

Guide to

Converting Programs from PBasic to ZBasic

Version 1.1

 ii

Copyright © 2008 Elba Corp. All rights Reserved.

Publication History

August 2008 – First draft release
September 2008 – First public release
November 2008 – Minor corrections

Disclaimer

Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular
purpose of the information in this document or the techniques described herein. The
reader assumes the entire responsibility for the evaluation of and use of the information
presented. The Company reserves the right to change the information described herein
at any time without notice and does not make any commitment to update the
information contained herein. No license to use proprietary information belonging to the
Company or other parties is expressed or implied.

Trademarks

ZBasic, ZX-24, ZX-24a, ZX-24n, ZX-24p, ZX-40, ZX-40a, ZX-40n, ZX-40p, ZX-44, ZX-44a, ZX-44n, ZX-
44p, ZX-1280, ZX-1280n, ZX-1281 and ZX-1281n are trademarks of Elba Corp. Other brand and product
names are trademarks or registered trademarks of their respective owners.

 iii

Table of Contents

Introduction ... 1
General Issues .. 1
I/O Ports and Pins ... 2
Defining and Using Constants.. 4
Using Numeric Constants .. 5
Defining and Using Variables... 6
Expressions, Operators and Order of Operations... 8
Defining and Using Subroutines... 9
Defining and Using Functions .. 9
PBasic Statements, Commands and Directives.. 11

BRANCH.. 11
BUTTON .. 12
COUNT .. 12
DATA ... 12
DEBUG .. 13
DEBUGIN... 13
DO…LOOP .. 13
DTMFOUT.. 13
END ... 13
FOR…NEXT .. 13
FREQOUT.. 13
GOSUB .. 14
GOTO .. 14
HIGH.. 15
IF…THEN... 15
INPUT .. 15
LOOKDOWN.. 16
LOOKUP .. 16
LOW... 17
NAP ... 17
ON…GOSUB ... 18
ON…GOTO.. 18
OUTPUT .. 18
PAUSE... 18
PULSIN .. 19
PULSOUT .. 19
PWM.. 20
RANDOM ... 20
RCTIME ... 20
READ... 21
RETURN .. 21
REVERSE.. 21
SELECT…CASE .. 22
SERIN.. 22
SEROUT .. 22
SHIFTIN ... 23

 iv

SHIFTOUT ... 23
SLEEP ... 23
STOP ... 24
TOGGLE .. 24
WRITE ... 24
XOUT... 25

PBasic Conversion Example.. 26
Conversion Phase 1 ... 27
Conversion Phase 2 ... 32

PBasic Conversion Helper Code.. 34

 v

This page is intentionally blank.

 1

Guide to
Converting Programs from PBasic to ZBasic

Introduction

The original BASIC programming language was designed in 1964 by John Kemeny and Thomas Kurtz at
Dartmouth College. The name BASIC is commonly believed to be an acronym for Beginner’s All-purpose
Symbolic Instruction Code. The designers’ intent was to create a simple, easy-to-use programming language
suitable for use by non-science students. Since its conception, countless dialects and variations of the BASIC
language have been developed to suit various purposes (see, for example, the Wikipedia entry
http://en.wikipedia.org/wiki/List_of_BASIC_dialects).

The PBasic dialect is quite similar to the original Dartmouth BASIC. New “commands” were introduced to make
it better suited to the Basic Stamp microcontrollers while a few inapplicable elements were omitted. One other
difference is that Dartmouth BASIC supported operations on real numbers (i.e., floating point arithmetic)
whereas PBasic only provides integer operations. PBasic is also similar to the original Dartmouth BASIC in that
it lacks the concept of a callable, parameterized procedure, a much more powerful version of the GOSUB
concept that appeared in later dialects.

In contrast, ZBasic is a BASIC dialect that is quite similar to the widely used Microsoft Visual Basic (VB6)
language although it does not implement the entire VB6 language (e.g. variant types, Double). It also adds
some useful features like Alias and Based types.

This document is intended to serve as a reference for those wanting to translate existing PBasic code for a 24-
pin Basic Stamp (BS2) to the more advanced ZBasic dialect targeting a 24-pin ZX device (e.g. a ZX-24a). It will
also be useful as a learning tool for those who have experience programming in PBasic and now wish to
program in ZBasic. Furthermore, this document will be of benefit to those converting from MBasic and other
BASIC variants that are largely PBasic compatible (e.g. PICAXE, Basic ATOM, CUBLOC, etc.). It is assumed
that the reader has a comprehensive understanding of the PBasic language.

Note, particularly, that the PBasic features that are exclusive to Basic Stamp models other than the BS2 are not
addressed by this document.

If you find that you have questions or issues that are not addressed by this document, please feel free to post
questions on the ZBasic Forum at http://www.zbasic.net/forum or, if you prefer, send email to
support@zbasic.net .

General Issues

ZBasic is inherently a procedural language, meaning that all executable code must be contained with in one or
more named procedures. Every ZBasic program must have a Main() procedure and it is there that execution
begins following power-up or a device reset. Consider the simple PBasic program below and the equivalent
ZBasic program.

PBasic
' {$STAMP BS2}
' output a message
DEBUG "BS2 says hello, world!"
END

ZBasic
Sub Main()
 ' output a message
 Debug.Print "ZX-24a says hello, world!"
End Sub

 2

There are several things worth noting about these two equivalent programs. Firstly, the PBasic compiler
directive that specifies the target device is not required in ZBasic. There is a similar compiler directive in ZBasic
that can be used (see Option TargetDevice) but it is recommended to select the target device in the IDE
by using the “Device Options” dialog available from the Options menu. Secondly, there is no END statement in
ZBasic; the End Sub construction is essentially equivalent in this context. When execution gets to the end of
the Main() procedure, it automatically terminates (although if other tasks exist, they may continue executing).
Thirdly, the indentation used on the two lines in the Main() procedure is not required but is commonly used to
suggest the subordinate status of those lines with respect to the procedure itself. Similar indentation is
commonly used with other control structures like For…Next , Do…Loop, etc. because it assists in more quickly
comprehending the code structure.

ZBasic is also a modular language, meaning that the code for your application may be placed in several
different files, each of which constitutes a module. The advantage of using modular programming is that you
can control which aspects of the module are visible to the code in other modules of your application. Some
variables and procedures in a module may be public (visible to other modules) while other variables and
procedures may be private (not visible to other modules).

Other general similarities and differences between PBasic and ZBasic are listed below.

- In both PBasic and ZBasic, identifier names (labels, variables, constants, etc.) are not case sensitive and

must begin with a letter followed by zero or more letters, digits or underscores. In PBasic, identifiers are
limited to 32 characters while there is no limit, practically speaking, in ZBasic. As with PBasic, there is a set
of reserved words in ZBasic that may not be used as identifiers in your program but the set is different from
that of PBasic. See Appendix A of the ZBasic Reference Manual for the exhaustive list of reserved words.

- In ZBasic, labels must be followed by a colon as is also required in PBasic version 2.5 and later.

- In PBasic, a logical line of code may span multiple physical lines by splitting immediately after a comma. In

ZBasic, the split may occur anywhere whitespace (i.e, a space or a tab) may be used but an underscore
character preceded by at least one space must be present the end of each continued physical line. See
Section 2.8 of the ZBasic Reference Manual for more details.

- In ZBasic, just as in PBasic, you may place multiple statements on one line by separating the statements

with a colon.

One final note about procedures should be made before continuing. A ZBasic procedure is a block of code that
can be invoked from various places in your program, similar in some respects to a PBasic subroutine. It can be
thought of as a “black box” that implements some useful functionality. A procedure may be defined with zero or
more “formal” parameters and each time it is invoked an “actual” parameter must be provided (in most cases)
corresponding to each “formal” parameter. This provides a cleaner, more robust calling mechanism compared
to PBasic where your only choice is to provide any necessary parameters to your subroutines using global
variable values (N.B., all variables are global in PBasic).

Procedures in ZBasic come in two forms: subroutines and functions. The difference between these two forms
will be explained in more detail later but the quick explanation is that a function returns a value directly to the
caller while a subroutine does not. This characteristic allows a function invocation to be used in an expression
in the same way that a variable or constant may be used. In the remainder of this document, we will generally
refer to subroutines and functions collectively as procedures when the comments apply to both forms while
using the words subroutine or function when the comments apply solely to that particular form. By the way, the
Sub in the example above is a keyword indicating the definition of subroutine as opposed to a function.

I/O Ports and Pins

The 24-pin ZX devices like the ZX-24a are pin-compatible with the 24-pin Basic Stamp devices. Both have 16
I/O pins located on pins 5 through 20 although they are organized slightly differently. The 16 I/O pins on the
BS2 are referred to as P0 through P15 and are accessible bit-wise, nibble-wise, byte-wise and word-wise. On
the ZX-24a, the 16 I/O pins are referred to individually as pin 5 through pin 20. Pins 5 through 12 can also be
manipulated as an 8-bit quantity called PortC and pins 13 through 20 can be manipulated as PortA (although it
should be noted that the bit order is reversed on both ports with respect to PBasic). Nibble and word access to
the two ports can be done but there are no language shortcuts provided to do so as there are in PBasic.

 3

As in PBasic, all pins are automatically set to be inputs immediately after power-up and reset. As indicated in
the table below, in PBasic pins are referred to using their logical numbers: 0-15. In ZBasic, you can refer to a
pin either by its physical pin number (5-20) or by its port/bit designation which reflects both the I/O port name
and the bit number in that port, e.g. C.7 .

Basic Stamp vs ZX-24 I/O Pins
BS2

(logical pin)
ZX-24

(physical pin)
 0 5, C.7
 1 6, C.6
 2 7, C.5
 3 8, C.4
 4 9, C.3
 5 10, C.2
 6 11, C.1
 7 12, C.0
 8 13, A.7
 9 14, A.6
10 15, A.5
11 16, A.4
12 17, A.3
13 18, A.2
14 19, A.1
15 20, A.0

One important aspect of the table above that should be noted is that the order of bit significance is reversed
between PBasic and ZBasic. This will only be significant when the I/O ports are read or written en masse.
Individual pins are read and written in a similar manner between PBasic and ZBasic as illustrated by the simple
programs below.

PBasic
' {$STAMP BS2}
' set pin 5 low
LOW 0
END

ZBasic
Sub Main()
 ' set pin 5 low
 PutPin 5, 0
End Sub

In ZBasic, the PutPin “command” combines the functionality of the PBasic commands INPUT, LOW, HIGH and
TOGGLE and includes additional functionality such as configuring the pin’s pull-up resistor (when configuring as
an input) and pulsing the output. The first parameter indicates the pin number while the second parameter is a
“mode” value that indicates the desired action as shown in the table below. Note the pre-defined constants that
correspond to each of the mode values enumerated in the table.

Mode Values for PutPin
Value Built-in Constant Effect

0 zxOutputLow The pin is an output at logic zero.
1 zxOutputHigh The pin is an output at logic one.
2 zxInputTriState The pin is an input with the pull-up resistor disabled.
3 zxInputPullUp The pin is an input with the pull-up resistor enabled.
4 zxOutputToggle Change the logic level of the output.
5 zxOutputPulse Output a pulse.

 4

In the discussion above, PutPin was described as a “command” but in reality it is a built-in subroutine, part of
the ZBasic System Library. In ZBasic, any subroutine may be invoked merely by giving its name and following
that with a comma separated list of parameters, if any. This style is similar to the command style of PBasic but
it is anachronistic. The more modern style is to use the keyword Call before the subroutine name and then to
put parentheses around the parameter list (even if there are no parameters). The ZBasic sample code for
setting a pin low is shown below rewritten in this style and also using the built-in constant for the mode
parameter.

ZBasic
Sub Main()
 ' set pin 5 low
 Call PutPin(5, zxOutputLow)
End Sub

It is strongly suggested that you use defined constants instead of numeric constants for elements like the pin
number in the PutPin() invocation above. Assuming that the constant name is suggestive of how the pin is
being used, doing so makes the code easier to understand. Moreover, if the same pin is used in many places,
using a defined constant makes maintenance and modification of the code much simpler and less error prone
because you need only change the pin number in one place – in the constant definition.

As mentioned earlier, all I/O pins are automatically configured to be inputs (with the pull-up resistor disabled)
immediately after power up and after a reset. When you invoke the PutPin() subroutine, the individual pin
involved will be reconfigured as necessary according to the value of the second parameter, the mode value. I/O
pins may also be reconfigured en masse in both PBasic and ZBasic by writing values to special “registers”. In
PBasic, the I/O pins are configured eight at a time using the special memory locations OUTL, OUTH, DIRL and
DIRH. In ZBasic, the idea is the same but the syntax is slightly different as shown in the table below.

I/O Pin Special Registers
PBasic ZBasic

INL Register.PinC
INH Register.PinA

OUTL Register.PortC
OUTH Register.PortA
DIRL Register.DDRC
DIRH Register.DDRA

For the most part, I/O pin configuration details are the same between PBasic and ZBasic. It should be noted,
however, that the bit order is reversed between the two systems. In PBasic, the least significant bit of OUTL
corresponds to pin 5 while in ZBasic, the most significant bit of Register.PortC corresponds to pin 5.

As in PBasic, when a bit in the data direction register (e.g. DIRL or Register.DDRC) is a zero, the
corresponding pin will be an input and when a data direction register bit is one, the corresponding pin will be an
output. Also like PBasic, when a pin is an output, the corresponding bit in the output register (e.g. OUTL or
Register.PortC) controls the output state, zero or one. However, unlike PBasic, in ZBasic when a pin is
configured as an input the corresponding pin in the output register controls whether that pin’s pull-up resistor is
enabled or not. If the bit is a one the pull-up resistor is enabled, if it is zero the pull-up resistor is disabled. The
latter condition is referred to variously as the “high impedance input” mode, the “high-Z input” mode, or the “tri-
state input” mode.

Defining and Using Constants

There are several benefits of defining and using constants as alluded to in the preceding section. The process
of defining and using a constant is fundamentally the same in PBasic and ZBasic but the details differ slightly.
Consider this PBasic constant definition.

 5

PBasic
' define the pin used to drive the LED
ledPin CON 6

The definition in ZBasic, shown below, contains the same elements but in a different order and using a different
keyword. The ZBasic constant definition has one additional element not present in the PBasic definition – the
type of the constant.

ZBasic
' define the pin used to drive the LED
Const ledPin as Byte = 6

Unlike PBasic, ZBasic is a strongly typed language. This means that the ZBasic compiler does not silently
convert data of one type to another type and does not allow a data item of one type to be assigned to a data
element having a different type. Implicit type conversions are commonly considered undesirable because they
can lead to unexpected problems when the programmer is not even aware that a conversion occurred or what
the technical details of the conversion might be. This is much less of a problem in PBasic because it has only a
few data types; unsigned integral types for the most part. Conversions between different widths of unsigned
integral types are fairly straightforward, using simple rules and leading to few, if any, surprises. In contrast,
ZBasic has a much richer set of data types available including both signed and unsigned integral types, a
Boolean type, a real number type, a true string type, user-defined enumerated types, user-defined composite
types (structures) and other types. Given this wide range of types with differing characteristics, it is preferable to
require all program elements to have a declared type and to require explicit type conversions rather than
allowing the compiler to perform them implicitly. The ZBasic System Library provides a series of functions
useful for converting one data type to another. For example, the CInt() function converts the parameter
provided to an Integer type.

As in PBasic, the value associated with a constant may be specified using a simple value or a more complex
expression involving specific values, other constants and various operators. In ZBasic, you may also use many
ZBasic System Library functions in constant value expressions provided that the parameters to the function, if
any, are also constant.

In ZBasic a constant may be defined at the module level as either public or private (see the examples below). If
it is public, code in other modules will “see” the constant and may use it. If it is private, only the code in the
module where it is defined may use the constant. For constants defined within a procedure, the constant is
visible only to code within that procedure.

ZBasic
Private Const ledPin as Byte = 6
Public Const rowCount as Integer = 7

One last difference between PBasic and ZBasic in defining constants is that the definition of any constant in
ZBasic must precede its first use in the module where it is defined.

Using Numeric Constants

In PBasic, numeric constants may be specified in several different ways: decimal, hexadecimal, binary and
character. The same capability exists in ZBasic using somewhat different methods as shown in the table below.

Specifying Numeric Contants
PBasic ZBasic Description
99 99 decimal
$FE &HFE hexadecimal
%1010 &B1010 binary
"A" Chr("A") character
 "Hello, world!" string
 3.14159 real number, decimal
 6.02E23 real number, scientific notation

 6

Defining and Using Variables

When you define a variable in PBasic, the choice of the variable’s type is limited to the types shown in the
leftmost column of the table below. ZBasic supports those types but also supports other useful types as shown
in the second column of the table.

Available Data Types
PBasic ZBasic Description
BIT Bit 1 bit, unsigned
NIBBLE Nibble 4 bits, unsigned
BYTE Byte 8 bits, unsigned
WORD UnsignedInteger 16 bits, unsigned
 Integer 16 bits, signed
 UnsignedLong 32 bits, unsigned
 Long 32 bits, signed
 Single 32 bits, floating point
 String 0-255 characters

The syntax for defining a variable is slightly different between PBasic and ZBasic as shown in the examples
below.

PBasic
' define a variable for the counter
cnt VAR BYTE

ZBasic
' define a variable for the counter
Dim cnt as Byte

In both PBasic and ZBasic, a variable may be defined as an array, that is, containing multiple elements of the
same type.

PBasic
' define an array for the data values
dataVal VAR BYTE(4)

ZBasic
' define an array for the data values
Dim dataVal(4) as Byte

The PBasic example above defines an array of four byte-size elements that are accessed using the indices 0-3.
The meaning of the ZBasic example is similar but slightly different. ZBasic is much more flexible in that you can
specify both the lower bound and the upper bound of the index range. By default, unless you specify a lower
bound explicitly the lower bound is zero. Consequently, the ZBasic example above defines an array of five byte-
size elements that are accessed using the indices 0-4. To get the same effect as the PBasic example, you need
to specify the upper bound that you want.

ZBasic
' define an array for the data values with four ele ments
Dim dataVal(3) as Byte

Alternately, you may specify both the lower bound and the upper bound:

ZBasic
' define an array for the data values with four ele ments
Dim dataVal(0 to 3) as Byte

In ZBasic, the lower and upper bound values may be specified using constant expressions and the values may
be any valid integral value, even negative values. The only requirement is that the upper bound must be greater

 7

than or equal to the lower bound. Although the default lower bound is zero, it is quite common for ZBasic
programs to written with an explicit lower bound of 1.

ZBasic also supports multi-dimensional arrays; the additional lower/upper bound specifications are added inside
the parentheses with a comma separating each pair.

ZBasic
' define a two-dimension array for the data values
Dim dataVal(1 to 4, 1 to 5) as Byte

One subtle difference when accessing array values is that in PBasic, you may refer to the first element of the
array (i.e. with index 0) by specifying only the array name. In ZBasic, array indices are always required; the
compiler will emit an error message indicating that an array index expression is required if you omit it.

In PBasic, you can define an additional variable that occupies the same space as another variable; this is called
an alias. You can do the same in ZBasic as shown in the examples below.

PBasic
' define two variables that use the same space
cnt VAR Integer
idx VAR cnt.LOBYTE

ZBasic
' define two variables that use the same space
Dim cnt as Integer
Dim idx as Byte Alias cnt

In the alias examples above, the second variable is aligned with the low address of the first variable. In PBasic,
you can define an alias that is aligned anywhere within the host variable using similar syntax as shown in the
example below. In ZBasic, an alias is always aligned with the low byte of the host variable. You can use a
based variable accomplish arbitrary alignment in ZBasic as shown in the example below. The expression
following the Based keyword specifies the address where you want the variable located. The construction
cnt.DataAddress evaluates to the address of the variable cnt . For more information about based variables
see section 3.22 in the ZBasic Reference Manual.

PBasic
' define two variables that use the same space
cnt VAR Integer
idx VAR cnt.HIBYTE

ZBasic
' define two variables that use the same space
Dim cnt as Integer
Dim idx as Byte Based cnt.DataAddress + 1

In ZBasic a variable may be defined at the module level as either public or private (see the examples below). If
it is public, code in other modules will “see” the variable and may access it. If it is private, only the code in the
module where it is defined may use the variable. For variables defined within a procedure, the variable is visible
only to code within that procedure.

ZBasic
Private cnt as Integer
Public idx as byte

One last difference between PBasic and ZBasic in defining variables is that the definition of any variable in
ZBasic must precede its first use in the module where it is defined.

 8

Expressions, Operators and Order of Operations

As noted earlier, the PBasic compiler allows mixing of different operand types in expressions and performs
automatic type conversions. In contrast, since ZBasic is a strongly typed language the ZBasic compiler
generally requires agreement between the types of operands supplied and the type expected by the operator or
function. In most cases, it is a simple matter to insert the appropriate conversion function to ensure type
agreement.

Both PBasic and ZBasic support the same set of basic arithmetic operators that can be used in expressions.
Beyond the basic operators, each supplies a similar set of operators with a few differences here and there. The
table below indicates the available unary operators, i.e. those that take one operand.

Unary Expression Operators
PBasic ZBasic Description
- - Negation
~ Not Logical or bit-wise complement
NCD priority encoder
DCD decoder
ABS Abs absolute value
SQR Sqr square root
HYP hypotenuse
SIN Sin trigonometric sine
COS Cos trigonometric cosine
 Tan trigonometric tangent
 ASin trigonometric inverse sine
 ACos trigonometric inverse cosine
ATN ATan trigonometric inverse tangent

For ZBasic, the “operators” in the table above (other than Not) which are in the form of an identifier (e.g. Abs)
are actually functions that are described in detail in the ZBasic System Library Reference Manual. There are
some differences in the details of these operators between PBasic and ZBasic. For example, in ZBasic, the
Sqr() function only operates on real numbers. You can still use it with integral values but you must first
convert the operand to type Single and then convert the result back to the desired integral type. For example:

ZBasic
' take the square root of a byte value
Dim val as Byte
val = CByte(Sqr(CSng(val)))

Also, the trigonometric functions in ZBasic utilize radian angle measure while in PBasic they utilize “binary
radian” angle measure. Moreover, the ZBasic trigonometric functions accept only type Single parameters and
return type Single results. See the corresponding entries in the ZBasic System Library Reference Manual for
complete details.

The table below indicates the available binary expression operators (i.e. those that require two operands). As
noted earlier, the entries that are in the form of an identifier (other than Mod, And, Or and Xor) are actually
functions that are described in full detail in the ZBasic System Library Reference Manual.

Binary Expression Operators
PBasic ZBasic Description
+ + addition
- - subtraction
* * multiplication
** multiply high
*/ multiply middle
/ \ division, integral
 / division, real number

 9

// Mod modulus
& And logical or bit-wise AND
| Or logical or bit-wise OR
^ Xor logical or bit-wise XOR
<< Shl left shift
>> Shr right shift
MIN Max the largest of two values
MAX Min the smallest of two values
DIG return a specified digit of a value
REV reverse the order of a series of bits
DCD
 & string concatenation

In PBasic, expression evaluation is performed strictly in left to right order unless other ordering is forced by the
use of parentheses. In ZBasic, you may use parentheses to force a particular evaluation order but in their
absence the order of operations is governed by an operator precedence system as described in Section 2.4.1 of
the ZBasic Language Reference Manual.

Defining and Using Subroutines

A subroutine is a collection of statements that can be executed by invoking it from various places in your
program, optionally passing parameter values that may be different on each invocation. The advantage of
creating subroutines is that they can thought of as “black boxes” that perform a specific function. A subroutine
may use its own local variables and constants and may call other subroutines as necessary.

A simple example of a subroutine is given below and other examples can be found in the PBasic Conversion
Helper Code section of this document. A complete discussion of subroutines is presented in Section 2.3.2 of
the ZBasic Language Reference Manual.

ZBasic
'
'' displayValue
'
' Output a message with a name/value pair.
'
Sub displayValue(ByVal name as String, ByVal val as UnsignedInteger)
 Debug.Print "The value of "; name; " is "; val
End Sub

Sub Main()
 Call displayValue("weight", 100)
 Call displayValue("length", 12)
End Sub

Defining and Using Functions

A function in ZBasic is essentially the same as a subroutine except that a function returns a value when it is
invoked. This characteristic allows a function invocation to be used in an expression in place of a variable or
constant value.

A simple example of a function is given below and other examples can be found in the PBasic Conversion
Helper Code section of this document. A complete discussion of functions is presented in Section 2.3.2 of the
ZBasic Language Reference Manual.

 10

ZBasic
'
'' cmToInches
'
' Convert a length in centimeters to the equivalent in inches.
'
Function cmToInches(ByVal cm as Single) as Single
 cmToInches = cm / 2.54
End Function

Sub Main()
 Dim inches as Single
 Dim cm as Single
 cm = 80.5
 inches = cmToInches(cm)
End Sub

 11

PBasic Statements, Commands and Directives

This section deals with issues related to converting the various PBasic statements, commands and directives to
equivalent ZBasic code. Inasmuch as several of the control type statements do not adhere to structured
programming precepts, alternatives are suggested to produce a more structured program.

 BRANCH

This control statement, essentially a computed goto, clearly does not conform to structured programming
guidelines. Fortunately, it is fairly straightforward to implement the control logic of a BRANCH statement using
the Select Case control structure of ZBasic. Consider the simple BRANCH example below and the suggested
replacement.

PBasic
val VAR BYTE
 BRANCH val, lab1, lab2, lab2, lab3
lab1:
 val = 25
 GOTO next
lab2:
 val = 18
 GOTO next
lab3:
 val = 100
next:

ZBasic
Sub Main()
 Dim val as Byte

 Select Case val
 Case 0
 val = 25
 Case 1, 2
 val = 18
 Case 3
 val = 100
 End Select
End Sub

To handle special cases where control falls through from one label to another in the PBasic code, you’ll either
have factor out the common code into a separate procedure, duplicate the code in the multiple cases or add a
label in the destination case and jump to it from the end of fall-through case.

It should be noted that the logic of the Select Case control structure can be equally well implemented using
an If…Then…Else control structure. This is illustrated in the alternate implementation below.

ZBasic
Sub Main()
 Dim val as Byte

 If (val = 0) Then
 val = 25
 ElseIf ((val = 1) Or (val = 2)) Then
 val = 18
 Else (val = 3) Then
 val = 100
 End If
End Sub

 12

 BUTTON

There is no ZBasic System Library routine that directly implements the functionality of the BUTTON command.
However, part of the functionality can be fairly easily implemented. See the Button() function in the PBasic
Conversion Helper Code set.

 COUNT

The functionality of this command can be implemented using the ZBasic System Library function
CountTransitions() . However, there are some differences in the functionality of the COUNT command and
the CountTransitions() function that must be noted.

.
COUNT CountTransitions()
Counts full cycles. Counts logic transitions (two per cycle).
Automatically makes the specified pin an input. The specified pin must be made an input before calling.
The counting period has units of milliseconds. The counting period has units of I/O Timer tick period

(default: 2.441uS) or seconds depending on the
expression type.

PBasic
 myPin CON 0
 countPeriod CON 100
 cnt VAR WORD
 COUNT myPin, countPeriod, cnt

ZBasic
Sub Main()
 Const countPeriod as Single = 100.0E-3
 Const myPin as Byte = 5
 Dim cnt as Long
 Call PutPin(myPin, zxInputTriState)
 cnt = CountTransitions(myPin, countPeriod) \ 2
End Sub

 DATA

There is no direct equivalent of the DATA statement in ZBasic. However, in most cases it should be possible to
implement the same functionality using an initialized Program Memory data item in ZBasic. A simple example
involving Byte data is shown below.

PBasic
myData DATA 100, 200, 52, 45

ZBasic
Dim myData as ByteVectorData({ 100, 200, 52, 45 })

Note that the ZBasic compiler will automatically assign a Program Memory address to the myData data item;
there is no way to control the address directly as there is in PBasic. Also, you cannot mix 8-bit and 16-bit data
items in ZBasic as you can in PBasic. See the discussion of Program Memory Data Items in section 2.10 of the
ZBasic Reference Manual for more information.

 13

 DEBUG

The closest equivalent to the PBasic DEBUG command is the Debug.Print statement in ZBasic. However,
Debug.Print does not have the multitude of data conversion/formatting options available with DEBUG.
Instead, Debug.Print accepts string arguments only. You’ll have to use other ZBasic functions to convert the
data items into strings.

 DEBUGIN

The closest equivalent to the PBasic DEBUGIN command is the Console.Read or Console.ReadLine
statement in ZBasic. However, neither of these support the data conversion options available with DEBUGIN.
You’ll have to use other ZBasic functions to convert the received strings into data values.

 DO…LOOP

The five Do…Loop variants available in PBasic correspond exactly to the five variants available in ZBasic. The
only difference in practice is the statement used to prematurely terminate the loop; in PBasic the EXIT
statement is used while in ZBasic it is Exit Do .

 DTMFOUT

The application note AN-201 “Generating DTMF Using FreqOut” (available at http://www.zbasic.net) contains a
subroutine DTMF() that can be used as a building block to implement the functionality of DTMFOUT.

 END

The PBasic END statement has two effects. Firstly, execution of the main program ceases and secondly, the
device enters a low-power mode. In ZBasic, the first effect is implemented automatically at the end of the
Main() subroutine. If the second effect is needed, it can be obtained using the Sleep() subroutine in the
ZBasic System Library.

 FOR…NEXT

The For…Next control constructs in PBasic and ZBasic are similar. The differences are summarized in the
table below.
.

PBasic ZBasic
A decrementing For loop is created by specifying
a start value larger than the end value.

A decrementing For loop is created by specifying a
negative step value. Generally, the control variable
should be a signed type (i.e. Integer) in this case.

Premature loop termination is effected by the
EXIT statement.

Premature loop termination is effected by the Exit For
statement.

The loop control variable name may not be added
after the NEXT keyword.

The loop control variable name optionally may be added
after the Next keyword.

 FREQOUT

The functionality of this command can be implemented using the ZBasic FreqOut() subroutine. However,
there are some differences in the functionality of the FREQOUT command and the FreqOut() subroutine that
must be noted, shown in the table below.

 14

FREQOUT FreqOut()
Temporarily makes the specified pin an output. The specified pin is configured as an output and left that

way.
The duration parameter has units of milliseconds. The duration paremeter has units of seconds or

milliseconds depending on the data type of the
expression.

The second frequency is optional. Two frequencies must be specified but they may be
identical.

The example code below illustrates how to write equivalent code.

PBasic
 myPin CON 0
 duration CON 500
 freq1 CON 440
 freq2 CON 880
 FREQOUT myPin, duration, freq1, freq2

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Const freq1 as Integer = 440
 Const freq2 as Integer = 880
 Const duration as Single = 500.0E-3
 Call FreqOut(myPin, freq1, freq2, duration)
End Sub

 GOSUB

Although not a direct equivalent, the Call statement in ZBasic is similar in functionality to the GOSUB statement.

PBasic
 GOSUB mySub
 <other code>

mySub:
 <other code>
 RETURN

ZBasic
Sub Main()
 Call mySub()
 <other code>
End Sub

Sub mySub()
 <other code>
End Sub

 GOTO

The GoTo statement in ZBasic is identical to the GOTO statement in PBasic in functionality. It is recommended,
however, that the GoTo statement be used as little as possible, preferably not at all. In most cases, equivalent
logic can be implemented in ZBasic without using a GoTo and in most cases the resulting code is easier to
comprehend.

 15

 HIGH

In ZBasic, an I/O pin is configured using the PutPin() subroutine as illustrated in the example below.

PBasic
 myPin CON 0
 HIGH myPin

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Call PutPin(myPin, zxOutputHigh)
End Sub

 IF…THEN

The syntax of the ZBasic If…Then control construct is nearly identical to the newer style PBasic IF…THEN
supported in V2.5 and later. The only difference is that the ENDIF keyword is used in PBasic to terminate the
construct while the keyword sequence End If is used in ZBasic.

PBasic
myPin CON 0
IF myVar > 10 THEN
 HIGH myPin
ELSE
 LOW myPin
ENDIF

ZBasic
Sub Main()
 Const myPin as Byte = 5
 If (myVar > 10) Then
 Call PutPin(myPin, zxOutputHigh)
 Else
 Call PutPin(myPin, zxOutputHigh)
 End If
End Sub

The single line form of IF…THEN is not supported by ZBasic. Such constructs in existing code will need to be
changed to the multi-line form.

 INPUT

The functionality of this command can be realized in ZBasic using the PutPin() subroutine as illustrated in the
example below. Note that you also have the option in ZBasic of enabling the internal pull-up resistor for the pin.

PBasic
 myPin CON 0
 INPUT myPin

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Call PutPin(myPin zxInputTriState)
End Sub

 16

 LOOKDOWN

The LOOKDOWN statement has no direct equivalent in ZBasic. However, the same logic can be implemented
using a Select Case or If…Then control construct as illustrated in the example below.

PBasic
val VAR BYTE
idx VAR BYTE
val = 17
idx = 255
LOOKDOWN val, >[26, 177, 13], idx
DEBUG "item ", DEC idx

ZBasic
Sub Main()
 Dim val as Byte
 Dim idx as Byte
 val = 17
 idx = 255
 If (val > 26) Then
 idx = 0
 ElseIf (val > 177) Then
 idx = 1
 ElseIf (val > 13) Then
 idx = 2
 End If
 Debug.Print "item "; idx
End Sub

If the values are constant, an alternate implementation strategy is to use an initialized Program Memory data
item and loop through the values.

ZBasic
Sub Main()
 Dim val as Byte
 Dim idx as Byte
 val = 17
 idx = 255
 Dim valList as ByteVectorData({ 26, 177, 13 })
 Dim i as Integer
 For i = 1 to Ubound(valList)
 If (val > valList(i)) Then
 idx = LoByte(i) - 1
 Exit For
 End If
 Next i
 Debug.Print "item "; idx
End Sub

 LOOKUP

The LOOKUP statement has no direct equivalent in ZBasic. However, the same logic can be implemented using
the Select Case or If…Then control construct as illustrated in the example below.

PBasic
val VAR BYTE
idx VAR BYTE
val = 255
idx = 1
LOOKUP idx, [26, 177, 13], val

 17

DEBUG "item ", DEC idx, " is ", DEC val

ZBasic
Sub Main()
 Dim val as Byte
 Dim idx as Byte
 val = 255
 idx = 1
 Select Case idx
 Case 0
 val = 26
 Case 1
 val = 177
 Case 2
 val = 13
 End Select
 Debug.Print "item "; idx; " is "; val
End Sub

If the values are constant, an alternate implementation strategy is to use an initialized Program Memory data
item and access the corresponding value by index.

ZBasic
Sub Main()
 Dim val as Byte
 Dim idx as Byte
 Val = 255
 idx = 1
 Dim valList as ByteVectorData({ 26, 177, 13 })
 If (idx < CByte(Ubound(valList))) Then
 val = valList(idx + 1)
 End If
 Debug.Print "item "; idx; " is "; val
End Sub

 LOW

The functionality of this command can be realized in ZBasic using the PutPin() subroutine as illustrated in the
example below.

PBasic
 myPin CON 0
 LOW myPin

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Call PutPin(myPin, zxOutputLow)
End Sub

 NAP

There is no direct equivalent of this command in ZBasic. The functionality can be approximated using the
Nap() subroutine in the PBasic Conversion Helper Code set.

PBasic
 NAP 3

ZBasic
Sub Main()

 18

 Call Nap(3)
End Sub

 ON…GOSUB

This control structure, introduced in PBasic v2.5, is nearly identical to the BRANCH statement, the difference
being that the code at the destination labels is expected to RETURN and execution will continue with the line
immediately following the ON…GOSUB. See the discussion of the BRANCH statement for conversion suggestions.

 ON…GOTO

This control structure, introduced in PBasic v2.5, is identical in functionality to the BRANCH statement. See the
discussion there for conversion suggestions.

 OUTPUT

The functionality of this command can be realized in ZBasic by manipulating the data direction register directly
as illustrated in the example below. Generally, however, it is simpler to just use PutPin() to also set the
output state at the same time.

PBasic
 myPin CON 0
 OUTPUT myPin

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Call SetBits(Register.DDR(myPin), PortMask(myPin) , &Hff)
End Sub

 PAUSE

The corresponding functionality for PAUSE can be implemented using the ZBasic System Library subroutine
Sleep() but the parameter value must be converted to seconds as shown below.

PBasic
 pauseTimeMS CON 55
 PAUSE pauseTimeMS

ZBasic
Sub Main()
 Const pauseTimeMS as UnsignedInteger = 55
 Call Sleep(CSng(pauseTimeMS) / 1000.0)
End Sub

Note that in the example above, the compiler will convert the parameter to Sleep() to the approximately
equivalent number of RTC ticks which occur every 1.95mS. If the pause time is not constant, the compiler will
generate code to perform the conversion to RTC ticks at run-time.

If more precise pauses are required, consider using the ZBasic System Library subroutine PulseOut() as
illustrated below.

ZBasic
Sub Main()
 Const pauseTimeMS as UnsignedInteger = 55
 Call PulseOut(0, CSng(pauseTimeMS) / 1000.0, 0)
End Sub

 19

 PULSIN

The functionality for PULSIN can be approximated using the ZBasic System Library subroutine PulseIn() as
shown below. Note that the maximum pulse width for the ZBasic equivalent as written is about 35.5mS.
However, the time base can be adjusted to yield longer maximum pulse widths. See the description of
PulseIn() for more details.

PBasic
 myPin CON 0
 pulseWidth VAR WORD
 PULSIN myPin, 1, pulseWidth

ZBasic
Sub Main()
 Const pwUnits as Single = 1.085E-6
 Const myPin as Byte = 5
 Dim pulseWidth as UnsignedInteger
 Dim pw as Single
 Call PulseIn(myPin, 1, pw)
 pulseWidth = CUInt(pw / pwUnits / 2.0)
End Sub

An alternate implementation uses the function form of PulseIn() which returns an Integer value.

ZBasic
Sub Main()
 Const pwUnits as Single = 1.085E-6
 Const myPin as Byte = 5
 Dim pulseWidth as UnsignedInteger
 pulseWidth = CUInt(CSng(PulseIn(myPin, 1)) / pwUn its / 2.0)
End Sub

 PULSOUT

The functionality for PULSOUT can be approximated using the ZBasic System Library subroutine PulseOut()
but the parameter value must be converted to seconds as shown below. Note, also, that a third parameter must
be provided – the desired pulse active state. In some cases, using PutPin() with a second parameter of
zxOutputPulse may be appropriate but the pulse width in that case will be approximately 500nS.

PBasic
 myPin CON 0
 pulsePeriod CON 5
 LOW myPin
 PULSOUT myPin, pulsePeriod

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Const pulsePeriod as UnsignedInteger = 5
 Call PutPin(myPin, zxOutputLow)
 Call PulseOut(myPin, CSng(pulsePeriod) * 2.0 / 1. 0E6, 1)
End Sub

 20

 PWM

The functionality of PWM can be approximated using the ZBasic System Library subroutine PutDAC() as shown
below. Note that a PWM cycle in ZBasic lasts about 200uS compared to approximately 1mS in PBasic. This
limits the effective range of the ‘cycles’ parameter to 1/5 of that in PBasic. Note also, that depending on the
requirements of the application it may be a better solution to use the true PWM routines in the ZBasic System
Library.

PBasic
 myPin CON 0
 duty CON 128
 cycles CON 10
 PWM myPin, duty, cycles

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Const duty as Byte = 128
 Const cycles as Byte = 10
 Dim dacAcc as Byte
 Call PutDAC(myPin, duty, dacAcc, cycles * 5)
End Sub

 RANDOM

There is no direct replacement for the PBasic RANDOM statement in ZBasic. The effect can be approximated as
shown below.

PBasic
 rndVal VAR WORD
 RANDOM rndVal

ZBasic
Sub Main()
 Dim rndVal as UnsignedInteger
 rndVal = CUInt(Rnd() * 65535.0)
End Sub

 RCTIME

The functionality for RCTIME can be approximated using the ZBasic System Library subroutine RCTime() as
shown below. The application note AN-202 “Using RCTime to Measure Charging Time” (available at
http://www.zbasic.net) gives more information about using the RCTime() function. One difference is that the
units for the returned value in PBasic are 2uS while in ZBasic the units are 1.085uS.

PBasic
 myPin CON 0
 chargeTime VAR WORD
 HIGH myPin
 PAUSE 1
 RCTIME myPin, 1, chargeTime

ZBasic
Sub Main()
 Const rcTimeUnits as Single = 1.085E-6
 Const myPin as Byte = 5
 Dim chargeTime as UnsignedInteger
 Dim ct as Single

 21

 Call PutPin(myPin, 1)
 Call Sleep(1)
 Call RCTime(myPin, 1, ct)
 chargeTime = CUInt(ct / rcTimeUnits / 2.0)
End Sub

An alternate implementation uses the function form of RCTime() which returns an Integer value.

ZBasic
Sub Main()
 Const rcTimeUnits as Single = 1.085E-6
 Const myPin as Byte = 5
 Dim chargeTime as UnsignedInteger
 Call PutPin(myPin, 1)
 Call Sleep(1)
 chargeTime = CUInt(CSng(RCTime(myPin, 1)) / rcTim eUnits / 2.0)
End Sub

 READ

The functionality of the PBasic READ command can be implemented using the ZBasic System Library subroutine
GetProgMem() . It should be noted, however, that reading from or writing to arbitrary locations in Program
Memory is not advised. In most cases, using initialized Program Memory data items and the normal accessing
mechanism for them will serve your purposes. See the discussion of Program Memory Data Items in section
2.10 of the ZBasic Reference Manual for more information.

PBasic
 val VAR BYTE
 READ 0, val ' read 1 byte from Program Memory l ocation 0

ZBasic
Sub Main()
 Dim val as Byte
 Call GetProgMem(0, val, 1) ' read 1 byte from Pr ogram Memory location 0
End Sub

 RETURN

The PBasic RETURN command has no direct equivalent in ZBasic; it is not needed. A return from a procedure
is implied by the end of the procedure definition, and Exit Sub statement or an Exit Function statement.

 REVERSE

The functionality of this command can be realized in ZBasic by manipulating the data direction register directly
as illustrated in the example below. Generally, however, it is simpler to just use PutPin() to set the pin
configuration.

PBasic
 myPin CON 0
 REVERSE myPin

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Call SetBits(Register.DDR(myPin), PortMask(myPin) , Not Register.DDR(myPin))
End Sub

 22

 SELECT…CASE

The syntax of the ZBasic Select Case control construct is nearly identical to that of PBasic (supported in V2.5
and later). The differences are summarized in the table below.

PBasic ZBasic
The construct begins with Select <expr> . The construct begins with Select Case <expr> .
A conditional case value is expressed using just a
conditional operator and an expression value.

A conditional case value is expressed using the
keyword Is, a conditional operator and an expression
value.

The construct ends with ENDSELECT. The construct ends with End Select .

PBasic
myPin Con 0
myVar VAR WORD
SELECT myVar
CASE 0
 HIGH myPin
CASE 1 TO 9
 myVar = 100
CASE < 100
 LOW myPin
ENDSELECT

ZBasic
Dim myVar as Byte
Sub Main()
 Const myPin as Byte = 5
 Select Case myVar
 Case 0
 Call PutPin(myPin, zxOutputHigh)
 Case 1 to 9
 myVar = 100
 Case Is < 100
 Call PutPin(myPin, zxOutputLow)
 End Select
End Sub

 SERIN

There is no direct equivalent for the PBasic SERIN command in ZBasic. In ZBasic, all serial communication is
interrupt driven using queues to hold received data so that no input is lost (as long as the queue is not allowed
to fill up). In contrast, data that arrives on the input pin in PBasic while the program is busy with other things is
completely missed.

See the description of the ZBasic System Library routines OpenQueue() , DefineCom() , and OpenCom() for
more information.

 SEROUT

There is no direct equivalent for the PBasic SEROUT command in ZBasic. In ZBasic, all serial communication is
interrupt driven using queues to hold received data to be transmitted so that the program doesn’t have to wait
during transmission.

See the description of the ZBasic System Library routines OpenQueue() , DefineCom() , and OpenCom() for
more information.

 23

 SHIFTIN

The functionality of the PBasic SHIFTIN command can be realized using the ZBasic System Library function
ShiftInEx() as shown below.

PBasic
 dPin CON 0
 cPin CON 1
 val VAR WORD
 SHIFTIN dPin, cPin, MSBPRE, [val\8]

ZBasic
Sub Main()
 Const dPin as Byte = 5
 Const cPin as Byte = 6
 Dim val as UnsignedInteger
 val = ShiftInEx(dPin, cPin, 8, &H02)
End Sub

Note that the shift clock frequency for the BS2 is approximately 16.7KHz while the default shift clock frequency
for the ZX-24a is about 400KHz. If that clock speed is too fast, a fifth parameter may be added to the call to
specify the desired bit time. See the discussion of ShiftInEx() in the ZBasic System Library Reference
Manual.

 SHIFTOUT

The functionality of the PBasic SHIFTOUT command can be realized using the ZBasic System Library
subroutine ShiftOutEx() as shown below.

PBasic
 dPin CON 0
 cPin CON 1
 mode CON 0
 val VAR WORD
 val = $55
 SHIFTOUT dPin, cPin, MSBPRE, [val\8]

ZBasic
Sub Main()
 Const dPin as Byte = 5
 Const cPin as Byte = 6
 Dim val as UnsignedInteger
 val = &H55
 Call ShiftOutEx(dPin, cPin, 8, val, &H02)
End Sub

Note that the shift clock frequency for the BS2 is approximately 16.7KHz while the default shift clock frequency
for the ZX-24a is about 400KHz. If that clock speed is too fast, a sixth parameter may be added to the call to
specify the desired bit time. See the discussion of ShiftInEx() in the ZBasic System Library Reference
Manual.

 SLEEP

There is no direct equivalent for the PBasic SLEEP command in ZBasic. The example code below illustrates
how a similar effect can be achieved although the low power consumption aspect of the SLEEP command is not
replicated.

 24

PBasic
 sleepSec CON 5
 SLEEP sleepSec

ZBasic
Sub Main()
 Const sleepSec as UnsignedInteger
 Call Sleep(CSng(sleepSec))
End Sub

 STOP

There is no direct equivalent for the PBasic STOP command in ZBasic. The example code below illustrates how
a similar effect can be achieved.

PBasic
STOP

ZBasic
Sub Main()
 Do
 Loop
End Sub

 TOGGLE

The functionality of this command can be realized in ZBasic using the PutPin() subroutine as illustrated in the
example below.

PBasic
 myPin CON 0
 TOGGLE myPin

ZBasic
Sub Main()
 Const myPin as Byte = 5
 Call PutPin(myPin, zxOutputToggle)
End Sub

 WRITE

The functionality of the PBasic WRITE command can be implemented using the ZBasic System Library
subroutine PutProgMem() . It should be noted, however, that reading from or writing to arbitrary locations in
Program Memory is ill advised. In most cases, using initialized Program Memory data items and the normal
accessing mechanism for them will serve your purposes. See the discussion of Program Memory Data Items in
section 2.10 of the ZBasic Reference Manual for more information.

PBasic
 val VAR BYTE
 val = $55
 WRITE 100, val ' write 1 byte to Program Memory location 100

ZBasic
Sub Main()
 Dim val as Byte
 Val = &H55
 Call PutProgMem(100, val, 1) ' write 1 byte to P rogram Memory location 100
End Sub

 25

 XOUT

The ZBasic System Library subroutine X10() can be used to implements the functionality of this command.

PBasic
 mpin CON 0
 zpin CON 1
 house CON 0
 unit1 CON 0
 onCmd CON $12
 rptCnt CON 3
 XOUT mpin, zpin,[house\unit1,house\onCmd]

ZBasic
Sub Main()
 Const mpin as Byte = 5
 Const zpin as Byte = 6
 Const house as Byte = 0
 Const unit1 as Byte = 0
 Const onCmd as Byte = &H12
 Call X10Cmd(mpin, zpin, house, unit1, 2)
 Call Delay(0.050)
 Call X10Cmd(mpin, zpin, house, onCmd, 2)
End Sub

 26

PBasic Conversion Example

To illustrate some conversion techniques, we will convert some PBasic code for the Sensirion
Humitity/Temperature sensors, e.g. the SHT71. The PBasic code used in this example is available on Tracy
Allen’s site at http://www.emesystems.com/OL2sht1x.htm. The PBasic code is reproduced below minus the
comment block at the beginning and with some section delineation comment markers added to aid in the
discussion. The datasheet for the SHT71 will be helpful for some aspects of the conversion. It is available at
http://www.sensirion.com/en/pdf/product_information/Datasheet-humidity-sensor-SHT7x.pdf.

It will be useful to have at hand the documentation for both PBasic and ZBasic to aid in understanding the
conversion process.

PBasic
'--------------- Section 1 -----------------------
sck PIN 1
dta PIN 0
dtain var in0

shtTR CON 3 ' read temperature
shtRH CON 5 ' read humidity
shtSW CON 6 ' status register write
shtSR CON 7 ' status register read
shtS0 CON 30 ' restore status register defaults

cmd VAR Byte
result VAR Word ' raw result from sht, also used as counter
r0 VAR result.byte0
r1 VAR result.byte1
degC VAR Word ' degrees Celsius * 100
RH VAR Word ' %RH * 10
RHtc VAR Word ' for temperature compensation of RH

'--------------- Section 2 -----------------------
initialize:
 outs=0
 dirs=%1111111111111101
 GOSUB shtrst ' reset communication with sht

DO
 getTemperature:
 cmd=shtTR ' temperature command to sht
 GOSUB shtget16
 degC=result+5/10-400 ' from 100ths to 10ths of a d egree with rounding
 DEBUG tab,REP "-"\degC.bit15,DEC ABS degC/10,".",D EC1 ABS degC
 getHumidity:
 cmd=shtRH ' humidity command to sht
 GOSUB shtget16
 RH=(26542-(54722**result+result))**result-40
 ' temperature compensation follows:
 RHtc=655+(result*5)+(result**15917) ' intermediate factor
 RHtc=(RHtc**(degC+2480))-(RHtc**2730)+RH ' compens ated value
 DEBUG tab, DEC result,tab,"%RH=",DEC RH/10,".",DEC 1 RH
 DEBUG tab,"%RHtc=",DEC RHtc/10,".",DEC1 RHtc,cr
 PAUSE 1000
LOOP

'--------------- Section 3 -----------------------
' initializes communication with sht
shtRst:
 SHIFTOUT dta,sck,lsbFirst,[$ffff\16]
RETURN

 27

'--------------- Section 4 -----------------------
' get 16 bits of data, enter with command in "cmd"
shtget16:
 gosub shtcmd ' send the command "cmd"
 gosub shtwait ' wait for command to finish
 shiftin dta,sck,msbpre,[r1] ' msbyte
 low dta ' acknowledge
 pulsout sck,10
 input dta
 shiftin dta,sck,msbpre,[r0] ' lsbyte
 input dta ' terminate communication
 pulsout sck,10
return

'--------------- Section 5 -----------------------
' send start sequence and command
shtcmd:
shtStart: ' send the start sequence
 ' dta: ~~~~~|_____|~~~~~~
 ' sck: ___|~~~|_|~~~~|____
 ' while dta is low, clock goes low and then high
 input dta ' pullup high
 high sck
 low dta
 low sck
 high sck
 input dta
 low sck
shtcmd1: ' send the command
 shiftout dta,sck,msbfirst,[cmd]
 input dta ' allow acknowledge
 pulsout sck,10
return

'--------------- Section 6 -----------------------
shtWait:
 ' wait for sht to pull data pin low
 ' or for time out
 result=4096
 DO
 result=result-1
 LOOP WHILE dta & result.bit11
 RETURN

When attempting to translate code from one language to another, there are two general strategies to use. The
first is to try a direct, line-by-line translation, more or less a “brute force” translation. This will generally achieve
the desired objective but the result may be rather inelegant. The second strategy is to implement the essence
of the code’s function but using the best capabilities of the target language. This will usually result in a more
aesthetically pleasing result but it requires more effort.

To illustrate both strategies, we will first create a direct translation and then modify it to better utilize the features
and capabilities of ZBasic. Following below, each of the delineated sections of the PBasic code are presented
with the original PBasic commented out and the ZBasic translation interspersed.

 Conversion Phase 1

ZBasic
'--------------- Section 1 -----------------------
'sck PIN 1
Const sck as Byte = 6
'dta PIN 0

 28

Const dta as Byte = 5
'dtain var in0
'shtTR CON 3 ' read temperature
Const shtTR as Byte = 3
'shtRH CON 5 ' read humidity
Const shtRH as Byte = 5
'shtSW CON 6 ' status register write
Const shtSW as Byte = 6
'shtSR CON 7 ' status register read
Const shtSR as Byte = 7
'shtS0 CON 30 ' restore status register defaults
Const shtS0 as Byte = 30
'cmd VAR Byte
Dim cmd as Byte
'result VAR Word ' raw result from sht, also used a s counter
Dim result as UnsignedInteger
'r0 VAR result.byte0
Dim r0 as Byte Based result.DataAddress + 0
'r1 VAR result.byte1
Dim r1 as Byte Based result.DataAddress + 1
'degC VAR Word ' degrees Celsius * 100
Dim degC as UnsignedInteger
'RH VAR Word ' %RH * 10
Dim RH as UnsignedInteger
'RHtc VAR Word ' for temperature compensation of RH
Dim RHtc as UnsignedInteger

This section was fairly straightforward to translate directly. Note that the dtain variable was not translated at
all. This is because there is no direct translation available and the identifier isn’t used anywhere in the code
anyway. Note the way that r0 and r1 were defined using a based variable. This technique relies on the fact
that in both PBasic and ZBasic, multi-byte data values are stored in “little endian” form, i.e. the less significant
bytes are stored in lower addresses.

We will skip section 2, the initialization and main loop, for now because it is more complicated and, moreover,
some of the aspects of the translation of the remainder of the code may affect what needs to be done.

ZBasic
'--------------- Section 3 -----------------------
'' initializes communication with sht
Sub shtRst()
'shtRst:
' SHIFTOUT dta,sck,lsbFirst,[$ffff\16]
 Call ShiftOutEx(dta, sck, 16, &Hffff, &H01)
'RETURN
End Sub

This was a simple translation as well. The only issue was to select the correct mode value for ShiftOutEx()
to correspond to lsbFirst in PBasic. In reality, the bit order wouldn’t matter at all in this particular case
because the value being sent out is all 1s. One other item that needs attention is to determine if the default
clock speed for ShiftOutEx() is appropriate for the SHT71. According to the datasheet for the SHT71, it can
tolerate a clock speed of more than 1MHz. Since the default clock speed for ShiftOutEx() is less than
500KHz (2.2uS period) the speed control capability of ShiftOutEx() needn’t be used. The SHT71 datasheet
also indicates that the minimum high time for the clock signal is 100nS. With ShiftOutEx() the high time can
be as little as 400nS with no speed control so that, too, is compatible.

Note that this simple subroutine was easy to encapsulate in a Sub…End Sub definition. You may encounter
PBasic code where a subroutine has multiple entry points. In such cases, you’ll probably have to split the code
into several subroutines, factoring out the common code into a subordinate subroutine.

 29

ZBasic
'--------------- Section 4 -----------------------
'' get 16 bits of data, enter with command in "cmd"
Sub shtGet16()
'shtget16:
' gosub shtcmd ' send the command "cmd"
 Call shtCmd()
' gosub shtwait ' wait for command to finish
 Call shtWait()
' shiftin dta,sck,msbpre,[r1] ' msbyte
 r1 = HiByte(ShiftInEx(dta, sck, 8, &H02))
' low dta ' acknowledge
 Call PutPin(dta, zxOutputLow)
' pulsout sck,10
 Call PutPin(sck, zxOutputPulse)
' input dta
' shiftin dta,sck,msbpre,[r0] ' lsbyte
 r0 = HiByte(ShiftInEx(dta, sck, 8, &H02))
' input dta ' terminate communication
' pulsout sck,10
 Call PutPin(sck, zxOutputPulse)
'return
End Sub

Here again the translation is straightforward. Note that ShiftInEx() has to be used instead of ShiftIn()
because the latter has a default mode equivalent to MSBPost. Using ShiftInEx() is slightly more
complicated because when shifting in 8 bits in MSB order, the received data ends up in the most significant
byte. It is a fairly simple matter, however, to use HiByte() to obtain the 8 bits of received data. Note the
translation for PULSOUT. Since the units for PULSOUT parameter is 2uS, the desired pulse width is 20uS. Since
we know from the datasheet that the minimum pulse width for the clock is 100nS, the 500nS pulse generated by
PutPin() will work quite well. Lastly, note that the two input dta commands were not translated. Since
ShiftInEx() forces the data pin to be an input and leaves it that way, no additional instructions are required
to achieve the same result. One thing to note for the second phase of the translation is that this code is a good
candidate for conversion to a function since it entire purpose is to read a 16-bit value from the SHT71.

ZBasic
'--------------- Section 5 -----------------------
'' send start sequence and command
Sub shtCmd()
'shtcmd:
'shtStart: ' send the start sequence
' ' dta: ~~~~~|_____|~~~~~~
' ' sck: ___|~~~|_|~~~~|____
' ' while dta is low, clock goes low and then high
' input dta ' pullup high
 Call PutPin(dta, zxInputTriState)
' high sck
 Call PutPin(sck, zxOutputHigh)
' low dta
 Call PutPin(dta, zxOutputLow)
' low sck
' high sck
 Call PutPin(sck, zxOutputPulse)
' input dta
 Call PutPin(dta, zxInputTriState)
' low sck
 Call PutPin(sck, zxOutputLow)
'shtcmd1: ' send the command
' shiftout dta,sck,msbfirst,[cmd]
 Call ShiftOut(dta, sck, 8, cmd)
' input dta ' allow acknowledge

 30

 Call PutPin(dta, zxInputTriState)
' pulsout sck,10
 Call PutPin(sck, zxOutputPulse)
'return
End Sub

This section was similarly easy to translate. Note that the sequence for pulsing the clock pin (low sck , high
sck) was translated using the output pulse capability of PutPin() . This substitution may go a bit beyond the
description of a direct translation but it is an obvious substitution whose effects are very localized. One thing to
note here for the second round of translation is that the cmd data element is a good candidate for being passed
as a parameter.

ZBasic
'--------------- Section 6 -----------------------
Sub shtWait()
'shtWait:
' ' wait for sht to pull data pin low
' ' or for time out
' result=4096
' DO
' result=result-1
' LOOP WHILE dta & result.bit11
 Dim loopCount as Integer = 50
 Call PutPin(dta, zxInputTriState)
 Do
 loopCount = loopCount - 1
 Call Sleep(10e-3)
 Loop While (GetPin(dta) = 1) And (loopCount > 0)
' RETURN
End Sub

The translation of this section was a bit more challenging. Examination of the original PBasic code and
comments reveals that the result variable is being used as a counter to implement a crude timeout function
that clearly depends on the execution timing of the BS2. (The somewhat arcane coding of the loop results in a
maximum iteration count of 2048; starting at 4096 and exiting at 2047 at the least). Since we don’t have any
information available to determine what the timeout value is, we must consult the datasheet to see what the
device requires.

The datasheet indicates that the delay for its internal command execution can be as much as 210mS +/- 15%
giving an upper limit of about 242mS. With this data in hand, we conclude that an appropriate timeout can be
implemented using a 10mS Sleep() call in a loop with a maximum loop count of 50 yielding a timeout of
500mS. This translation also eliminates the secondary use of the result variable which will probably be
helpful in the second stage of the translation.

Note, too, the translation of the sampling of the dta input. Since dta is defined as a PIN in PBasic, the PBasic
compiler generates code to make the pin an input and read its state each time the dta “variable” is read. The
corresponding ZBasic code makes the pin an input and separately reads the state using GetPin() .

ZBasic
'--------------- Section 2 -----------------------
Sub Main()
'initialize:
' outs=0
' dirs=%1111111111111101
 Call PutPin(sck, zxOutputLow)
 Call PutPin(dta, zxInputTriState)
' GOSUB shtrst ' reset communication with sht
 Call shtRst()
'DO

 31

 Do
' getTemperature:
' cmd=shtTR ' temperature command to sht
' GOSUB shtget16
 cmd = shtTR
 Call shtGet16()
' degC=result+5/10-400 ' from 100ths to 10ths of a degree with rounding
 degC = (result + 5) \ 10 - 400
' DEBUG tab,REP "-"\degC.bit15,DEC ABS degC/10,".", DEC1 ABS degC
 Debug.Print " ";
 Dim temp as Integer
 temp = CInt(degC)
 If (temp < 0) Then
 Debug.Print "-";
 End If
 Debug.Print Fmt(CSng(Abs(temp)) / 10.0, 1);
' getHumidity:
' cmd=shtRH ' humidity command to sht
' GOSUB shtget16
 cmd = shtRH
 Call shtGet16()
' RH=(26542-(54722**result+result))**result-40
 RH = MulHigh(26542 - (MulHigh(54722, result) + result), result) - 40
' ' temperature compensation follows:
' RHtc=655+(result*5)+(result**15917) ' intermediat e factor
 RHtc = 655 + (result * 5) + MulHigh(result, 15917)
' RHtc=(RHtc**(degC+2480))-(RHtc**2730)+RH ' compen sated value
 RHtc = MulHigh(RHtc, degC + 2480) - MulHigh (RHtc, 2730) + RH
' DEBUG tab, DEC result,tab,"%RH=",DEC RH/10,".",DE C1 RH
 Debug.Print " "; result; " %RH="; Fmt(CSn g(RH) / 10.0, 1);
' DEBUG tab,"%RHtc=",DEC RHtc/10,".",DEC1 RHtc,cr
 Debug.Print " RHtc="; Fmt(CSng(RHtc) / 10. 0, 1)
' PAUSE 1000
 Call Sleep(1.0)
'LOOP
 Loop
End Sub

Now that all of the subordinate routines have been translated, it’s time to proceed with the main line code. The
first few lines perform configuration of the I/O lines using in a manner that cannot be translated directly. Instead,
we use individual calls to PutPin() to configure the pins as they are required to be.

As for the main loop, the translation here gets a bit more complicated. After the shtGet16() is called to read
the temperature value, the result is converted to degrees Centigrade. Note that parentheses must be
introduced in the ZBasic code to achieve the same order of operations expressed by the PBasic code (which, to
review, evaluates strictly left-to-right in the absence of parentheses). The next task is to translate the DEBUG
command that displays the resulting temperature. The command is fairly complicated and there is no direct
translation so we proceed by separately translating each “segment” of the DEBUG command to the equivalent
Debug.Print statement. Note that the trailing semicolon on a Debug.Print statement results in no end-of-
line character being output thus achieving the concatenation effect.

For the tab , we elect to simply output two spaces. The next segment of the DEBUG command outputs a hyphen
if bit 15 of the converted temperature value is asserted, i.e. it is a negative value. Although we could simply test
bit 15 for this purpose, we also need to take the absolute value in the next segment. Since the degC variable is
unsigned, and in ZBasic taking the absolute value of an unsigned variable does nothing, we introduce an
intermediate signed variable temp to help out. Once the conversion from unsigned to signed is done, the rest is
fairly simple. Note that the degC variable actually represents tenths of a degree Celsius; that’s why the division
by 10.0 is performed in the formatting process.

Next, after the relative humidity value is retrieved from the SHT71, comes the complicated process of converting
it to percent relative humidity and computing the temperature corrected relative humidity. The author of the

 32

PBasic code, Tracy Allen, is a recognized expert at making the Basic Stamp perform amazing math tricks that
most people would believe would require floating point math. As a first pass, we simply translate the code
directly, using the PBasic Conversion Helper Routine MulHigh() to perform the ** operation (see the next
section of this document). This must be done carefully, observing PBasic’s left-to-right evaluation order, but it is
otherwise straightforward. In the second phase of the translation, we will eliminate all of the complicated
integral math tricks and just implement the conversion equations from the SHT71 datasheet with floating point
math.

 Conversion Phase 2

Although Phase 1 of the conversion produced code that executes perfectly well, we will proceed to improve the
code using additional features and capabilities of the ZBasic language alluded to in the discussion above. The
original, commented-out, PBasic code has been removed to reduce the clutter.

'-- -------------
' This ZBasic code is written to interface to the S ensirion
' Humidity/Temperature sensor devices like the SHT7 1. It is
' based on code originally written by Tracy Allen f or the
' Basic Stamp but it is much simpler due to the mor e advanced
' capabilities of ZBasic.
'-- -------------

' define the pins to connect to the SHT71
Const sck as Byte = 6 ' clock pin
Const dta as Byte = 5 ' bi-directional data pin

' define the SHT71 commands
Const shtTR as Byte = 3
Const shtRH as Byte = 5

'-- -------------
Sub Main ()
 ' initialize the clock and data pins, reset the dev ice
 Call PutPin (sck , zxOutputLow)
 Call PutPin (dta , zxInputTriState)
 Call shtRst ()

 ' main loop for acquiring and displaying data value s
 Do
 Dim degC as Single, RH as Single, RHtc as Single

 ' read the temperature value, convert to degrees Ce lsius
 degC = CSng (shtGet16 (shtTR)) / 100.0 - 40.0

 ' display the temperature to one decimal place
 Debug.Print " " ; Fmt (degC, 1);

 ' read the humidity value, convert to relative humi dity
 ' using a factored form of the equation from the da tasheet
 Dim rawRH as UnsignedInteger
 rawRH = shtGet16 (shtRH)
 RH = CSng (rawRH)
 RH = RH * (0.0405 + (-2.8E -6 * RH)) - 4.0

 ' compute the temperature-compensated relative humi dity
 ' using the equation from the datasheet
 RHtc = (degC - 25.0) * (0.01 + 0.00008 * CSng (rawRH)) + RH

 ' display the values to one decimal place
 Debug.Print " " ; rawRH ; " %RH=" ; Fmt (RH, 1);
 Debug.Print " RHtc=" ; Fmt (RHtc, 1)

 33

 Call Sleep (1.0)
 Loop
End Sub

'-- -------------
'' initializes communication with sht
Sub shtRst ()
 Call ShiftOutEx (dta , sck , 16, &Hffff , &H01)
End Sub

'-- -------------
'' get 16 bits of data, enter with command in "cmd"
Function shtGet16 (ByVal cmd as Byte) as UnsignedInteger
 ' send the command, wait for the result to be avail able
 Call shtCmd (cmd)
 Call shtWait ()

 ' read the 16-bit result, MS byte first
 Dim byte0 as Byte, byte1 as Byte
 byte1 = HiByte (ShiftInEx (dta , sck , 8, &H02))
 Call PutPin (dta , zxOutputLow)
 Call PutPin (sck , zxOutputPulse)
 byte0 = HiByte (ShiftInEx (dta , sck , 8, &H02))
 Call PutPin (sck , zxOutputPulse)

 shtGet16 = MakeWord (byte0 , byte1)
End Function

'-- -------------
'' send start sequence and command
Sub shtCmd (ByVal cmd as Byte)
 ' send the start sequence
 ' dta: ~~~~~|_____|~~~~~~
 ' sck: ___|~~~|_|~~~~|____
 ' while dta is low, clock goes low and then high
 Call PutPin (dta , zxInputTriState)
 Call PutPin (sck , zxOutputHigh)
 Call PutPin (dta , zxOutputLow)
 Call PutPin (sck , zxOutputPulse)
 Call PutPin (dta , zxInputTriState)
 Call PutPin (sck , zxOutputLow)

 ' send the command
 Call ShiftOut (dta , sck , 8, cmd)
 Call PutPin (dta , zxInputTriState)
 Call PutPin (sck , zxOutputPulse)
End Sub

'-- -------------
'shtWait:
Sub shtWait ()
 ' wait for sht to pull data pin low or for time out
 Dim cnt as Integer = 50
 Do
 cnt = cnt - 1
 Call Sleep (10e-3)
 Loop While (GetPin (dta) = 1) And (cnt > 0)
End Sub

 34

 PBasic Conversion Helper Code

The PBasic Conversion Helper Code set contains several subroutines and functions that may be helpful when
converting a PBasic application to ZBasic. The code set is available from the ZBasic website in a .zip file and is
reproduced below as well. Each routine is preceded by a comment block describing its purpose.

'-- --------------------------
'
'' Dig
'
' This function implements the PBasic DIG operator. The result is the
' Nth decimal digit of the value where N=0 is the l east significant digit.
'
Function Dig (ByVal val as UnsignedInteger, ByVal digit as Byte) as UnsignedInteger
 Dig = val \ (10 ^ digit) Mod 10
End Function

'-- --------------------------
'
'' Nap
'
' This subroutine approximates the functionality of the PBasic NAP command.
'
Sub Nap (ByVal napIdx as Byte)
 Dim napTime as SingleVectorData({ 0.018 , 0.036 , 0.072 , 0.140 ,
 0.290 , 0.580 , 1.200 , 2.300 })
 If (napIdx < CByte (UBound(napTime))) Then
 Call Sleep (napTime (napIdx + 1))
 End If
End Sub

'-- --------------------------
'
'' NCD
'
' This function implements the PBasic priority enco der operator NCD.
' The result is a value of 2^N where N represents t he most significant
' bit of the 'val' operand that is a one.
'
Function NCD(ByVal val as UnsignedInteger) as UnsignedInteger
 NCD = &Hffff
 If (val <> 0) Then
 Dim mask as UnsignedInteger = &H8000
 NCD = 15
 Do While (mask <> 0)
 If ((mask And val) <> 0) Then
 Exit Do
 End If
 NCD = NCD - 1
 mask = Shr (mask, 1)
 Loop
 End If
End Function

 35

'-- --------------------------
'
'' DCD
'
' This function implements the PBasic decoder opera tor DCD. The result is
' 2^N where N represents the low four bits of the ' val' operand.
'
Function DCD(ByVal val as Byte) as UnsignedInteger
 DCD = Shl (1, val And &H0f)
End Function

'-- --------------------------
'
'' Rev
'
' This function implements the PBasic operator REV. The result is the value
' of the least significant N bits of the passed val ue but with the bit order
' reversed.
'
Function Rev (ByVal val as UnsignedInteger,
 ByVal bitCnt as Byte) as UnsignedInteger
 Rev = 0
 If (bitCnt <= 16) Then
 Dim idx as Byte
 For idx = 1 to bitCnt
 Rev = Shl (Rev, 1) Or (val And 1)
 val = Shr (val , 1)
 Next idx
 End If
End Function

'-- --------------------------
'
'' Hyp
'
' This function implements the PBasic operator HYP. The result is
' the square root of the sum of the squares of the operands.
'
Function Hyp (ByVal s1 as Integer, ByVal s2 as Integer) as Integer
 HYP = CInt (Sqr (CSng((s1 * s1) + (s2 * s2))))
End Function

'-- --------------------------
'
'' MulHigh
'
' This function implements the PBasic ** operator. The result is the
' high 16 bits of the product of the two operands.
'
Function MulHigh (ByVal val1 as UnsignedInteger, _
 ByVal val2 as UnsignedInteger) as UnsignedInteger
 MulHigh = HiWord (CULng(val1) * CULng (val2))
End Function

 36

'-- --------------------------
'
'' MulMid
'
' This function implements the PBasic */ operator. The result is the
' middle 16 bits of the product of the two operands .
'
Function MulMid (ByVal val1 as UnsignedInteger, _
 ByVal val2 as UnsignedInteger) as UnsignedInteger
 MulMid = MidWord (CULng(val1) * CULng (val2))
End Function

'-- --------------------------
'
'' Button
'
' This function implements part of the functionalit y of PBasic BUTTON command.
' It does not implement the "no de-bounce" function ality realized when the
' "delay" parameter to BUTTON is zero.
'
' As with the PBasic BUTTON command, this function is designed to be called
' within a loop. It will return True if the button was newly pressed or, if
' auto-repeat is enabled, if the auto-repeat delay or repeat rate period has
' expired. Otherwise, the return value will be Fal se.
'
Function Button (ByVal pin as Byte, ByVal downState as Byte, _
 ByVal autoRepeat as Byte, ByVal rate as Byte, ByRef work as Byte) as Boolean
 Const debounceDelay as Single = 50e-3 ' adjust as desired
 Button = False

 ' get the current state of the pin
 Dim state as Byte
 state = GetPin (pin)
 If (work = 0) Then
 ' the button has not yet been detected as being pus hed
 If (state = downState) Then
 ' the button was just pushed
 Button = True
 work = Max (autoRepeat , 1)
 Call Delay (debounceDelay) ' wait for debouncing
 End If
 Else
 ' the button has already been detected as being pus hed
 If (state = downState) Then
 If ((autoRepeat > 0) And (autoRepeat < 255)) Then
 ' the button still pushed and auto-repeat is desire d
 If (work > 0) Then
 work = work - 1
 End If
 If (work = 0) Then
 Button = True
 work = rate
 End If
 End If
 ElseIf (work <> 0) Then
 ' the button was released
 Call Delay (debounceDelay) ' wait for debouncing
 work = 0
 End If
 End If
End Function

