GetHostname .................................................................................................................46 

Wifi.GetIP ................................................................................................................................47 

Wifi.GetMode..........................................................................................................................48 

Wifi.Scan.................................................................................................................................49 

Wifi.SetConfig.........................................................................................................................50 

Wifi.SetHostname..................................................................................................................51 

Wifi.SetIP ................................................................................................................................52 

Wifi.SetMode ..........................................................................................................................53 

Wifi.Status ...............................................................................................................................54 

SPI Flash Allocation...................................................................................................................55 

Using an SPI Flash File System (SPIFFS).............................................................................55 

 



ZBasic System Library  ZBasic Microcontrollers 

 
v 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally blank



ZBasic System Library  ZBasic Microcontrollers 

 
1 

 ZBasic for the ESP8266 
 

Introduction 
 
The ZBasic Compiler and IDE are capable of producing applications for ESP8266 devices.  Because the 
ESP8266 is different in many respects from the Atmel AVR devices (the original targets of ZBasic) there 
are necessarily some differences in how ZBasic applications must be structured and in the set of ZBasic 
System Library routines that are available.  There are several new ZBasic System Library routines that 
are specific to the ESP8266, some routines that that different capabilities and limitations, and some 
routines that are not available at all for the ESP8266.  More details on this topic are found later in this 
document. 
 
Also, the intrinsic data type Double is available for the ESP8266, providing 64-bit floating point in 

addition to Single which provides 32-bit floating point.  Both data types may be used in a ZBasic 
application and automatic conversions are performed when assigning one type to the other (but with loss 
of precision when Double is converted to Single).  One caveat is that a variable of one of the two 
floating point data types cannot be passed by reference to a subroutine that is expecting the other data 
type.  The workaround would be to introduce an interim variable of the expected type, assign the value to 
it and then pass it to the subroutine. 
 
ZBasic for AVR devices is capable of producing either single-task or multi-task applications.  For these 
devices, the ZBasic Main() routine is usually structured as some initialization code (which may invoke 
additional tasks) followed by an infinite loop that performs the intended function of the application.  In 
contrast, a ZBasic application for the ESP8266 is single-task only and consists of an optional initialization 
subroutine and a Main() routine that performs a small amount of work and then returns.  The "operating 

system" of the ESP8266 repeatedly invokes the Main() routine in addition to servicing the WiFi interface 
and performing other system functions.  It is recommended that each pass through the Main() routine 

occupy no more than 30 milliseconds or so.  Consuming more time that that may interfere with WiFi 
processing and, further, i f too much time is consumed (on the order of seconds) the ESP8266 watchdog 
timer will trigger a device reset.  If an activity to be performed requires more than about 30mS, it can 
either be broken up into smaller units or the System Library routine Yield() may be called occasionally 
to allow the OS to perform its necessary functions. 
 
With that brief int roduction in mind, here is a simple "Hello world" ZBasic application for the ESP8266. 
 
Option ConsoleSpeed 230400 
Option UserPostInit myPostInit 
 
Const pin as Byte = A.2 
Dim state as Integer 
Dim pinState as Byte 
 
Sub Main() 
   If (state = 0) Then 
       pinState = pinState Xor 1 
       Call PutPin(pin, pinState) 
       Debug.Print "Hello, world!" 
   End If 
   state = state + 1 
   If (state >= 1000) Then 
       state = 0 
   End If 
   Call Sleep(1) 
End Sub 
 
Sub myPostInit() 
   Call PutPin(pin, pinState) 
   Debug.Print 
End Sub 
 



ZBasic System Library  ZBasic Microcontrollers 

 
2 

This simple application outputs the "Hello, world!" message on UART0 every second and also 

toggles the specified pin, in this case A.2 which is GPIO2 on the ESP8266.  Notice, particularly, that the 
Main() routine is a straight line of execution that performs some simple operations and then invokes the 
Sleep() routine for 1 millisecond. before returning.  The 1 second timing is achieved by counting the 

number of times that Main() is invoked and outputting the message on one in a thousand passes.  This 
simple application could be expanded to perform various other operations on any of the other 999 
passes. 
 
Note, also, the use of the compiler directive Option UserPostInit, which is specific to the ESP8266, 

to specify an initialization routine.  In this particular application the initialization could just as well have 
been omitted but it was included to demonstrate how that is done. 
 
Building an application for the ESP8266 using the ZBasic IDE is essentially the same as for any other 
ZBasic target.  The target device is selected using  "Device Options" dialog, available via the 
"Options|Device Options..." menu item.  If the ESP8266 target is not already present in the Target Device 
dropdown, it can be added by clicking the "Edit Target List..." button.  In the resulting dialog, two lists are 
presented: one with devices that are to be shown in the Target Device dropdown (on the previous dialog) 
and one with devices that are to be omitted.  One or more devices can be moved from one list to the 
other by selecting the device of interest and then clicking one of the "arrow" buttons appearing between 
the list to effect the move in one direction or the other. 
 
A subsequent section of this document describes the process of downloading the application to the 
ESP8266. 
 
 

ESP8266 Pin Mapping 
 
ESP8266 devices are available in many different forms including the ESP-01 and the ESP-12.  Each of 
the available devices has a different set of pins available, different size of Flash memory, etc.  ZBasic 
doesn't have an awareness of the different forms of the ESP8266.  Rather, it is up to you as the 
application programmer to write the application with the capabilities of your target device in mind. 
 
The ESP chip itself has 17 I/O pins denoted as GPIO0 through GPIO16.  The I/O pins can be referred to 
by their ordinal numbers 1 through 17.  Additionally, GPIO0 through GPIO15 may be referred to as A.0 
through A.15 and GPIO16 may be referred to as B.0.  On most ESP8266 boards, GPIO6 through GPIO11 
are dedicated for controlling the serial Flash chip and are, therefore, not available to applications.  This 
information, and other details, are summarized in the table below. The shaded rows indicate pins that are 
generally not available to an ESP8266 application. 
 

ESP8266 Pin Naming and Special Functions  

GPIO Pin ZBasic Name Special Functions 

GPIO0 A.0 or 1 Boot signal 
GPIO1 A.1 or 2 UART0 TxD 
GPIO2 A.2 or 3 UART1 TxD 

GPIO3 A.3 or 4 UART0 RxD 
GPIO4 A.4 or 5  
GPIO5 A.5 or 6  

GPIO6 A.6 or 7 Flash control - SCK 
GPIO7 A.7 or 8 Flash control - D0 
GPIO8 A.8 or 9 Flash control - D1 

GPIO9 A.9 or 10 Flash control - D2 
GPIO10 A.10 or 11 Flash control - D3 
GPIO11 A.11 or 12 Flash control - CS 

GPIO12 A.12 or 13  
GPIO13 A.13 or 14  
GPIO14 A.14 or 15  

GPIO15 A.15 or 16  
GPIO16 B.0 or 17  

 



ZBasic System Library  ZBasic Microcontrollers 

 
3 

ZBasic Compiler Directives 
 
Some of the compiler directives available for AVR devices are also available for ESP8166 while others 
are not applicable to ESP8266 devices.  The following list gives the option words (e.g. Option 

HeapSize) that are not allowed or are not useful for the ESP8266.   
 

Arduino HeapSize 
AtnChar Language 

CodeLimit OCModulateEnable 
DefaultISR RamSize 

ExtRamConfig SerialReadStrobe 
HeapLimit TaskStackMargin 

HeapReserve X10Interrupt 
 
Other than these and those described explicitly below, all other compiler directives are allowed and 
function as described in the ZBasic Language Reference manual. 
 
The following compiler directives are applicable to the ESP8266 (possibly with some limitations or 
restrictions as noted).  Those that are unique to the ESP8266 are preceded by an asterisk. 
 
 
*Option UserInit 
 
This directive allows you to specify an initialization routine that is executed early in the startup procedure.  
The name of the subroutine should be specified following the UserInit keyword with at least one 
intervening space.  For reference purposes, the subroutine specified by this compiler directive will be 
executed after completing low-level ZBasic initialzation, including console serial port initialization, but 
before the ZBasic sign-on (if enabled).  It is important to note that at the time the UserInit subroutine is 
invoked the ZBasic module-level variables and objects have not yet been initialized.  For reference 
purposes, all of this initialization is done in the ESP8266 user_init() routine. 
 
Example: Option UserInit myInit 
 
 
*Option UserPostInit 
 
This directive allows you to specify an initialization routine that is executed after the initialization is 
complete including the initialization of ZBasic module-level variables and objects.  The name of the 
subroutine should be specified following the UserPostInit keyword with at least one intervening space.  

For reference purposes, this routine is invoked in the "initialization complete" callback set by the ESP8266 
system_init_done_cb() API. 
 
Example: Option UserPostInit myPostInit 
 
 
*Option PersistentSize 
 
ZBasic reserves a 4K block of Flash memory to serve as the ZBasic Persistent data store.  Due to the 
design of the Flash chip, this entire block is written each time that one or more bytes are changed.  Since 
it is usually the case that the entire block is not changed, it must be updated using a read-modify-write 
strategy and a block of memory must be temporarily allocated from the heap for this purpose. 
 
Since many ZBasic applications for the ESP8266 will use little or none of the Persistent memory, the 
default Persistent size is much smaller than the maximum in order to reduce the demand on heap 
memory for the update operation.  The default Persistent size is 128 bytes of which 16 bytes are reserved 
for "system" use.  If your application needs more than the default 112 bytes of Persistent memory, you 
can specify a larger size using this compiler directive, up to the maximum of 4096.  On the other hand, if 
your application  uses fewer than the default 112 bytes you could also specify a smaller size using this  



ZBasic System Library  ZBasic Microcontrollers 

 
4 

compiler directive in order to reduce the heap use.  The smallest PersistentSize that can be specified is 
16 which would leave no space for your application's Persistent data. 
 
Example: Option PersistentSize 512 

 
 
Option <pin> 
 
In addition to the four states (zxInputTriState, zxInputPullUp, zxOutputLow and 
zxOutputHigh) two additional state modifiers, zxOpenDrain and zxActivePullup, may be specified 

for A.0 through A.15.  Active pullup is the default mode for these pins. 
 
 
Option TargetDevice 
 
The compiler is directed to generate code for the ESP8266 when the target device is specified as 
ESP8266.  That said, it is preferable to select the target device in the IDE rather than specifying it in the 
application source code. 
 
 
Option ConsoleSpeed 
 
This directive may be used to specify the baud rate to which UART0 is initialized as part of the ZBasic 
startup.  The default console speed is 19200. 
 
 
Option MainTaskStackSize 
 
The application's Main() subroutine is managed internally as if it were a task with its own separate 

stack.  By default, the size of this stack is 4096 bytes.  This stack is used for all of the variables allocated 
locally within ZBasic procedures (excluding those with the Static attribute) and for the call/return 
tracking.  This stack use also includes space used by ZBasic System Library routines. 
 
The System Library function System.TaskHeadroom() can be used to determine the amount of 

unused space in the task stack.  This can be helpful in adjusting the stack size to meet the needs of your 
application. 
 
 
Option RTC 
 
This compiler directive may be used to enable the ZBasic real time clock.  If it is enabled, the ESP8266 
RTC hardware is used to update the ZBasic RTC tick count.  By default, the ZBasic RTC updates the tick 
count every millisecond but you may specify a different rate using the device parameter RTCFrequency. 

 
 
Option Include 
 
Several pre-defined data types are available for the ESP8266 as noted below.  Each of these may be 
included in your application by giving the name following Option Include. 

 
Structure WifiScan_t 
   Dim ssid as String          ' SSID 
   Dim chan as Byte            ' channel number 

   Dim auth as Byte            ' authorization mode 
   Dim rssi as Integer         ' relative signal strength 
   Dim mac(1 to 6) as Byte     ' MAC address 
End Structure 
 



ZBasic System Library  ZBasic Microcontrollers 

 
5 

Union IPAddress_t 
   Dim w as UnsignedLong 
   Dim b(1 to 4) as Byte 
End Union 
 
Structure Microtime_t 
   Dim timerTicks as UnsignedInteger 
   Dim fastTicks as UnsignedLong 
End Structure 
 
 
Option DeviceParameter 
 
The operating frequency of the device may be specified using the device parameter ClockFrequency.  

The allowable values are 80MHz (the default) or 160MHz using the designators "80M" and "160M" or the 

numeric equivalents 80000000 and 160000000. 
 
Several new device parameters apply solely to the ESP8266. 
 

FlashSize This device parameter may be used to specify the size of the serial Flash 
chip using the designators "512K" (the default), "1M", "2M", "4M", "8M"  

or their numeric equivalents 524288, 1048576, 2097251, 4194304, and 
83886808, respectively.   

  
FlashFrequency This device parameter may be used to specify the operating frequency of 

the serial Flash chip using the designators "20M",  "26M", "40M" (the 

default) "80M", or their numeric equivalents 20000000, 26000000, 
40000000 and 80000000, respectively. 

  
FlashMode This device parameter may be used to specify the operating mode of the 

Flash chip using the designators "QIO" (the default), "QOUT", "DIO" or 
"DOUT". 

 
It is important to note that specifying the wrong operating mode or frequency for the Flash chip may result 
in your application not working as may specifying the Flash size larger that it actually is.  Specifying the 
Flash size smaller than it actually is has no ill effect other than to result in less Flash memory being 
available to the application. 
 
 
 

Downloading ESP8266 Applications to the Device 
 
All ESP8266 devices have a built-in bootloader.  In order to get the device to run the bootloader (as 
opposed to the application), the protocol is to hold GPIO0 low while resetting the device.  On all ESP8266 
devices, this process can be performed manually using a switch or jumper and this reset method is, 
therefore, referred to as the Manual Reset method. 
 
Some devices have special circuitry that allows the serial port DTR and/or RTS signals to be used to get 
the device into the bootloader.  There are several known methods available on different boards but the 
effect of all of the is the same, i.e. to hold GPIO0 low while resetting the device.  The following text 
describes the known methods and provides a name for each of them.  Although pullup resistors are 
shown on the RESET and GPIO0 lines in the diagrams below, it is important to note that any particular 
board may have these present already. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
6 

Auto Reset Mode 
 
In this reset mode, the DTR signal is connected to the RESET pin (either directly or via a diode) while the 
RTS signal is connected to GPIO0 (again, either directly ore via a diode).  An example circuit for this 
mode is shown below. 

 
 
 
DTR Only Reset Mode 
 
In this reset mode, the DTR signal is connected to the RESET pin via a diode and also connected to 
GPIO0 (either directly ore via a diode).  This is useful with some types of USB-Serial adapters that do not 
break out the RTS signal.  An example circuit for this mode is shown below. 

 
 
Wifio Reset Mode 
 
This is another reset mode that is useful when RTS is not available.  Here, the DTR signal is connected to 
RESET via a capacitor and GPIO0 is held low via a transistor by transmitting a serial break, effectively 
holding the TxD line (the RxD input to the ESP8266) low for a period of time, typically about 250mS.  The 
simpler alternative shown second below seems to work just as well. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
7 

 
 
NodeMCU Reset Mode 
 
In this reset mode, implemented on the NodeMCU Development board, both DTR and RTS are used but 
they connect to RESET and GPIO0 through a pair of cross-connected NPN transistors.  This allows either 
RESET or GPIO0 to be pulled low but only when DTR and RTS are in opposite logic states. 
 

 
 
When the ESP8266 is the selected target device, the Serial Options dialog (available via Options|Serial 
Options...) will contain a set of radio buttons in the lower righthand group box allowing the choice of reset 
modes.  The captions on the radio buttons are similar to the names used in the descriptions above.  Once 
the reset mode has been selected, pressing F5 with your project loaded wil cause the IDE to attempt to 
connect to the device and start the download process.  If the manual reset mode is selected, you'll have 
to ground the GPIO0 pin and reset the device manually while the IDE is attempting to establish 
communications - the window for effecting the reset is about 5 seconds. 
 
It should be noted that the desired download speed may be selected on the Serial Options dialog.  The 
ESP8266 device has "auto-baud" code so there isn't anything that needs to be done on the device itself 



ZBasic System Library  ZBasic Microcontrollers 

 
8 

when the download baud rate is changed.  Users have reported success with baud rates as high as 
460800 but higher rates may also work if your serial hardware support them. 
 
 

Pins Supported for I/O Routines 
 
Because GPIO16 (B.0) is realized using different circuitry than is used for GPIO0-GPIO15 (A.0-A.15), not 
all of the I/O routines support GPIO16.  The I/O routines that do support GPIO16 are listed below. 
 

GetPin() PutPin() 
PulseIn() PulseOut() 

 
Other differences between the port A pins and the port B pin are that B.0 cannot generate a pin change 
event nor it is able to operate in "open drain" mode.  Additionally, B.0 has no "input with pullup" mode. 
 
 

Differences in System Library Routines 
 
Some of the ZBasic System Library routines operate with different timing and/or different restrictions on 
the ESP8366 as compared to AVR targets.  The discussion below summarizes the differences. 
 
CountTransitions() - The sampling loop is about 65 CPU cycles (800nS at 80MHz).  Although interrupts 
are disabled, non-maskable interrupts may still occur that cause a pair of closely spaced transitions to be 
missed. 
 
Delay() - The resolution of the delay time is 1mS. 
 
GetElapsedMicroTime() 
GetMicroTime() - The Microtime_t structure is 6 bytes in length.  The resolution of the 32-bit fastTicks 
element is 1mS while the resolution of the 16-bit timerTicks element is 200nS. 
 
OpenI2C() - Only one I2C channel is supported and, since the ESP8266 has no I2C hardware, the I2C 
protocol is implemented in software using the specified pins for SDA and SCL.  The default bit rate is 
about 450KHz.  The bitRate value of 10 will yield a bit rate of about  400KHz, 50 will yield about 200KHz 
and 120 will yield about 100KHz. 
 
OpenPWM() - PWM is available only on PortA pins and is implemented in software based on the 
ESP8266 RTC Timer1 (a 24-bit down counter).  Only one PWM signal can be generated at any one time 
and the channel parameter is the desired pin number.  The minimum supported base frequency is 1.0Hz 
and the maximum is about 78KHz.  Note, however, that lower frequencies are to be preferred due to the 
lower load imposed on the CPU. 
 
OpenSPI() - Only one SPI channel is supported and the SPI protocol is implemented in software using 
the pins specified in the DefineSPI() call.  The bit rate portion of the flags parameter is ignored.  The 

SPI clock frequency is approximately 1MHz when running at 80MHz. 
 
PulseIn() - The value returned is the number of RTC Timer2 ticks, divided by the Register.TimerSpeed1 
divisor value, corresponding to the pulse width with a resolution of 200nS. Although interrupts are 
disabled, non-maskable interrupts may still occur that can cause a transition to be detected later than it 
occurs. 
 
PulseOut() - The units of the pulse width is 200nS multiplied by the Register.TimerSpeed1 divisor.  
Although interrupts are disabled, non-maskable interrupts may still occur that cause a transition to be 
later than it should be. 
 
PutPin() - When generating a pulse (mode = 5), the pulse width is about 250 nS.  Also, an additional 
mode OpenDrain (mode=9, zxOpenDrain) is available.  The opposite mode is ActivePullup (mode=10, 
zbActivePullup). 
 



ZBasic System Library  ZBasic Microcontrollers 

 
9 

ShiftInEx() - With no speed control the clock period is approximately 1.5uS at 80MHz.  With speed 
control, the extra delay per bit is a number of CPU cycles approximately equal to 5 times the bitTime 
parameter value.  When running at 160MHz, the bitTime parameter value is doubled in order to maintain 
the same approximate timing. 
 
ShiftOutEx() - With no speed control the clock period is approximately 950 nS at 80MHz.  With speed 
control, the extra delay per bit is a number of CPU cycles approximately equal to 5 times the bitTime 
parameter value.  When running at 160MHz, the bitTime parameter value is doubled in order to maintain 
the same approximate timing. 
 
Sleep() - The resolution of the sleep time is 1mS. 
 
 

System Library Routines Not Available for the ESP8266 
 
The list below gives the System Library Routines that are not supported on the EPS8266.  The reason 
that they are not supported is, in most cases, because the ESP8266 lacks the hardware necessary to 
support them or that it was deemed impractical to support them.  The boldface entries are not supported 
because they relate to multi-tasking.  A few of the routines are not supported because they were thought 
not to have high enough utility value in the ESP8266 environment. 
 
 

ADCtoCom1 ExitTask PlaySound StartTask 
BusRead FreqOut ProgMemFind StatusX10 
BusWrite GetEEPROM PutDAC System.HeapHeadRoom 
CloseDAC InputCapture PutEEPROM System.HeapLimit 
ClosePWM8 InputCaptureEx PutProgMem System.HeapSize 
CloseX10 LockTask PWM8 TaskIsLocked 
Com1toDAC MemAddress RCtime TaskIsValid 
ControlCom OpenDAC ResumeTask UnlockTask 
CPUsleep OpenI2CSlave RunTask WaitForInterrupt 

DAC OpenPWM8 SerialGetByte WaitForInterval 
DACpin OpenX10 SerialIn X10cmd 

DefineBus OutputCapture SetBoot ZXCmdMode 
DefineCom3 OutputCaptureEx SetInterval  
DefineX10 PersistentPeek SetQueueX10  

DelayUntilClockTick PersistentPoke StackCheck  

 



ZBasic System Library  ZBasic Microcontrollers 

 
10 

 

New Subroutines and Functions for the ESP8266 
 
In the descriptions that follow, the parameter types that are accepted by each routine are described.  
Some parameters accept a specific fundamental data type while others may accept a few similar types.  
Others accept virtually any parameter type.  In order to more succinctly describe the types of parameters 
accepted, some descriptive type categories are used.  For example, the category integral is used to 
connote those types that have the integral characteristic, such as Byte, Integer, UnsignedInteger, 
Long and UnsignedLong.  The table below indicates which types belong to which categories. 

 

Type Category Membership 
Type/Category any type numeric integral real signed int8/16 int16 int32 any 32-bit 
Boolean x         
Bit x x x   x    
Nibble x x x    x       
Byte x x x   x    
Integer x x x  x x x   
UnsignedInteger x x x   x x   
Long x x x  x   x x 
UnsignedLong x x x     x x 
Single x x  x x    x 
Double x x  x x     
Enum x         
String x         

 
The remainder of this document presents complete descriptions of each of the System Library routines 
that is unique to the ESP8266, arranged in alphabetical order. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
11 

DeepSleep 
 

 
Type  Subroutine 
 
Invocation DeepSleep(duration, startup) 
 

Parameter Method Type Description 
duration ByVal integral The number of microseconds to sleep. 
startup ByRef anyType The startup mode upon reawakening. 

 
 
Discussion 
 
This subroutine may be used to put the ESP8266 in deep sleep mode, substantially reducing power 
consumption.  Only the on-board RTC is kept running while in deep sleep mode. 
 

Startup Mode 

Value Meaning 
0 Radio calibration after deep sleep is as specified in byte 108 of 

esp_init_data_default.bin. 
1 Recalibrate the radio after wakeup (increases current 

consumption. 
2 Do not recalibrate the radio after wakeup. 
4 Disable the radio after wakeup. 

 
Note that when the specified time expires, the GPIO16 pin will be pulled low.  This should be connected 
to the RESET pin (usually via a diode) in order to apply a reset signal to wake up the device.  Because 
the on-board RTC is kept running during deep sleep, you may store some parameter values (i.e. state 
information) in the memory area of the on-board RTC to be used durint the post-sleep startup (see 
RTC.MemRead and RTC.MemWrite).  The value of Register.ResetFlags() may be used to 

determine the cause of the reset and therefore control what is done during startup. 
 

Register.ResetFlags Values 

Value Meaning 
0 Power-on reset. 
1 Hardware watchdog reset. 
2 Exception reset. 
3 Software watchdog reset. 
4 Software reset. 
5 Deep sleep awakening reset. 
6 External reset. 

 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
12 

 File.Close 
 
 
Type  Subroutine 
 
Invocation File.Close(handle) 
 

Parameter Method Type Description 

handle ByVal integral The handle of the SPIFFS file to be closed, previously 
returned by File.Open(). 

 
 
Discussion 
 
This subroutine closes the file handle specified.  It should be called when operations on the file are 
completed. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
13 

File.Delete 
 

 
Type  Function returning Integer 
 
Invocation File.Delete(filename) 
 

Parameter Method Type Description 
filename ByVal String The name of the SPIFFS file to be deleted. 

 
 
Discussion 
 
This function deletes the named file (i f it exists).  The return value will be zero if successful and non-zero 
in case of an error.  Note that the file to be deleted should not still be open (see File.Close). 
 



ZBasic System Library  ZBasic Microcontrollers 

 
14 

File.Error 
 

 
Type  Function returning Long 
 
Invocation File.Error() 
 
Discussion 
 
After some other SPIFFS function is called that returns an error indication, calling this function will return 
the specific error code indicating the nature of the problem.  A list of the error codes can be found in the 
SPIFFS source code file "spiffs.h". 



ZBasic System Library  ZBasic Microcontrollers 

 
15 

File.Mount 
 

 
Type  Function returning Integer 
 
Invocation File.Mount(startAddr, size) 
   
 

Parameter Method Type Description 
startAddr ByVal integral The Flash address for the start of the file system. 

size ByVal integral The size, in bytes, of the file system. 

 
 
Discussion 
 
Before any SPIFFS operations can be performed, the file system must be mounted, giving the address 
and size of a portion of the Flash chip that is otherwise unused.  The address must be on a 1024 byte 
block boundary and the size must be an integral multiple of 1024.  The area to be used for the file system 
must either have all its bytes set to &Hff (erased) or it must be loaded with a SPIFFS image prepared, for 
example, with the spiffy.exe utility.  The esp_tool.exe utility can be used to erase a region and to flash it 
with a SPIFFS image. 



ZBasic System Library  ZBasic Microcontrollers 

 
16 

File.Open 
 

 
Type  Function returning Integer 
 
Invocation File.Open(filename, mode) 
 

Parameter Method Type Description 
filename ByVal String The name of the file to be opened. 
mode ByVal anyIntegral The mode in which the file will be opened (see discussion). 

 
 
Discussion 
 
This function opens the named file (subject to the mode value) and returns a non-negative file handle (to 
be used in other operations) if successful.  If the file cannot be opened as specified the return value will 
be negative. 
 
The mode parameter can be a combination of the values in the table below.  Note, however, that some 
combinations are contradictory and will result in failure to open. 
 

Mode Values for File.Open 

Value Value Meaning 
&H01 1 Open an existing file, writes add to the end of the file. 
&H02 2 Open an existing file, truncate it to zero length. 
&H04 4 Create a new file, deleting an existing file with the same name. 
&H08 8 Prepare for read-only operation (writes will fail). 
&H10 16 Prepare for write-only operation (reads will fail). 
&H18 24 Prepare for read and write operations. 
&H20 32 Do not cache write data. 
&H44 68 Create a new file, fail if file exists already. 

 
 



ZBasic System Library  ZBasic Microcontrollers 

 
17 

File.Read 
 

 
Type  Function returning Long 
 
Invocation File.Read(handle, destination, count) 
 

Parameter Method Type Description 
handle ByVal integral The handle of the file to read, previously returned by 

File.Open(). 

destination ByRef anyType Where to place the data read. 
arg ByVal Single The number of bytes to read. 

 
 
Discussion 
 
This function attempts to read the specified number of bytes from the file handle.  If successful, the return 
value will be greater than zero indicating the number of bytes placed in the destination buffer.  If fewer 
bytes than requested were available, the return value will be the smaller number, possibly zero.  A 
negative return value indicates an error occurred. 



ZBasic System Library  ZBasic Microcontrollers 

 
18 

File.Rename 
 

 
Type  Function returning Integer 
 
Invocation File.Rename(oldName, newName) 
 

Parameter Method Type Description 
oldName ByVal String The file to be renamed. 
newName ByVal String The new filename. 

 
 
Discussion 
 
This function attempts to rename the indicated file.  If successful, the return value will be zero otherwise 
the return value will be negative indicating an error. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
19 

File.Seek 
 

 
Type  Function returning Long 
 
Invocation File.Seek(handle, offset, origin) 
 

Parameter Method Type Description 
handle ByVal integral The handle of the file to read, previously returned by File.Open(). 

offset ByVal integral The signedoffset to which to seek, relative to the origin parameter. 

origin ByVal integral The origin for the seek (see discussion). 

 
 
Discussion 
 
This function repositions the file in preparation for subsequent read/write operations.  The offset 
parameter is treated as a signed value allowing seeks to positions before or after the origin position which 
is specified as one of the values in the table below. 
 

Origin Designators for Seek Operation 

Value Meaning 
0 The new position is relative the the beginning of the file. 
1 The new position is relative to the current position. 
2 The new position is relative to the end of the file. 

 
 
Note that negative offsets don't make sense when the origin is the beginning of the file nor do offsets 
greater than zero when the origin is the end of the file.  The value returned is negative if an error occurs, 
otherwise, the value returned is the new file position.  Invoking File.Seek with a position of zero and an 
origin value of 1 results in the current position being returned.  Invoking File.Seek with a position of 

zero and an origin value of 2 returns the current file size (but see File.Size). 
 



ZBasic System Library  ZBasic Microcontrollers 

 
20 

File.Size 
 

 
Type  Function returning Long 
 
Invocation File.Size(handle) 
 

Parameter Method Type Description 
handle ByVal integral The handle of the file to read, previously returned by 

File.Open(). 

 
 
Discussion 
 
The value returned by this function is negative if an error occurs. Otherwise, it is the current size of the 
file, in bytes. 



ZBasic System Library  ZBasic Microcontrollers 

 
21 

File.Write 
 

 
Type  Function returning Long 
 
Invocation File.Write(handle, source, count) 
 

Parameter Method Type Description 
handle ByVal integral The handle of the file to read, previously returned by 

File.Open(). 

source ByRef anyType The data to be written. 
arg ByVal Single The number of bytes to write. 

 
 
Discussion 
 
This function attempts to write a number of bytes of data to the specified file.  If an error occurs, the return 
value will be negative.  Otherwise, the return value is the number of bytes written. 



ZBasic System Library  ZBasic Microcontrollers 

 
22 

Flash.Erase 
 

 
Type  Subroutine 
 
Invocation Flash.Erase(addr, size) 
 

Parameter Method Type Description 
addr ByVal integral The start of the Flash region to erase. 
size ByRef integral The number of bytes to erase. 

 
 
Discussion 
 
This subroutine will erase a region of Flash memory.  The actual start address for the region is that 
specified by the addr parameter rounded down to a 4K block boundary and the size of the region to be 
erased will be the specified size rounded up to a multiple of 4K bytes. 
 
This routine can be used to erase any part of Flash memory, even that containing parts of the application 
so it must be used with great care. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
23 

Flash.Read 
 

 
Type  Function returning UnsignedInteger 
 
Invocation Flash.Read(addr, dest, count) 
 

Parameter Method Type Description 
addr ByVal anyIntegral The Flash address at to begin reading. 
dest ByRef anyType Where to place the data read. 

count ByVal anyIntegral The number of bytes to read. 

 
 
Discussion 
 
This function reads an arbitrary region of Flash memory, placing the data at the indicated destination.  
The return value represents the number of bytes written to the destination. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
24 

Flash.Write 
 

 
Type  Function returning UnsignedInteger 
 
Invocation Flash.Write(addr, source, count) 
 

Parameter Method Type Description 
addr ByVal anyIntegral The Flash address at to begin reading. 
source ByRef anyType The data to be written. 

count ByVal anyIntegral The number of bytes to write. 

 
Discussion 
 
This function writes data to Flash memory.  It must be used with great care because it can cause parts of 
the application to be overwritten.  The value returned is the number of bytes written. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
25 

Net.Address 
 

 
Type  Function returning UnsignedLong 
 
Invocation Net.Address(oct1, oct2, oct3, oct4) 
 

Parameter Method Type Description 
oct1 ByVal Byte The first octet of the IP address. 
oct2 ByVal Byte The second octet of the IP address. 

oct3 ByVal Byte The third octet of the IP address. 
oct4 ByVal Byte The fourth octet of the IP address. 

 
 
Discussion 
 
This function returns a 32-bit IPV4 address containing the four octets.  For example, to get the IP address 
for 192.168.0.1 invoke it as Net.Address(192, 168, 0, 1). 
 



ZBasic System Library  ZBasic Microcontrollers 

 
26 

Net.Close 
 

 
Type  Function returning Integer 
 
Invocation Net.Close(handle) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to close. 

 
 
Discussion 
 
This function closes a network handle, making the specified handle available for future operations.  The 
return value will be zero if successful, negative otherwise. 



ZBasic System Library  ZBasic Microcontrollers 

 
27 

Net.Connect 
 

 
Type  Function returning Integer 
 
Invocation Net.Connect(handle, ipAddr, port, protocol) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
ipAddr ByVal UnsignedLong The IP address of the remote host. 

port ByVal anyIntegral The port number to use. 
protocol ByVal anyIntegral The protocol indicator. 

 
 
Discussion 
 
This function attempts to establish a connection to a remote host on the given port number.  The protocol 
parameter indicates the desired protocol according to the table below. 
 

Protocol Designators 

Value Meaning 
0 Use the TCP protocol. 
1 Use the UDP protocol. 

 
The return value will be zero if successful, negative otherwise. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
28 

Net.Disconnect 
 

 
Type  Function returning Integer 
 
Invocation Net.Disconnect(handle) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 

 
 
Discussion 
 
This breaks a connection established by Net.Connect().  The return value will be zero if successful, non-
zero otherwise. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
29 

Net.GetHostByName 
 

 
Type  Function returning UnsignedLong 
 
Invocation Net.GetHostByName(hostName) 
 

Parameter Method Type Description 
hostName ByVal String The host name to lookup. 

 
 
Discussion 
 
This function returns the IP address of the named host (if found) or the value zero (i.e. 0.0.0.0) i f not 
found. 



ZBasic System Library  ZBasic Microcontrollers 

 
30 

Net.Listen 
 

 
Type  Function returning Integer 
 
Invocation Net.Listen(handle, port, protocol) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
port ByVal anyIntegral The port number to use. 

protocol ByVal anyIntegral The protocol indicator. 

 
 
Discussion 
 
This function causes the device to begin waiting for a connection request on the indicated port number for 
the given protocol (see the table below). 
 

Protocol Designators 

Value Meaning 
0 Use the TCP protocol. 
1 Use the UDP protocol. 

 
The return value will be zero if successful, negative otherwise.  If a callback has been associated with the 
network handle, the callback will be invoked when a remote host establishes a connection. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
31 

Net.Open 
 

 
Type  Function returning Integer 
 
Invocation Net.Open() 
 
 
Discussion 
 
This function attempts to find an unused network handle.  If successful, the non-negative handle will be 
returned to be used in subsequent network operations.  A negative value indicates failure. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
32 

Net.RemoteHost 
 

 
Type  Function returning Integer 
 
Invocation Net.RemoteHost(handle, ipAddr, port) 
  Net.RemoteHost(handle, ipAddr) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 

port ByRef UnsignedLong The IP address of the remote host. 
protocol ByRef UnsignedInteger The remote port. 

 
 
Discussion 
 
This function determine the IP address and, optionally, the port of the remote host that is party to an 
existing connection.  The return value will be zero if the parameters of the remote host were successfully 
determine and a negative value otherwise.  This function is most useful when the ESP8266 is listening for 
a connection.  The returned IP address can then be used to control the response. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
33 

Net.SendData 
 

 
Type  Function returning Integer 
 
Invocation Net.SendData(handle, data, count) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
data ByRef anyType The data to send. 

count ByVal anyIntegral The number of bytes to send. 

 
 
Discussion 
 
This function attempts to send a block of data to the remote host.  If successful, the return value is zero 
otherwise it is negative.  If a callback procedure has been established, it will be invoked when the data is 
fully transmitted. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
34 

Net.SendProgData 
 

 
Type  Function returning Integer 
 
Invocation Net.SendProgData(handle, dataAddr, count) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
dataAddr ByVal UnsignedLong The address of the data to send. 

count ByVal anyIntegral The number of bytes to send. 

 
 
Discussion 
 
Function attempts to send a block of ProgMem data to the remote host.  If successful, the return value is 
zero otherwise it is negative.  If a callback procedure has been established, it will be invoked when the 
data is fully transmitted. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
35 

Net.SendStr 
 

 
Type  Function returning Integer 
 
Invocation Net.SendStr(handle, str) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
str ByVal String The string to send. 

 
 
Discussion 
 
Function attempts to send the characters of a string to the remote host.  If successful, the return value is 
zero otherwise it is negative.  If a callback procedure has been established, it will be invoked when the 
data is fully transmitted. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
36 

Net.SetCallback 
 

 
Type  Function returning Integer 
 
Invocation Net.SendStr(handle, callback) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
callback ByVal UnsignedLong The address of the callback procedure. 

 
 
Discussion 
 
This function associates a callback routine with the network handle.  The callback will be invoked for each 
of several different events related to the network handle.  The callback routine must be defined thus: 
 
Sub netCallback(ByVal cbtype as Byte, ByVal handle as Integer, _ 
    ByRef data() as Byte, ByVal cnt as UnsignedInteger) 
End Sub 
 
In all cases, the handle parameter gives the network handle associated with the event.  The cbtype 
parameter indicates the type of event that evoked the callback as described in the table below.  The data 
and cnt parameters are valid only for certain callback types. 
 

Callback Type Designators 

Value Meaning 
0 A connection occurred. 
1 A disconnect occurred. 
2 Data was received, the data and cnt parameters are valid. 
3 A send data function was instigated. 
4 The send data request was completed. 
5 A reconnection occurred. 

 
 
  



ZBasic System Library  ZBasic Microcontrollers 

 
37 

Net.SetTimeout 
 

 
Type  Subroutine 
 
Invocation Net.SetTimeout(handle, timeout) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 
timeout ByVal anyIntegral The timeout threshold for closing a connection. 

 
 
Discussion 
 
This subroutine sets the timeout, in seconds.  If no activity occurs within the timeout period a connection 
will be broken.  If a callback has been associated with the network handle, the callback will be invoked 
with the callback type set to 1. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
38 

Net.Status 
 

 
Type  Function returning Integer 
 
Invocation Net.Status(handle) 
 

Parameter Method Type Description 
handle ByVal anyIntegral The handle, previously returned by Net.Open(), to use. 

 
 
Discussion 
 
This function returns the status of the network handle.  The return value will contain zero or more of the 
flag values in the table below. 
 

Network Handle Status Bits 

Value Meaning 
&H01 The handle is valid. 
&H02 The handle is open. 
&H04 The handle is connected to a remote host. 
&H08 In the connection, the ESP8266 is the client. 
&H10 The connection has data not yet sent. 

 



ZBasic System Library  ZBasic Microcontrollers 

 
39 

PinChange.Handler 
 

 
Type  Subroutine 
 
Invocation PinChange.Handler(subAddr) 
 

Parameter Method Type Description 
subAddr ByVal UnsignedLong The address of a subroutine to invoike on pin change. 

 
Discussion 
 
This subroutine sets a callback procedure to be invoked when an input pin changes state. The callback 
procedure must be defined as shown by example: 
 
Sub pinChangeCB(ByVal flags as UnsignedInteger) 
End Sub 
 
When the callback is invoked, the bits of the flags parameter will have a 1 for each pin A.15 to A.0 that 
has changed state.  
 



ZBasic System Library  ZBasic Microcontrollers 

 
40 

PinChange.Mode 
 

 
Type  Subroutine 
 
Invocation PinChange.Mode(pin, mode) 
 

Parameter Method Type Description 
pin ByVal Byte The pin to be enabled/disabled for pin change detection. 
mode ByVal Byte The sensitivity mode for the pin (see discussion). 

 
 
Discussion 
 
This routine enables or disables sensitivity to state change of an input pin (A.0 through A.15 only).  The 
mode parameter should have one of the values in the table below. 
 

Pin Change Interrupt Mode 

Value Meaning 
0 Disable pin change sensitivity. 
1 Invoke callback on a rising edge. 
2 Invoke callback on a falling edge. 
3 Invoke callback on a both edges. 

 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
41 

RTC.MemRead 
 

 
Type  Subroutine 
 
Invocation RTC.MemRead(addr, dest, count) 
 

Parameter Method Type Description 
addr ByVal anyIntegral The address at which to begin reading. 
dest ByRef anyType Where to put the data read. 

count ByVal anyIntegral The number of bytes to read. 

 
 
Discussion 
 
This on-board RTC of the ESP8266 has a block of RAM, 512 bytes of which are reserved for use by 
application programs.  Although the RAM can be used for any purpose, the fact that the RTC remains 
under power during deep sleep means that the RAM can be used to store parameter values across a 
deep sleep cycle. 
 
The zero-based addr parameter gives the beginning address, relative to the start of the block reserved for 
application data. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
42 

RTC.MemWrite 
 

 
Type  Subroutine 
 
Invocation RTC.MemWrite(addr, source, count) 
 

Parameter Method Type Description 
addr ByVal anyIntegral The address at which to begin writing. 
source ByRef anyType The source of the data to write. 

count ByVal anyIntegral The number of bytes to write. 

 
 
Discussion 
 
This on-board RTC of the ESP8266 has a block of RAM, 512 bytes of which are reserved for use by 
application programs.  Although the RAM can be used for any purpose, the fact that the RTC remains 
under power during deep sleep means that the RAM can be used to store parameter values across a 
deep sleep cycle. 
 
The zero-based addr parameter gives the beginning address, relative to the start of the block reserved for 
application data. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
43 

Wifi.Connect 
 

 
Type  Subroutine 
 
Invocation Wifi.Connect() 
 
 
Discussion 
 
Invoking this subroutine causes the ESP8266 to attempt to make a connection to the last-specified SSID.  
In most cases, it is not necessary to use this subroutine because the ESP8266 will automatically attempt 
to make the WiFi connection each time it boots up. 
 
One could use this subroutine in conjunction with Wifi.Disconnect() and Wifi.SetConfig() to 
dynamically change the access point during executions. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
44 

Wifi.Disconnect 
 

 
Type  Subroutine 
 
Invocation Wifi.Disconnect() 
 
 
Discussion 
 
Invoking this subroutine causes the current wireless connection, if any, to be terminated. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
45 

Wifi.GetConfig 
 

 
Type  Subroutine 
 
Invocation Wifi.GetConfig(ssid) 
  Wifi.GetConfig(ssid, passwd) 
  Wifi.GetConfig(ssid, passwd, macAddr) 
 
 

Parameter Method Type Description 
ssid ByRef String Where to place the SSID. 
passwd ByRef String Where to place the access point password. 

macAddr ByRef Byte Where to place the MAC address. 

 
 
Discussion 
 
This subroutine retrieves the current set of WiFi connection parameters, previously set by 
Wifi.SetConfig().  If the macAddr parameter is given, it must refer to a Byte buffer that is at least six 
bytes in length so that it can receive the six bytes of the MAC address. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
46 

Wifi.GetHostname 
 

 
Type  Function returning String 
 
Invocation Wifi.GetHostname() 
 
Discussion 
 
This function returns the name identifying the ESP8266 network interface on the network.  By default, the 
host name is derived from the MAC address of the WiFi network interface but it can be set to another 
name using Wifi.SetHostname().  The actual host name is not important for most network operations 
but having it set to a familiar or recognizable name may facilitate better understanding of DHCP logs, etc. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
47 

Wifi.GetIP 
 

 
Type  Function returning UnsignedLong 
 
Invocation Wifi.GetIP(selector) 
 

Parameter Method Type Description 
selector ByVal anyIntegral This parameter selects the element of interest (see 

discussion). 

 
 
Discussion 
 
The ESP8266 WiFi module contains two network interfaces, one for operating in "station" mode and one 
for operating in "access point" mode.  This function allows ret rieval of network parameters for each of the 
interfaces using several different selector values as shown in the table below. 
 

IP Selector Values 

Value Meaning 
0 Return the station IP address. 
1 Return the station gateway IP address. 
2 Return the station network address mask. 
4 Return the AccessPoint IP address. 
5 Return the AccessPoint gateway IP address. 
6 Return the AccessPoint network address mask. 

 



ZBasic System Library  ZBasic Microcontrollers 

 
48 

Wifi.GetMode 
 

 
Type  Function returning Byte 
 
Invocation Wifi.GetMode()  
 
Discussion 
 
This function returns the current Wi-Fi operating mode as previously set by Wifi.SetMode().  See the 

discussion of Wifi.SetMode() for more information. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
49 

Wifi.Scan 
 

 
Type  Function returning UnsignedInteger 
 
Invocation Wifi.Scan(nodeList, count) 
 

Parameter Method Type Description 
nodeList ByRef array of WifiScan_t The array in which to return information about 

available access points. 

count ByVal anyIntegral The number of elements in the nodeList array. 

 
 
Discussion 
 
This function invokes a scan of available Wi-Fi access points, returning the information in the passed 
array (up to its maximum number of elements).  The return value indicates how many elements of the 
passed array were populated.  Note that the array is populated with information on the available access 
points in the order in which they were detected, without regard to signal strength or any other attribute of 
the access point. 
 
Each element of the scan node array has the pre-defined structure as shown below. 
 
Structure WifiScan_t 
   Dim ssid as String          ' SSID 
   Dim chan as Byte            ' channel number 
   Dim auth as Byte            ' authorization mode 
   Dim rssi as Integer         ' relative signal strength 
   Dim mac(1 to 6) as Byte     ' MAC address 
End Structure 

 
This pre-defined structure may be included in your application by using the following compiler directive: 
 
Option Include WifiScan_t 
 
The auth member of the WifiScan_t structure contains an indicator of the authorization mode of the 

access point as described in the table below. 
 

Access Point Authorization Mode Values 

Value Meaning 
0 No encryption, i.e. an open access point. 
1 WEP encryption. 
2 WPA/PSK encryption. 
3 WPA2/PSK encryption. 
4 WPA/WPA2/PSK encryption. 

 
The rssi member of the WifiScan_t structure gives the relative signal string in units of decibels.  The 
values are generally negative and the less negative values represent stronger signals. 
 
The mac member of the WifiScan_t structure is an array of bytes giving the MAC address of the 

access point. 
 
N.B.: This routine must not be called from the UserInit() routine. 



ZBasic System Library  ZBasic Microcontrollers 

 
50 

Wifi.SetConfig 
 

 
Type  Subroutine 
 
Invocation Wifi.SetConfig(ssid) 
  Wifi.SetConfig(ssid, passwd) 
  Wifi.SetConfig(ssid, passwd, macAddr) 
 

Parameter Method Type Description 

ssid ByVal String The access point SSID (30 characters maximum). 
passwd ByVal String The access point password (62 characters maximum). 
macAddr ByRef Byte The access point MAC address. 

 
Discussion 
 
This subroutine sets the parameters of the access point to which to connect.  If a WiFi connection has 
already been established, it is automatically disconnected. 
 
The first form shown above is for connecting to an open access point, i.e. one that has no password.  The 
third form is used when multiple access points are available having the same SSID and it is desired to 
connect to a specific one, as distinguished by the MAC address. 
 
 



ZBasic System Library  ZBasic Microcontrollers 

 
51 

Wifi.SetHostname 
 

 
Type  Subroutine 
 
Invocation Wifi.SetHostname(hostname) 
 

Parameter Method Type Description 
hostname ByVal String The desired host name (32 characters maximum). 

 
Discussion 
 
This subroutine sets the DHCP hostname for the device. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
52 

Wifi.SetIP 
 

 
Type  Subroutine 
 
Invocation Wifi.SetIP(ifc, ipAddr, gwAddr, netmask) 
 

Parameter Method Type Description 
ifc ByRef anyIntegral The interface selector. 
ipAddr ByVal UnsignedLong The host IP address. 

gwAddr ByVal UnsignedLong The gateway IP address. 
netMask ByVal UnsignedLong The network mask. 

 
 
Discussion 
 
This subroutine sets the network parameters for either the Station interface (ifc = 0) or the AccessPoint 
interface (ifc = 1).  If the network parameters are not set explicitly, the DHCP protocol will be used to 
obtain an IP address and the other parameters from any available DHCP server. 
 



ZBasic System Library  ZBasic Microcontrollers 

 
53 

Wifi.SetMode 
 

 
Type  Subroutine 
 
Invocation Wifi.SetMode(mode) 
 

Parameter Method Type Description 
mode ByVal anyIntegral The desired operating mode. 

 
 
Discussion 
 
This subroutine sets the operating mode of the WiFi interface (see the table below).  By default, the 
ESP8266 will be in Station mode. 
 

WiFi Mode Selector Values 

Value Meaning 
1 Station mode. 
2 Soft AP mode (currently not supported). 
3 Station + Soft AP mode (currently not supported). 

 



ZBasic System Library  ZBasic Microcontrollers 

 
54 

Wifi.Status 
 

 
Type  Function returning Byte 
 
Invocation Wifi.Status() 
 
Discussion 
 
This function return the current status of the station interface.  The return values are as indicated in the 
table below. 
 

WiFi Station Status Values 

Value Meaning 
0 Station is idle. 
1 Station is attempting to connect to the access point. 
2 The access point is available but the password was incorrect. 
3 The specified access point was not found. 
4 Connection to the access point failed. 
5 Connection to the access point succeeded. 

 



ZBasic System Library  ZBasic Microcontrollers 

 
55 

SPI Flash Allocation 
 
An ESP8266 application usually consists of two binary image files.  The first image file, stored at address 
0x0000 of the Flash chip contains the application boot code (instruction RAM code, and RAM data) and is 
limited to 64KB in size.  The second image file contains the ROM code (instruction ROM code and read-
only data).  The primary difference between the handling of the content of the two images is that the 
content of the first image gets loaded into RAM at boot time while the routines in the second image are 
loaded into a RAM instruction cache as they are needed or (for read-only data) read directly from Flash 
when needed. 
 
The ZBasic compiler produces a combined image file containing both of the images described in the 
previous paragraph.  The name of the combined image file is based on the project name but it has the 
extension .esp.  The ZBasic compiler structures the application to be compatible with the Flash memory 

map below. 
 

ESP8266 Memory Map for 512K Flash Chip 

Address Size Description 
0x0000000 0x010000 (64K) Application boot image 
0x0010000 0x001000 (4K) ZBasic Persistent memory 
0x0011000 0x06b000 (428K) Application ROM code/data 
0x007c000 0x004000 (16K) ESP8266 system parameters 

 
Although most ESP8266 devices come equipped with a 512KB Flash chip, some are available with larger 
capacity chips, e.g. 1MB, 2MB, 4MB or 8MB.  The Flash map for the larger Flash chips is similar to that 
depicted above.  The first three entries have the same start address but the start address for the fourth 
(the sytem parameter area) is always 16KB from the end of the Flash chip. 
 
The area between the ZBasic Persistent memory and the ESP8266 system parameters is available for 
use by the application.  Any space beyond the end of the application code/data can be used for any 
purpose.  One example of how this "empty" space might be used is a Flash-based file system like 
SPIFFS (SPI Flash File System).  More discussion about SPIFFS is found elsewhere in this document. 
 
 

Using an SPI Flash File System (SPIFFS) 
 
The ZBasic System Library incorporates a version of Peter Andersson's open source SPIFFS code 
(available at github.com), slightly modifed and targeted to the ESP8266.  The SPIFFS code allows an 
application to use part of the Flash memory as a single-level (i.e. non-hierarchical) file system.  The 
ZBasic System Library for the ESP8266 contains new routines (e.g. File.Open) to allow interaction with 
the file system. 
 
In order to use SPIFFS you must designate the starting address and size of the area of Flash that you 
want to use as the file system.  In general, it is advisable to choose the starting address so that the last 
byte of Flash used in file system is just before the ESP8266 system parameter area which is always 
located 16KB from the declared end of Flash.  So if you wanted a file system 32KB in size the best place 
to put it is 48KB from the end of Flash.  For a 512KB flash that would be at hexadecimal address 0x80000 
- 0x4000 - 0x8000 = 0x7c000.  Due to the design of the Flash chips used on ESP8266 devices, the file 
system must begin on a 4KB boundary and be an integral multiple of 4KB in size. 
 
It is important that the Flash memory to be used for SPIFFS be properly initialized.  An empty file system 
can be initialized by erasing the Flash memory, doing so sets all bytes to 0xff.  Another useful way to 
initialize the SPIFFS is to load a prepared SPIFFS image.  The ZBasic distribution contains a utility 
named spiffy.exe that can be used to create and populate a SPIFFS image. 
 
The syntax for invoking spiffy is: 
 
spiffy [<options>] 
 
where the available options are as follows. 



ZBasic System Library  ZBasic Microcontrollers 

 
56 

 

Option Description 
-h Display information about invocation options and the exit. 
-d<directory> Specify the directory containing files to add to the SPIFFS image.  The 

default directory is files. 

-f<filename> Specify the name of the SPIFFS image file.  The default image filename is 
spiff_rom.bin. 

-s<size> Specify the size of the SPIFFS image.  The default image size is 16KB. 

 
Once the image is built and you've chosen an address for it, it can be programmed into the Flash chip 
using the esp_tool.exe utility provided with the ZBasic distribution.  The esp_tool utility has a 
substantial feature set including the ability to generate and download application images.  The full 
functionality and invocation options are described in a separate document. 
 
 
 


	Introduction
	ESP8266 Pin Mapping
	ZBasic Compiler Directives
	Downloading ESP8266 Applications to the Device
	Pins Supported for I/O Routines
	Differences in System Library Routines
	System Library Routines Not Available for the ESP8266
	New Subroutines and Functions for the ESP8266
	DeepSleep
	 File.Close
	File.Delete
	File.Error
	File.Mount
	File.Open
	File.Read
	File.Rename
	File.Seek
	File.Size
	File.Write
	Flash.Erase
	Flash.Read
	Flash.Write
	Net.Address
	Net.Close
	Net.Connect
	Net.Disconnect
	Net.GetHostByName
	Net.Listen
	Net.Open
	Net.RemoteHost
	Net.SendData
	Net.SendProgData
	Net.SendStr
	Net.SetCallback
	Net.SetTimeout
	Net.Status
	PinChange.Handler
	PinChange.Mode
	RTC.MemRead
	RTC.MemWrite
	Wifi.Connect
	Wifi.Disconnect
	Wifi.GetConfig
	Wifi.GetHostname
	Wifi.GetIP
	Wifi.GetMode
	Wifi.Scan
	Wifi.SetConfig
	Wifi.SetHostname
	Wifi.SetIP
	Wifi.SetMode
	Wifi.Status
	SPI Flash Allocation
	Using an SPI Flash File System (SPIFFS)

