

ZBasic System Library
Reference Manual

Version 4.3.2

Copyright © 2005-2015 Elba Corp. All rights Reserved.

Publication History

November 2005 First publication
May 2006 Added new routine descriptions, minor corrections
October 2006 Added new routine descriptions, minor corrections
February 2007 Added information on new ZX models
August 2007 Updated for a new ZX model and added new routine descriptions
March 2008 Updated for new ZX models and added new routine descriptions
October 2008 Added new routine descriptions
January 2009 Added information on a new ZX model
April 2009 Added new routine descriptions, minor corrections
June 2009 Updated for new ZX models
January 2010 Updated routine descriptions, added new descriptions
June 2010 Updated for new ZX models
October 2010 Updated for new ZX models
March 2011 Updated for new compiler features
September 2011 Updated for generic target devices and new routines.
March 2012 Updated for new compiler features
January 2013 Updated for new compiler features
January 2014 Updated for new devices, minor corrections and improvements
February 2014 Updated for new devices, minor corrections and improvements
February 2015 Minor corrections and improvements
September 2015 Minor corrections and improvements

Disclaimer

Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular
purpose of the information in this document or the techniques described herein. The
reader assumes the entire responsibility for the evaluation of and use of the information
presented. The Company reserves the right to change the information described herein
at any time without notice and does not make any commitment to update the
information contained herein. No license to use proprietary information belonging to the
Company or other parties is expressed or implied.

Critical Applications Disclaimer

ELBA CORP. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE
OR TO BE USED IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE,
SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III
MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS WHERE DEFECT
OR FAILURE COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY,
“CRITICAL APPLICATIONS”). FURTHERMORE, ELBA CORP. PRODUCTS ARE NOT
DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT
CONTROL OF A VEHICLE OR AIRCRAFT. CUSTOMER AGREES, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE ELBA CORP.
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO
THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER
ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF ELBA CORP.
PRODUCTS IN CRITICAL APPLICATIONS.

ZBasic System Library iv ZBasic Microcontrollers

Trademarks

ZBasic, ZX-24, ZX-24a, ZX-24n, ZX-24p, ZX-24r, ZX-24s, ZX-24t, ZX-24x, ZX-24u, ZX-40, ZX-40a, ZX-40n, ZX-40p,
ZX-40r, ZX-40s, ZX-40t, ZX-44, ZX-44a, ZX-44n, ZX-44p, ZX-44r, ZX-44s, ZX-44t, ZX-328n, ZX-328l, ZX-32n,
ZX-32l, ZX-1280, ZX-1280n, ZX-1281, ZX-1281n, ZX-32a4, ZX-128a4u and ZX-128a1 are trademarks of Elba
Corp.

ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-24xu, ZX-328nu, ZX-128e, ZX-
128ne, ZX-1281e and ZX-1281ne are trademarks of Oak Micros used under license from Elba Corp.

AVR is a registered trademark of Atmel Corp.
BasicX, BX-24 and BX-35 are trademarks of NetMedia, Inc.
PBasic is a trademark and Basic Stamp is a registered trademark of Parallax, Inc.
Visual Basic is a registered trademark of Microsoft Corp.
Arduino is a trademark of the Arduino Team.
Other brand and product names are trademarks or registered trademarks of their respective owners.

ZBasic System Library iii ZBasic Microcontrollers

Table of Contents

Section 1 - Routines by Category..1

Type Conversion Functions ...1

Mathematical Functions..1

Memory-related Routines ...2

String-related Routines ...2

Data Manipulation Routines...2

Serial Communication Routines ..3

Queue Management Routines ..3

Input/Output Routines ...4

Task-related Routines...5

Miscellaneous Routines..5

Section 2 - Resource Usage...7

Package Designation Codes ...7

UARTs...8

Timers..11

I/O Timer Prescaler Values ..13

Timer Output Compare Pin Mapping..15

16-Bit PWM Timers ...15

8-Bit PWM Timers ...18

Input Capture Timers ..20

Output Capture Timers ...22

SPI Controllers ...24

I2C Controllers ...27

Analog-to-Digital Converters..28

Digital-to-Analog Converters..29

Interrupts in General ...30

External Interrupts ...30

Pin Change Interrupts ...33

Analog Comparator Interrupts ...35

Interrupt Service Routines..36

Program Memory Page Size..38

Section 3 - Processor Speed and Device Configuration Issues ...39

Main Clock Frequency (F_CPU) ...40

RTC Scale Factor (RTC_SCALE)...40

RTC Fast Tick Frequency (F_RTC_FAST) ...40

RTC Tick Frequency (F_RTC_TICK) ...40

RTC Timer Frequency (F_RTC_TIMER)...40

TimerSpeed1 Frequency (F_TS1) ..40

TimerSpeed2 Frequency (F_TS2) ..41

ZBasic System Library iv ZBasic Microcontrollers

Section 4 - Detailed Descriptions of Subroutines and Functions42

Abs...43

Acos...44

ADCtoCom1...45

Asc ...46

Asin..47

Atn..48

Atn2..49

BitCopy..50

BlockMove ..51

BusRead ...52

BusWrite..53

CallTask ..54

CBit ..56

CBool...57

CByte ...58

CByteArray ...59

Ceiling..60

Chr ...61

CInt...62

ClearQueue ..63

CLng ..64

CloseCom...65

CloseDAC...66

CloseI2C ...67

ClosePWM..68

ClosePWM8..69

CloseSPI...70

CloseWatchDog ...71

CloseX10...72

CNibble..73

Com1toDAC ...74

ComChannels...75

Console.Read...77

Console.ReadLine ...78

Console.Write...79

Console.WriteLine ...80

ControlCom...81

Cos...82

CountTransitions..83

CPUSleep ...84

ZBasic System Library v ZBasic Microcontrollers

CRC16...85

CRC32...87

CSng..88

CStr..89

CStrHex...90

CType ..91

CUInt..92

CULng ...93

DAC ...94

DACPin..95

Debug.Print...96

DefineBus ...98

DefineCom..99

DefineCom3..102

DefineSPI..103

DefineX10 ...104

DegToRad...106

Delay..107

DelayCycles..108

DelayMicroseconds ...109

DelayMilliseconds ..110

DelayUntilClockTick ..111

DisableInt ..112

DrainQueue ..113

EnableInt...114

ExitTask...115

Exp ...116

Exp10...117

FirstTime ...118

Fix...119

FixB..120

FixI ...121

FixL ..122

FixUI...123

FixUL ...124

FlipBits...125

Floor...126

Fmt...127

Fraction ...128

FreqOut ...129

Get1Wire ...131

ZBasic System Library vi ZBasic Microcontrollers

Get1WireByte ...132

Get1WireData...133

GetADC (subroutine form) ..134

GetADC (function form) ...135

GetBit...136

GetDate ...137

GetDateValue...138

GetDayNumber ..139

GetDayOfWeek ..140

GetDayOfYear..141

GetEEPROM ..142

GetElapsedMicroTime ..143

GetMicroTime...144

GetNibble ..145

GetPersistent..146

GetPin..147

GetProgMem ..148

GetQueue ...149

GetQueueBufferSize ...151

GetQueueCount...152

GetQueueSpace ..153

GetQueueStr ..154

GetTime...155

GetTimestamp..156

GetTimeValue ..157

HiByte ..158

HiWord...159

I2CCmd ...160

I2CGetByte ...162

I2CPutByte..163

I2CStart ...164

I2CStop ...165

IIf...166

InputCapture...167

InputCaptureEx ..168

LBound ..170

LCase ..171

Left ...172

Len ...173

LoByte ...174

LockTask...175

ZBasic System Library vii ZBasic Microcontrollers

Log ...176

Log10...177

LongJmp ...178

LoWord..179

MakeDword...180

MakeString..181

MakeWord...182

Max ..183

MemAddress ..184

MemAddressU ...185

MemCmp...186

MemCopy..187

MemFind ...188

MemSet...189

Mid ...190

MidWord..191

Min ...192

NoOp ...193

OpenCom..194

OpenDAC..196

OpenI2C..198

OpenI2CSlave ..200

OpenPWM ..201

OpenPWM8 ..202

OpenQueue ..205

OpenSPI..206

OpenSPISlave..208

OpenWatchDog ...209

OpenX10 ...211

OutputCapture..213

OutputCaptureEx...214

ParityCheck ..216

Pause...217

PeekQueue...218

PersistentPeek ...219

PersistentPoke ...220

PinHigh..221

PinInput ...222

PinLow...223

PinOutput ..224

PinRead...225

ZBasic System Library viii ZBasic Microcontrollers

PinToggle ..226

PlaySound...227

PortBit..229

PortMask ...230

Pow..231

ProgMemFind...232

PulseIn (subroutine form)...233

PulseIn (function form)..234

PulseOut ...235

Put1Wire ...236

Put1WireByte ...237

Put1WireData ...238

PutBit ...239

PutDAC ...240

PutDate ...242

PutEEPROM...243

PutNibble...244

PutPersistent ..245

PutPin ..246

PutProgMem...247

PutQueue ..248

PutQueueByte ..249

PutQueueStr...250

PutTime ...251

PutTimeStamp ...252

PWM..253

PWM8..254

RadToDeg...255

RamPeek ..256

RamPeekDword...257

RamPeekWord...258

RamPoke ..259

RamPokeDword...260

RamPokeWord...261

Randomize..262

RCTime (subroutine form)..263

RCTime (function form) ..264

Reset1Wire ...265

ResetProcessor ...266

ResetX10 ..267

ResumeTask ..268

ZBasic System Library ix ZBasic Microcontrollers

Right...270

Rnd...271

RunTask ..272

SearchQueue ...273

Semaphore ...274

SerialGetByte ...275

SerialIn ..276

SerialNumber ...277

SerialOut ...278

SetBits ...279

SetInterval...280

SetJmp ..281

SetQueueX10...282

ShiftIn...283

ShiftInEx..284

ShiftOut ...286

ShiftOutEx...287

Shl ..289

Shr..290

Signum ..291

Sin..292

SizeOf..293

SizeOfU...294

Sleep..295

SngClass...296

Span...297

SPICmd...298

SPIGetByte ...300

SPIPutByte ...301

SPIGetData...302

SPIPutData ...303

SPIStart ...304

SPIStop ...305

Sqr..306

StackCheck...307

StatusCom ..308

StatusQueue...309

StatusTask ..310

StatusX10 ...312

StrAddress ..313

StrCompare ..314

ZBasic System Library x ZBasic Microcontrollers

StrFind ...315

StrReplace ..316

StrType ..317

System.Alloc...318

System.DeviceID ...319

System.Free ...320

System.HeapHeadRoom..321

System.HeapSize ..322

System.TaskHeadRoom...323

Tan...324

TaskIsLocked ...325

TaskIsValid ...326

Timer..327

To<enum>...328

ToggleBits ...329

Trim..330

UBound ...331

UCase..332

UnlockTask ...333

UpdateRTC...334

ValueI...335

ValueL ...336

ValueS ...337

VarPtr...338

WaitForInterrupt...339

WaitForInterval...343

WatchDog ...345

X10Cmd..346

Yield ...348

ZXCmdMode ..349

ZBasic System Library xi ZBasic Microcontrollers

This page is intentionally blank

ZBasic System Library 1 ZBasic Microcontrollers

 System Library Reference

Section 1 - Routines by Category

The ZBasic System Library provides a rich collection comprising hundreds of subroutines and functions
that you can use to add functionality to your application. The routines may be divided into several
conceptual categories as shown below.

Type Conversion Functions
CBit() convert a value to type Bit
CBool() convert a value to type Boolean

CByte() convert a value to type Byte
CByteArray() convert an integral value to a reference to a Byte array

CInt() convert a value to type Integer
CLng() convert a value to type Long

CNibble() convert a value to type Nibble
CSng() convert a value to type Single

CStr() convert a value to type String
CStrHex() convert a value to a String containing hexadecimal characters

CType() convert a value to an enumeration member
CUInt() convert a value to type UnsignedInteger

CULng() convert a value to type Long
FixB() convert a Single value to type Byte

FixI() convert a Single value to type Integer
FixL() convert a Single value to type Long

FixUI() convert a Single value to type UnsignedInteger
FixUL() convert a Single value to type UnsignedLong

To<enum>() convert a value to an enumeration member

Mathematical Functions
Abs() absolute value

Acos() arc cosine
Asin() arc sine

Atn() arc tangent
Atn2() arc tangent (quadrant-correct)

Ceiling() largest integer not greater than a Single value
Cos() cosine

DegToRad() convert degrees to radians
Exp() e

x

Exp10() 10
x

Fix() integer portion of a Single value

Floor() smallest integer not less than a Single value
Fraction() fractional portion of a Single value

Log() natural logarithm
Log10() common logarithm

Max() determine the largest of two values
Min() determine the smallest of two values

Pow() raise a value to a power
RadToDeg() convert radians to degrees

Signum() determine if a value is negative, zero or positive
Sin() sine

SngClass() return the class information for a Single value
Sqr() square root

Tan() tangent

ZBasic System Library 2 ZBasic Microcontrollers

Memory-related Routines
BitCopy() copy a sequence of bits from one part of RAM to another

BlockMove() copy data from one part of RAM to another
GetBit() extract a bit from a value in RAM

GetEEPROM() copy data from Program Memory to RAM
GetPersistent() copy data from Persistent Memory to RAM

GetProgMem() copy data from Program Memory to RAM
MemAddress() determine the RAM address of a variable

MemAddressU() determine the RAM address of a variable
MemCmp() compare two blocks of data in RAM

MemCopy() copy data from one part of RAM to another

MemSet() initialize a block of memory with a byte value
PersistentPeek() read a byte from Persistent Memory

PersistentPoke() write a byte to Persistent Memory
PutBit() set or clear a bit in a value in RAM

PutEEPROM() copy data from RAM to Program Memory
PutPersistent() copy data from RAM to Persistent Memory

PutProgMem() copy data from RAM to Program Memory
RamPeek() read a byte from RAM

RamPeekDword() read a 32-bit value from RAM
RamPeekWord() read a 16-bit value from RAM

RamPoke() write a byte to RAM
RamPokeDword() write a 32-bit value to RAM

RamPokeWord() write a 16-bit value to RAM
System.Alloc() allocate a block of memory

System.Free() deallocate a block of memory
System.HeapHeadRoom() determine the amount of unused space in the heap

System.HeapSize() determine the amount of space reserved for the heap
VarPtr() determine the RAM address of a variable

String-related Routines
Asc() extract a character value from a string
Chr() convert a character value to a string

Fmt() convert a Single value to a string
LCase() convert upper case letters to lower case in a string

Left() return the leftmost characters from a string
Len() determine the number of characters in a string

Mid() extract or set a substring in a string
Right() return the rightmost characters from a string

StrAddress() determine the address where string characters are stored
StrCompare() compare two strings, optionally ignoring alphabetic case

StrFind() search for the first occurrence of a string within a string
StrReplace() replace character sequences in a string

StrType() determine the characteristics of a string
Trim() remove leading and trailing spaces from a string

UCase() convert lower case letters to upper case in a string
ValueI() convert string characters to the equivalent Integer value

ValueL() convert string characters to the equivalent Long value
ValueS() convert string characters to the equivalent Single value

Data Manipulation Routines
FlipBits() reverse the order of bits in a byte
HiByte() extract the high byte of a value

HiWord() extract the high word of a value

ZBasic System Library 3 ZBasic Microcontrollers

LoByte() extract the low byte of a value

LoWord() extract the low word of a value
MakeDword() construct a 32-bit value from two 16-bit values

MakeWord() construct a 16-bit value from two 8-bit values
MakeString() construct a string from a sequence of bytes

MidWord() extract the middle two bytes of a 4-byte value
SetBits() set the state of specified bits in a byte

Shl() shift a value to the left
Shr() shift a value to the right

ToggleBits() change the state of specified bits in a byte

Serial Communication Routines
Debug.Print send strings to the debug console
CloseCom() terminate the use of a serial channel

ComChannels() prepare for using multiple serial channels
Console.Read() retrieve a character from the console input queue

Console.ReadLine() retrieve a line from the console input queue
Console.Write() send a string to the console output queue

Console.WriteLine() send a string to the console output queue

ControlCom() specify flow control pins for a serial channel
DefineCom() set the characteristics of a serial channel

DefineCom3() set the characteristics of serial Com3
OpenCom() prepare a serial channel for use

SerialIn() read a character from an input pin
SerialOut() send a character or the characters of a string out on a pin

StatusCom() determine the status of a serial channel

Queue Management Routines
ClearQueue() delete data from a queue

DrainQueue() delete a number of bytes of data from a queue
GetQueue() retrieve data from a queue

GetQueueBufferSize() determine the size of the data area of a queue
GetQueueCount() determine the number of bytes of data in a queue

GetQueueSpace() determine the amount of space available in a queue
GetQueueStr() populate a string with characters from a queue

OpenQueue() prepare a queue for use
PeekQueue() copy data from a queue without removing it

PutQueue() put data in a queue
PutQueueByte() put a byte into a queue

PutQueueStr() put the characters of a string in a queue
SearchQueue() search a queue for a data byte or sequence

StatusQueue() determine if a queue has data available

Date/Time Routines
GetDate() get the month, day, year corresponding to a day number

GetDateVdlue() get the month, day, year corresponding to a day number (packed)
GetDayNumber() compute the day number corresponding to a day of a year

GetDayOfWeek() get the day of the week corresponding to a date value
GetDayOfYear() get the ordinal day of the year corresponding to a date value

GetElapsedMicroTime() compute an elapsed time relative to previous timing data
GetMicroTime() populate a buffer with high resolution timing data

GetTime() get the current hour, minute and second
GetTimestamp() get the current date and time information

ZBasic System Library 4 ZBasic Microcontrollers

GetTimeValue() get the current hour, minute and second (packed)

PutDate() set the current month, day, year
PutTime() set the current hour, minute and second

Input/Output Routines
ADCtoCom1() stream analog conversion data to Com1
BusRead() read data from a bus-oriented device

BusWrite() write data to a bus-oriented device
CloseI2C() deinitialize an I2C communication channel

ClosePWM() deinitialize a 16-bit PWM channel
ClosePWM8() deinitialize an 8-bit PWM channel

CloseSPI() deinitialize an SPI communication channel
CloseX10() deinitialize an X-10 communication channel

Com1toDAC() receive stream of analog conversion data
CountTransitions() count transitions on an input pin

DACPin() produce an analog voltage on an output pin
DefineBus() specify the parameters for accessing a bus-oriented device

DefineSPI() specify the parameters for software-based SPI communication
DefineX10() specify the communication parameters for an X-10 channel

FreqOut() produce a dual-frequency sine wave on an output pin
Get1Wire() receive a bit using the 1-Wire protocol

Get1WireByte() receive a byte using the 1-Wire protocol
Get1WireData() receive one or more bytes using the 1-Wire protocol

GetADC() perform an analog to digital conversion on an input
GetPin() read the state of an input pin

I2CCmd() send/receive data over an I2C channel
I2CGetByte() receive a byte on an I2C channel

I2CPutByte() send a byte on an I2C channel
I2CStart() create a Start condition on an I2C channel

I2CStop() create a Stop condition on an I2C channel
InputCapture() record the high/low times of a pulse train on an input pin

InputCaptureEx() record the high/low times of a pulse train on an input pin
OpenI2C() prepare for I2C communication with an external device

OpenI2CSlave() activate I2C slave mode
OpenSPI() prepare for SPI communication with an external device

OpenSPISlave() activate SPI slave mode
OpenPWM() prepare for 16-bit PWM generation

OpenPWM8() prepare for 8-bit PWM generation
OpenX10() prepare an X-10 communication channel for use

OutputCapture() produce a pulse train
OutputCaptureEx() produce a pulse train on any output pin

PinHigh() set an output pin to the high state
PinInput() configure a pin as an input

PinLow() set an output pin to the low state

PinOutput() configure a pin as an ouput
PinRead() read the logic level present on a pin

PinToggle() set an output pin to the opposite of the current state
PlaySound() reproduce sampled audio on an output pin

PortBit() compose a designator for a specific bit in an I/O port
PortMask() compute the bitmask for the port with which a pin is associated

PulseIn() measure a pulse width on an input pin
PulseOut() generate a pulse on an output pin

Put1Wire() send a bit using the 1-Wire protocol
Put1WireByte() send a byte using the 1-Wire protocol

Put1WireData() send one or more bytes using the 1-Wire protocol

ZBasic System Library 5 ZBasic Microcontrollers

PutDAC() produce an analog voltage on an output pin

PutPin() configure an I/O pin
PWM() initiate 16-bit PWM generation or change the duty cycle

PWM8() initiate 8-bit PWM generation or change the duty cycle
RCTime() measure an RC charge/discharge time

Reset1Wire() send a reset signal using the 1-Wire protocol
SetQueueX10() specify an additional queue for low-level X-10 operation

ShiftIn() perform synchronous serial input
ShiftInEx() perform synchronous serial input with more configurability

ShiftOut() perform synchronous serial output
ShiftOutEx() perform synchronous serial output with more configurability

SPICmd() perform SPI communication with an external device
SPIGetByte() retrieve a byte from an SPI slave

SPIGetData() retrieve a series of bytes from an SPI slave
SPIPutByte() send a byte to an SPI slave

SPIPutData() send a series of bytes to an SPI slave
SPIStart() initialize an SPI channel

SPIStop() deinitialize an SPI channel
StatusX10() determine the status of an X-10 communication channel

X10Cmd() send commands using the X-10 protocol
PutTimeStamp() set the current date and time information

Timer() get the current clock tick value

Task-related Routines
CallTask prepare a task to begin execution

DisableInt() disable interrupts
Delay() pause a task

DelayUntilClockTick() pause a task
EnableInt() conditionally re-enable interrupts

ExitTask() cause a task to terminate
LockTask() suspend normal task switching

Pause() pause a task without relinquishing control
ResumeTask() cause a waiting task to resume execution

RunTask() cause a specific task to run
Semaphore() coordinate the use of a resource

SetInterval() set the interval timer period
Sleep() pause a task

StackCheck() enable or disable stack checking
StatusTask() determine the status of a task

System.TaskHeadRoom() determine the unused space in a task’s stack
TaskIsLocked() determine if a task is locked

TaskIsValid() determine if a task stack is in the task list
UnlockTask() resume normal task switching

UpdateRTC() update RTC registers to account for missed ticks

WaitForInterrupt() pause a task until an external event occurs
WaitForInterval() pause a task until an interval timer expires

Yield() allow another task to run

Miscellaneous Routines
CloseWatchDog() deactivate the watchdog timer

CPUSleep() cause the CPU to go into sleep mode
CRC16() compute a 16-bit CRC value

CRC32() compute a 32-bit CRC value
DelayCycles() delay for a specified number of CPU cycles

ZBasic System Library 6 ZBasic Microcontrollers

DelayMicroseconds() delay for a specified period of time

DelayMilliseconds() delay for a specified period of time
FirstTime() determine if this is the first the program has been run since downloading

GetMicroTime() populate a buffer with higher precision timing information
GetElapsedMicroTime() determine the elapsed time relative to previous time information

IIf() select the value of one of two expressions
LBound() determine the lower bound of an array

LongJmp() perform a non-local goto (e.g. for exception handling)
NoOp() execute a “nop” instruction

OpenWatchDog() activate the watchdog timer
ParityCheck() check the parity of a data byte

Randomize() initialize the random number generator
ResetProcessor() reset the CPU

Rnd() retrieve the next random number
SerialNumber() retrieve the system software serial number

SetJmp() prepare for a non-local Goto (e.g. exception handling)
SizeOf() determine the size of a data item

SizeOfU() determine the size of a data item
Span() determine the number of elements in an array dimension

System.DeviceID() retrieve the identification characters for the device
UBound() determine the upper bound of an array

WatchDog() reset the watchdog timer
ZXCmdMode() activate the “command mode” (for downloading)

ZBasic System Library 7 ZBasic Microcontrollers

Section 2 - Resource Usage

The various ZBasic target devices offer a variety of resources for use in your program, e.g. timers,
interrupts, UART (hardware serial port), analog-to-digital converters, etc. Some of these resources are
allocated to specific functions of ZBasic and/or are used by certain ZBasic System Library routines. The
resources available on a particular target device vary and the remainder of this section documents the
availability for each supported device. Consult the datasheet for the particular target device for detailed
information about the device.

In some of the following sub-sections, resource usage is described separately for ZX devices and generic
target devices. In others, resource usage is described only in terms of the base device and it is thus
necessary to know the base device underlying your particular ZX device; the table below shows the
correspondence.

Base CPU Type for ZX Devices

ZX Device Base CPU Type
ZX-24, ZX-40, ZX-44, ZX-24e mega32

ZX-24a, ZX-40a, ZX-44a, ZX-24ae mega644
ZX-24p, ZX-40p, ZX-44p, ZX-24n, ZX-40n, ZX-44n,
ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu

mega644P

ZX-24r, ZX-40r, ZX-44r, ZX-24s, ZX-40s, ZX-44s,
ZX-24t, ZX-40t, ZX-44t, ZX-24ru, ZX-24su

mega1284P

ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-328nu mega328P

ZX-1280, ZX-1280n mega1280
ZX-1281, ZX-1281n, ZX-1281e, ZX-1281ne mega1281
ZX-128e, ZX-128ne mega128

ZX-128a1 xmega128A1
ZX-24u, ZX-128a4u xmega128A4U
ZX-24x, ZX-32a4, ZX-24xu xmega32A4

Package Designation Codes

In the following sub-sections, some of the tables include package designation codes for the different
processor types because the pin assignments vary by package type. The table below gives package
designation codes and the corresponding package types for various devices. Note, particularly, that
suffixes like A, P and PA have been omitted because the package availability is generally the same
irrespective of the suffix.

Package Designation Codes

Code Package Types Device or Family

L44 PLCC-44 mega8515, mega8535
P14 PDIP-14, SOIC-14 tiny24, tiny44, tiny441, tiny84, tiny441, tiny841
P20 PDIP-20, SOIC-20 tiny2313, tiny4313

P28 PDIP-28 tiny48, tiny88, ATmega
P40 PDIP-40 ATmega
Q20 VQFN-20, QFN-20, MLF-20 tiny24, tiny44, tiny441, tiny84, tiny441, tiny841, tiny2313, tiny4313,

tiny1634
S20 TSSOP-20, SOIC-20 tiny87, tiny167, tiny1634
T28 TQFP-28, MLF-28, QFN-28 tiny48, tiny88, ATmega

T32 TQFP-32, MLF-32, QFN-32 tiny48, tiny88, tiny87, tiny167, tiny828, ATmega
T44 TQFP-44, MLF-44, QFN-44 various ATmega. ATxmega
T64 TQFP-64, MLF-64, QFN-64 various ATmega. ATxmega

T100 TQFP-100, MLF-100, QFN-100 various ATmega. ATxmega

ZBasic System Library 8 ZBasic Microcontrollers

UARTs

An on-board hardware serial port, (UART, USART, or LIN/UART), is used for the Com1 serial channel (if
available). By default, the UART is configured to operate at 19,200 baud and is utilized by the System
Library Routines Console.Read, Console.ReadLine, Console.Write, Console.WriteLine and Debug.Print.
You may set the console to a different initial speed using the compiler directive Option ConsoleSpeed
(described in the ZBasic Language Reference Manual). You may also reconfigure the UART to a
different speed by using the System Library routine OpenCom, specifying the console channel. The
UART is also used for the ADCtoCom1 and Com1toDAC routines (available only on ATmega-based ZX
devices). In both of these cases, the Com1 speed is automatically configured.

Some target devices have multiple hardware UARTs. In these cases, one of the UARTs is assigned to
the Com1 serial channel, another UART is assigned to the Com2 serial channel, etc. as shown in the
tables below. The effect of these assignments is generally only important with respect to which I/O pins
are available for other purposes if the additional hardware USARTs are not being used. It also will be
important if your program manipulates the UART registers directly.

It is important to note that on the ZX-24p, ZX-24n, ZX-24r and ZX-24s, the Com2 serial channel cannot
be used at the same time as the hardware I2C channel because the pin 11 is shared between the TxD
pin of Com2 and the SDA signal.

Hardware UART Channel Assignment and I/O Pin Usage for ZX Devices

ZX Device UART Channel Tx Pin Rx Pin
ZX-24, ZX-24a USART0 Com1¹ 1, D.1 2, D.0
ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t USART0 Com1¹ 1, D.1 2, D.0

 USART1 Com2 11, D.3 6, D.2
ZX-40, ZX-40a USART0 Com1 15, D.1 14, D.0
ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t USART0 Com1 15, D.1 14, D.0

 USART1 Com2 17, D.3 16, D.2
ZX-44, ZX-44a USART0 Com1 10, D.1 9, D.0
ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t USART0 Com1 10, D.1 9, D.0

 USART1 Com2 12, D.3 11, D.2
ZX-328n, ZX-328l USART0 Com1 3, D.1 2, D.0
ZX-32n, ZX-32l USART0 Com1 31, D.1 30, D.0

ZX-1281, ZX-1281n USART1 Com1 28, D.3 27, D.2
 USART0 Com2 3, E.1 2, E.0
ZX-1280, ZX-1280n USART0 Com1 3, E.1 2, E.0

 USART1 Com2 46, D.3 45, D.2
 USART2 Com7 13, H.1 12, H.0
 USART3 Com8 64, J.1 63, J.0

ZX-24x, ZX-24u USARTD0 Com1¹ 1, D.3 2, D.2
 USARTD1 Com2 D.7 D.6
 USARTC0 Com7 9, C.3 10, C.2

 USARTC1 Com8 5, C.7 6, C.6
 USARTE0 Com9 19, E.3 18, E.2
ZX-32a4, ZX-128a4u USARTD0 Com1 23, D.3 22, D.2

 USARTD1 Com2 27, D.7 26, D.6
 USARTC0 Com7 13, C.3 12, C.2
 USARTC1 Com8 17, C.7 16, C.6

 USARTE0 Com9 33, E.3 32, E.2
ZX-128a1 USARTD0 Com1 28, D.3 27, D.2
 USARTD1 Com2 32, D.7 31, D.6

 USARTC0 Com7 18, C.3 17, C.2
 USARTC1 Com8 22, C.7 21, C.6
 USARTE0 Com9 38, E.3 37, E.2

 USARTE1 Com10 42, E.7 41, E.6
 USARTF0 Com11 48, F.3 47, F.2
 USARTF1 Com12 52, F.7 51, F.6

ZBasic System Library 9 ZBasic Microcontrollers

ZX-24e, ZX-24ae USART0 Com1¹ 1, D.1 2, D.0
ZX-24ne, ZX-24pe USART0 Com1¹ 1, D.1 2, D.0

 USART1 Com2 17, D.3 18, D.2
ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su USART0 Com1 1, D.1 2, D.0
 USART1 Com2 17, D.3 18, D.2

ZX-24xu USARTD0 Com1 1, D.3 2, D.2
 USARTD1 Com2 13, D.7 14, D.6
 USARTC0 Com7 9, C.3 10, C.2

 USARTC1 Com8 5, C.7 6, C.6
 USARTE0 Com9 21, E.3 22, E.2
ZX-328nu USART0 Com1 19, D.1 20, D.0

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne USART0 Com1¹ 19, E.1 20, E.0
 USART1 Com2 9, D.3 10, D.2

 ¹For these devices, the Com1 signals are logically inverted.

Hardware UART Channel Assignment and I/O Pin Usage for Generic Target Devices

Target Device Pkg. UART Chan. Tx Pin Rx Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny48,
tiny88

all - - - -

tiny87, tiny167 S20 LIN/UART Com1 2, A.1 1, A.0
 T32 LIN/UART Com1 30, A.1 29, A.0
tiny2313, tiny2313A, tiny4313 P20 USART0 Com1 3, D.1 2, D.0

 Q20 USART0 Com1 1, D.1 20, D.0
tiny828 T32 USART0 Com1 2, C.3 1, C.2
tiny441, tiny841 S14 USART0 Com1 12, A.1 11, A.2

 USART1 Com2 8, A.5 9, A.4
 Q20 USART0 Com1 4, A.1 3, A.2
 USART1 Com2 20, A.5 1, A.4

tiny1634 S20 USART0 Com1 1, B.0 2, A.7
 USART1 Com2 19, B.2 20, B.1
 Q20 USART0 Com1 19, B.0 20, A.7

 USART1 Com2 17, B.2 18, B.1
mega16, mega16A, mega32, mega32A,
mega644, mega644A

P40 USART0 Com1 15, D.1 14, D.0

 T44 USART0 Com1 10, D.1 9, D.0
mega164A, mega164P, mega164PA, mega324P,
mega324PA, mega644P, mega644PA, mega1284P

P40 USART0 Com1 15, D.1 14, D.0

 USART1 Com2 17, D.3 16, D.2
 T44 USART0 Com1 10, D.1 9, D.0
 USART1 Com2 12, D.3 11, D.2

mega48, mega48A, mega48P, mega48PA, mega48PB
mega8, mega8A, mega88, mega88A, mega88P,
mega88PA, mega88PB, mega168, mega168A,
mega168P, mega168PA, mega168PB, mega328,
mega328P, mega328PB

P28 USART0 Com1 3, D.1 2, D.0

 T29 USART0 Com1 27, D.1 26, D.0

 T32 USART0 Com1 31, D.1 30, D.0
(mega328PB only) T32 USART1 Com2 15, B.3 16, B.4
mega64, mega64A, mega128, mega128A, mega1281,
mega2561, AT90CAN32, AT90CAN64, AT90CAN128

T64 USART0 Com1 3, E.1 2, E.0

 USART1 Com2 28, D.3 27, D.2
mega640, mega1280, mega2560 T100 USART0 Com1 3, E.1 2, E.0

 USART1 Com2 46, D.3 45, D.2
 USART2 Com7 13, H.1 12, H.0
 USART3 Com8 64, J.1 63, J.0

mega8U2, mega16U2, mega32U2,
AT90USB82, AT90USB162

T32 USART1 Com1 9, D.3 8, D.2

ZBasic System Library 10 ZBasic Microcontrollers

mega16U4, mega32U4 T44 USART1 Com1 21, D.3 20, D.2
mega8515, mega8535 P40 USART0 Com1 15, D.1 14, D.0

 T44 USART0 Com1 10, D.1 9, D.0
 L44 USART0 Com1 13, D.1 11, D.0
mega161 P40 USART0 Com1 11, D.1 10, D.0

 T44 USART0 Com1 8, D.1 4, D.0
mega162 P40 USART0 Com1 11, D.1 10, D.0
 USART1 Com2 4, B.3 3, B.2

 T44 USART0 Com1 8, D.1 7, D.0
 USART1 Com2 43, B.3 42, B.2
mega163, mega323 P40 USART0 Com1 15, D.1 14, D.0

 T44 USART0 Com1 10, D.1 9, D.0
mega165, mega165A, mega165P, mega165PA,
mega325, mega325P, mega645, mega645A,
mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA,
mega649, mega649A, mega649P

T64 USART0 Com1 2, E.1 3, E.0

mega3250, mega3250P, mega6450, mega6450A,
mega6450P, mega3290, mega3290P, mega6490,
mega6490A, mega6490P

T100 USART0 Com1 2, E.1 3, E.0

AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287

T64 USART1 Com1 28, D.3 27, D.2

xmegaA1, xmegaA1U T100 USARTD0 Com1 28, D.3 27, D.2

 USARTD1 Com2 32, D.7 31, D.6
 USARTC0 Com7 18, C.3 17, C.2
 USARTC1 Com8 22, C.7 21, C.6

 USARTE0 Com9 38, E.3 37, E.2
 USARTE1 Com10 42, E.7 41, E.6
 USARTF0 Com11 48, F.3 47, F.2

 USARTF1 Com12 52, F.7 51, F.6
xmegaA3, xmegaA3B, xmegaA3U, xmegaA3BU T64 USARTD0 Com1 29, D.3 28, D.2
 USARTD1 Com2 33, D.7 32, D.6

 USARTC0 Com7 19, C.3 18, C.2
 USARTC1 Com8 23, C.7 22, C.6
 USARTE0 Com9 39, E.3 38, E.2

xmegaA4, xmegaA4U T44 USARTD0 Com1 23, D.3 22, D.2
 USARTD1 Com2 27, D.7 26, D.6
 USARTC0 Com7 13, C.3 12, C.2

 USARTC1 Com8 17, C.7 16, C.6
 USARTE0 Com9 33, E.3 32, E.2
xmegaD3 T64 USARTD0 Com1 29, D.3 28, D.2

 USARTC0 Com2 19, C.3 18, C.2
xmegaD4 T44 USARTD0 Com1 23, D.3 22, D.2
 USARTC0 Com2 13, C.3 12, C.2

For native code devices, the table below indicates which ISRs may be automatically included in your
application when OpenCom() is used in your program. In the ISR Name column, the symbol # should be
replaced with the corresponding USART indicator (e.g. 0 for ATtiny and ATmega or D0 for ATxmega) and
the symbol * should be replaced by the software UART timer indicator (see the Timers section). If the
compiler cannot determine which specific channel is being opened, ISRs for all channels will be included.

ZBasic System Library 11 ZBasic Microcontrollers

ISRs Required for Serial Channels

Target CPU Com Channel ISR Name

tiny87, tiny167 Com1
Com3-Com6

LIN_TC
Timer0_CompA

tiny2313, tiny2313A,
tiny4313, tiny828, tiny441,
tiny841, tiny1634

Com1, Com2
Com3-Com6

USART#_RX, USART#_TX, USART#_UDRE
Timer0_CompA

all other ATtiny Com3-Com6 Timer*_CompA

all ATmega Com1, Com2, Com7, Com8
Com3-Com6

USART#_RX, USART#_TX, USART#_UDRE
Timer*_CompA

all ATxmega Com1, Com2, Com7-Com12
Com3-Com6

USART#_RXC, USART#_TXC, USART#_DRE
Timer*_CCA

Note, particularly, that if the console (typically Com1) is implicitly opened for an application, the ISRs for
the console channel will be included in the application even if OpenCom() is not explicitly invoked. The
console channel is implicitly opened by default for all ZX devices but not so for generic target devices.

Timers

ZBasic devices generally have multiple timers, depending on the underlying CPU type, that are used for
various purposes. One of the timers is (optionally) used to implement the real time clock (RTC), another
is used for the software-based serial ports and a third timer is used to provide the precise timing required
for certain I/O routines. The specific timer that is used for a particular function varies depending on the
underlying CPU type as shown in the table below.

Timer Usage by Target Device

Target Device

RTC
Timer

I/O
Timer

Serial
Timer

PWM8
Timer

PWM 16
Timer

Input
Capt.

Output
Capt.

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A Timer0 Timer1 Timer0 Timer0 Timer1 Timer1 Timer1
tiny48, tiny88 Timer0 Timer1 Timer0 - Timer1 Timer1 Timer1

tiny87, tiny167, tiny2313, tiny2313A, tiny4313,
tiny828, tiny1634

Timer0 Timer1 Timer0 Timer0 Timer1 Timer1 Timer1

tiny441, tiny841 Timer0 Timer1 Timer0 Timer0 Timer1
Timer2

Timer1
Timer2

Timer1
Timer2

mega8, mega8A Timer2 Timer1 Timer2 Timer2 Timer1 Timer1 Timer1
mega48, mega48A, mega48P, mega48PA,
mega48PB, mega88, mega88A, mega88P,
mega88PA, mega88PB, mega168, mega168A,
mega168P, mega168PA, mega168PB,
mega328, mega328P, mega328PB

Timer0 Timer1 Timer2 Timer2 Timer1 Timer1 Timer1

mega16, mega16A, mega164A, mega164P,
mega164PA, mega32, mega32A, mega324P,
mega324PA, mega644, mega644A,
mega644P, mega644PA, mega8535

Timer0 Timer1 Timer2 Timer2 Timer1 Timer1 Timer1

mega1284P Timer0 Timer3 Timer2 Timer2 Timer1
Timer3

Timer1
Timer3

Timer1
Timer3

mega8515 Timer0 Timer1 Timer0 Timer0 Timer1 Timer1 Timer1
mega161 Timer0 Timer1 Timer2 Timer2 - Timer1 Timer1

mega162 Timer0 Timer3 Timer2 Timer2 Timer1
Timer3

Timer1
Timer3

Timer1
Timer3

mega163 Timer2 Timer1 Timer2 Timer2 - Timer1 Timer1

mega323 Timer0 Timer1 Timer2 Timer2 - Timer1 Timer1
mega165, mega165A, mega165P,
mega165PA, mega325, mega325P,
mega645, mega645A, mega645P,
mega169, mega169A, mega169P,
mega169PA, mega329, mega329P,

Timer0 Timer1 Timer2 Timer2 Timer1 Timer1 Timer1

ZBasic System Library 12 ZBasic Microcontrollers

mega329PA, mega649, mega649A, mega649P
mega3250, mega3250P,
mega6450, mega6450A, mega6450P,
mega3290, mega3290P,
mega6490, mega6490A, mega6490P

Timer0 Timer1 Timer2 Timer2 Timer1 Timer1 Timer1

mega1281, mega2561 Timer2 Timer4 Timer0 Timer0 Timer1
Timer3

Timer1
Timer3

Timer1
Timer3

mega64, mega64A, mega128, mega128A Timer0 Timer1 Timer2 Timer2 Timer1
Timer3

Timer1
Timer3

Timer1
Timer3

mega640, mega1280, mega2560 Timer2 Timer4 Timer0 Timer0 Timer1
Timer3
Timer4
Timer5

Timer1
Timer3
Timer4
Timer5

Timer1
Timer3
Timer4
Timer5

mega8U2, mega16U2, mega32U2,
AT90USB82, AT90USB162

Timer0 Timer1 Timer0 Timer0 Timer1 Timer1 Timer1

mega16U4, mega32U4 Timer0 Timer3 Timer4 Timer4 Timer1
Timer3

Timer1
Timer3

Timer1
Timer3

AT90CAN32, AT90CAN64, AT90CAN128,
AT90USB646, AT90USB647, AT90USB1286,
AT90USB1287

Timer2 Timer3 Timer0 Timer0 Timer1
Timer3

Timer1
Timer3

Timer1
Timer3

xmegaA1, xmegaA1U TimerC1 TimerF1 TimerD1 - TimerC0
TimerD0
TimerD1
TimerE0
TimerE1
TimerF0
TimerF1

TimerC0
TimerD0
TimerD1
TimerE0
TimerE1
TimerF0
TimerF1

TimerC0
TimerD0
TimerD1
TimerE0
TimerE1
TimerF0
TimerF1

xmegaA3, xmegaA3U,
xmegaA3B, xmegaA3BU

TimerC1 TimerE1 TimerD1 - TimerC0
TimerD0
TimerD1
TimerE0
TimerE1
TimerF0

TimerC0
TimerD0
TimerD1
TimerE0
TimerE1
TimerF0

TimerC0
TimerD0
TimerD1
TimerE0
TimerE1
TimerF0

xmegaA4, xmegaA4U TimerC1 TimerE0 TimerD1 - TimerC0
TimerD0
TimerD1
TimerE0

TimerC0
TimerD0
TimerD1
TimerE0

TimerC0
TimerD0
TimerD1
TimerE0

xmegaD3 TimerC1 TimerF0 TimerD0 - TimerC0
TimerD0
TimerE0
TimerF0

TimerC0
TimerD0
TimerE0
TimerF0

TimerC0
TimerD0
TimerE0
TimerF0

xmegaD4 TimerC1 TimerE0 TimerD0 - TimerC0
TimerD0
TimerE0

TimerC0
TimerD0
TimerE0

TimerC0
TimerD0
TimerE0

When used, the RTC Timer is configured to generate an interrupt that is used to update the RTC and to
trigger task switching. Because its role is so central, the RTC Timer (i f enabled) cannot be used for any
other purpose. The I/O Timer is used by several I/O related routines as explained in more detail below.
The Serial Timer is used to generate interrupts to implement the timing required for serial channels Com3
to Com6. If none of the channels 3-6 are open, the Serial Port Timer can be used for other purposes in
your program. Timers are also used for some specialized I/O functions as indicated in the table above.

On ATtiny and ATmega targets, the Serial timer is also used for 8-bit PWM generation. Consequently,
use of 8-bit PWM and use of Com3 to Com6 are mutually exclusive. On some target devices, the same
timer is indicated for both the RTC and the Serial/8-bit PWM functions. For these devices, the application
can employ the RTC or the Serial/8-bit PWM functions but not both.

For each timer, there exists a built-in variable that indicates when the timer is in use. For example,
Register.Timer0Busy and Register.TimerC1Busy are Boolean values that indicate when Timer0

ZBasic System Library 13 ZBasic Microcontrollers

(ATtiny, ATmega) and TimerC1 (ATxmega), respectively, are in use. Prior to using a timer, the ZBasic
System Library code checks the value of this variable to see if it is already being used. If it is not in use,
the system sets the flag to True and then proceeds to use the timer. When it is finished using the timer,
the system sets the busy flag to False.

Your appplication may do the same by passing the Register variable as a parameter to the Semaphore()
function in order to get exclusive access to the timer. Of course, you must set timer busy flag to False

when your code is finished with the timer to indicate that the timer is no longer in use. Likewise, you may
want to acquire a semaphore on a timer busy flag for the I/O Timer before calling a System Library routine
that uses I/O Timer. If you succeed in setting the semaphore you’ll know that the timer is not already in
use. An example of code for this purpose (for ZBasic devices that use Timer1 for the I/O Timer) is shown
below.

' wait until the timer is available
Do While (Not Semaphore(Register.Timer1Busy))
 Call Sleep(0.5)
Loop

' use the timer
Call LockTask()
Register.Timer1Busy = False
Call ShiftOut(12, 13, 8, &H55)
Call UnlockTask()

Note, particularly, the line immediately before the call to ShiftOut(). After the semaphore is acquired

Regsister.Timer1Busy will be True. Unless it is set to False, the call to ShiftOut() will fail
because that subroutine will think that the timer is in use.

Caution: setting the busy flag for a timer to True and never setting it back to False will prevent the
proper functioning of all System Library routines that require that timer.

I/O Timer Prescaler Values

Some of the System Library routines that use the I/O Timer allow you to modify the frequency used to
clock the timer while others use a fixed frequency determined by the requirements of the routine. The
routines that do allow frequency modification are divided into two groups, one controlled by the value of
Register.TimerSpeed1 and the other controlled by the value of Register.TimerSpeed2. The

table below shows the System Library routines that use a timer and, where applicable, the timer speed
variable that controls the timer frequency.

System Library Routines Using TimerSpeed Values

Routine TimerSpeed Value
ADCtoCom1()
Com1toDAC()

CountTransitions() TimerSpeed1
FreqOut()
Get1Wire()
Get1WireByte()
Get1WireData()
I2CCmd()2 TimerSpeed1
I2CGetByte()2 TimerSpeed1
I2CPutByte()2 TimerSpeed1
InputCapture() TimerSpeed1
InputCaptureEx() TimerSpeed1

OutputCapture() TimerSpeed1
OutputCaptureEx() TimerSpeed1
OpenPWM()
OpenPWM8()

ZBasic System Library 14 ZBasic Microcontrollers

RCTime() TimerSpeed2¹
PlaySound()
PulseIn() TimerSpeed2¹

PulseOut() TimerSpeed2¹
Put1Wire()
Put1WireByte()
Put1WireData()
PWM()
PWM8()
Reset1Wire()
ShiftIn() TimerSpeed1
ShiftInEx() TimerSpeed1
ShiftOut() TimerSpeed1
ShiftOutEx() TimerSpeed1
SPICmd()2 TimerSpeed1
X10Cmd()

 Notes:
1) The timer frequency is scaled in some cases. See below.
2) The timer is used only for software based channels.

The table below shows the correspondence between the allowable values for the TimerSpeed registers
and the resulting clock frequency applied to the I/O Timer in terms of the CPU frequency. The divisor
specified is applied to the CPU clock frequency to yield the I/O Timer clock frequency. For compatibility
with BasicX (but only for ZX processors running at 14.7456MHz), some of the routines effectively divide
the timer frequency by 2 so that the time units associated with parameters or return values are preserved.
If you change the timer speed setting, the scale factor is still applied.

TimerSpeed Selector Values

TimerSpeed
Value

Frequency
ATtiny, ATmega

Frequency
ATxmega

0 0 0

1 F_CPU / 1 F_CPU / 1

2 F_CPU / 8 F_CPU / 2

3 F_CPU / 64 F_CPU / 4

4 F_CPU / 256 F_CPU / 8

5 F_CPU / 1024 F_CPU / 64

6 External T1 F_CPU / 256

7 External T2 F_CPU / 1024

8-15 n/a Event 0-7

The default values of Register.TimerSpeed1 and Register.TimerSpeed2 are shown in the table
below.

Default TimerSpeed Values

CPU Family TimerSpeed1 TimerSpeed2
ATmega, ATtiny 1 2

ATxmega 2 4

Note that setting the value of either of the timer speed registers other than by direct assignment using an
assignment statement will produce undefined results.

There are several important facts to keep in mind if you modify either of the timer speed values. Firstly,
the timer speed values are initialized by the system when it begins running and they are never modified
by the system thereafter. If you change a timer speed value, that value will be used by all of the related
System Library routines until you change it again. Secondly, the applicable TimerSpeed value is used
during the configuration and setup of each I/O function. If you change the TimerSpeed value after a
particular I/O function is configured, the change will not affect I/O functions configured before that change.

ZBasic System Library 15 ZBasic Microcontrollers

Note, also, that values returned by some of the System Library routines are scaled based on the default
timer speed values. If you change the timer speed setting, you’ll have to apply an additional scale factor
in order to get the correct results. For example, if you set Register.TimerSpeed2 to 3 on an ATmega-
based device running at 14.7MHz and then call the subroutine PulseIn(), a pulse having a width of

100µ S will return the value of approximately 12.5µ S since the clock speed that you specified is 1/8 that of
the default. In order to get the correct pulse width, in seconds, you will have to multiply the value returned
by 8. Those return values that are not scaled to seconds represent a number of periods of the timer
frequency. So, for example, if you change Register.TimerSpeed1 to 2 on an ATmega-based device
running at 14.7MHz, the values returned by InputCapture() represent units of 542nS instead of the

default 67.8nS.

Timer Output Compare Pin Mapping

For those devices that support mapping of timer compare outputs to physical pins, the table below shows
the default mapping. You can specify a different mapping for your application by using the device
configuration parameter TimerOCPin. See the description of this device parameter in the ZBasic

Lanugage Reference Manual.

Default Output Compare Pin Mapping

Device

Timer Compare
Output

TOCCn

Pin

tiny828 OC0A 0 C.0

 OC0B 1 C.1

 OC1A 6 C.6

 OC1B 7 C.7

tiny441, tiny841 OC0A 5 A.6

 OC0B 4 A.5

 OC1A 7 B.2

 OC1B 6 A.7

 OC2A 3 A.4

 OC2B 2 A.3

16-Bit PWM Timers

The tables below give the set of valid 16-bit PWM channels, the associated timer, and the corresponding
output pin for each channel. See OpenPWM for the details of setting up a 16-bit PWM output.

16-bit PWM Timers, Channels and Pins for ZX Devices

ZX Device Timer Chan. Pin Chan. Pin Chan. Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n Timer1 1 26, D.5 2 27, D.4
ZX-24e, ZX-24ae, ZX-24ne,
ZX-24pe, ZX-24nu, ZX-24pu

Timer1 1 15, D.5

2 16, D.4

ZX-40, ZX-40a, ZX-40p, ZX-40n Timer1 1 19, D.5 2 18, D.4
ZX-44, ZX-44a, ZX-44p, ZX-44n Timer1 1 14, D.5 2 13, D.4

ZX-24r, ZX-24s, ZX-24t Timer1
Timer3

1
3

26, D.5
B.6

2
4

27, D.4
B.7

ZX-24ru, ZX-24su Timer1
Timer3

1
3

15, D.5
22, B.6

2
4

16, D.4
21, B.7

ZX-40r, ZX-40s, ZX-40t Timer1
Timer3

1
3

19, D.5
7, B.6

2
4

18, D.4
8, B.7

ZX-44r, ZX-44s, ZX-44t Timer1
Timer3

1
3

14, D.5
2, B.6

2
4

13, D.4
3, B.7

ZX-328n, ZX-328l Timer1 1 15, B.1 2 16, B.2

ZX-32n, ZX-32l Timer1 1 13, B.1 2 14, B.2
ZX-328nu Timer1 1 12, B.1 2 13, B.2

ZBasic System Library 16 ZBasic Microcontrollers

ZX-1281, ZX-1281n

Timer1
Timer3

1
4

15, B.5
5, E.3

2
5

16, B.6
6, E.4

3
6

17, B.7
7, E.5

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne Timer1
Timer3

1
4

23, B.5
17, E.3

2
5

22, B.6
16, E.4

3
5

21, B.7
16, E.5

ZX-1280, ZX-1280n Timer1
Timer3
Timer4
Timer5

1
4
7
10

24, B.5
5, E.3

15, H.3
38, L.3

2
5
8
11

25, B.6
6, E.4

16, H.4
39, L.4

3
6
9

12

26, B.7
7, E.5
17, H.5
40, L.5

ZX-24x, ZX-24u TimerD0
TimerD1
TimerC0

TimerE0

1
3
5
7
9
11

26, D.0
D.4

12, C.0
10, C.2
25, E.0
18, E.2

2
4
6
8
10
12

27, D.1
D.5

11, C.1
9, C.3

17, E.1
19, E.3

ZX-32a4 TimerD0
TimerD1
TimerC0

TimerE0

1
3
5
7
9
11

20, D.0
24, D.4
10, C.0
12, C.2
28, E.0
32, E.2

2
4
6
8
10
12

21, D.1
25, D.5
11, C.1
13, C.3
29, E.1
33, E.3

ZX-24xu TimerD0
TimerD1
TimerC0

TimerE0

1
3
5
7
9
11

20, D.0
16, D.4
12, C.0
10, C.2
24, E.0
11, E.2

2
4
6
8
10
12

19, D.1
15, D.5
11, C.1
9, C.3

23, E.1
12, E.3

ZX-128a1 TimerD0
TimerD1
TimerC0

TimerE0

TimerE1
TimerF0

TimerF1

1
3
5
7
9
11
13
15
17
19

25, D.0
29, D.4
15, C.0
17, C.2
35, E.0
37, E.2
39, E.4
45, F.0
47, F.2
49, F.4

2
4
6
8
10
12
14
16
18
20

26, D.1
30, D.5
16, C.1
18, C.3
36, E.1
38, E.3
40, E.5
46, F.1
48, F.3
50, F.5

16-bit PWM Timers, Channels and Pins for Generic Target Devices

Target Device Pkg. Timer Chan. Pin Chan. Pin Chan. Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timer1 1 7, A.6 2 8, A.5

 Q20 Timer1 1 16, A.6 2 20, A.5
tiny48, tiny88 P28 Timer1 1 15, B.1 2 16, B.2
 T28 Timer1 1 11, B.1 2 12, B.2

 T32 Timer1 1 13, B.1 2 14, B.2
tiny441, tiny841

1
 S14 Timer1

Timer2
1
3

5,B.2
9, A.4

2
4

6, A.7
10, A.3

 Q20 Timer1
Timer2

1
3

14,B.2
1, A.4

2
4

15, A.7
2, A.3

tiny87, tiny167 S20 Timer1 1 20, B.0 2 19, B.1

 T32 Timer1 1 28, B.0 2 27, B.1
tiny2313, tiny2313A, tiny4313 P20 Timer1 1 15, B.3 2 16, B.4
 Q20 Timer1 1 13, B.3 2 14, B.4

tiny828
1
 T32 Timer1 1 7, C.6 2 8, C.7

tiny1634 S20 Timer1 1 18, B.3 2 3, A.6
 Q20 Timer1 1 16, B.3 2 1, A.6

mega48, mega48A, mega48P, mega48PA,
mega48PB, mega88, mega88A, mega88P,
mega88PA, mega88PB, mega168, mega168A,

P28 Timer1 1 15, B.1 2 16, B.2

ZBasic System Library 17 ZBasic Microcontrollers

mega168P, mega168PA, mega168PB,
mega328, mega328P, mega328PB

 T28 Timer1 1 11, B.1 2 12, B.2
 T32 Timer1 1 13, B.1 2 14, B.2
(mega328PB only) T32 Timer3 3 30, D.0 4 32, D.2

(mega328PB only) T32 Timer4 5 31, D.1 6 32, D.2
mega16, mega16A, mega32, mega32A,
mega644, mega644A, mega164A, mega164P,

mega164PA, mega324P, mega324PA,
mega644P, mega644PA

P40 Timer1 1 19, D.5 2 18, D.4

T44 Timer1 1 14, D.5

2 13, D.4

mega1284P P40 Timer1
Timer3

1
3

19, D.5
7, B.6

2
4

18, D.4
8, B.7

 P44 Timer1
Timer3

1
3

14, D.5
2, B.6

2
4

13, D.4
3, B.7

mega64, mega64A, mega128, mega128A,
mega1281, mega2561, AT90CAN32,
AT90CAN64, AT90CAN128

T64 Timer1
Timer3

1
4

15, B.5
17, B.7

2
5

16, B.6
6, E.4

3
6

5, E.3
7, E.5

AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287

T64 Timer1
Timer3

1
4

15, B.5
41, C.6

2
5

16, B.6
40, C.5

3
6

17, B.7
39, C.4

mega640, mega1280, mega2560 T100 Timer1
Timer3
Timer4
Timer5

1
4
7

10

24, B.5
5, E.3

15, H.3
38, L.3

2
5
8

11

25, B.6
6, E.4

16, H.4
39, L.4

3
6
9
12

26, B.7
7, E.5
17, H.5
40, L.5

mega8U2, mega16U2, mega32U2
AT90USB82, AT90USB162

T32 Timer1 1 23, C.6

2 25, C.5 3 12, B.7

mega16U4, mega32U4 T44 Timer1
Timer3

1
4

29, B.5
31, C.6

2

30, B.6 3 21, B.7

mega8515 P40 Timer1 1 15, D.5 2 29, E.2
 T44 Timer1 1 11, D.5 2 26, E.2

 L44 1 17, D.5 2 32, E.2
mega8535 P40 Timer1 1 19, D.5 2 18, D.4
 T44 Timer1 1 14, D.5 2 13, D.4

 L44 Timer1 1 20, D.5 2 19, D.4
mega162 P40 Timer1

Timer3
1
3

19, D.5
14, D.4

2
4

29, E.2
5, B.4

 T44 Timer1
Timer3

1
3

11, D.5
10, D.4

2
4

26, E.2
44, B.4

mega161, mega163, mega323 all -

mega165, mega165A, mega165P, mega165PA,
mega325, mega325P, mega645, mega645A,
mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P

T64 Timer1 1 15, B.5 2 16. B.6

mega3250, mega3250P, mega6450,
mega6450A, mega6450P, mega3290,
mega3290P, mega6490, mega6490A,
mega6490P

T100 Timer1 1 24, B.5 2 25. B.6

xmegaA1, xmegaA1U T100 TimerD0
TimerD1
TimerC0

TimerE0

TimerE1
TimerF0

1
3
5
7
9

11
13
15
17

25, D.0
29, D.4
15, C.0
17, C.2
35, E.0
37, E.2
39, E.4
45, F.0
47, F.2

2
4
6
8

10
12
14
16
18

26, D.1
30, D.5
16, C.1
18, C.3
36, E.1
38, E.3
40, E.5
46, F.1
48, F.3

ZBasic System Library 18 ZBasic Microcontrollers

TimerF1 19 49, F.4 20 50, F.5

xmegaA3, xmegaA3B,
xmegaA3U, xmegaA3BU

T64 TimerD0
TimerD1
TimerC0

TimerE0

TimerE1
TimerF0

1
3
5
7
9

11
13
15
17

26, D.0
30, D.4
16, C.0
18, C.2
36, E.0
38, E.2
40, E.4
46, F.0
48, F.2

2
4
6
8

10
12
14
16
18

27, D.1
31, D.5
17, C.1
19, C.3
37, E.1
39, E.3
42, E.5
47, F.1
49, F.3

xmegaA4, xmegaA4U T44 TimerD0
TimerD1
TimerC0

TimerE0

1
3
5
7
9

11

20, D.0
24, D.4
10, C.0
12, C.2
28, E.0
32, E.2

2
4
6
8

10
12

21, D.1
25, D.5
11, C.1
13, C.3
29, E.1
33, E.3

xmegaD3 T64 TimerD0
TimerC0

TimerE0

TimerF0

1
3
5
7
9

11
13

26, D.0
16, C.0
18, C.2
36, E.0
38, E.2
46, F.0
48, F.2

2
4
6
8

10
12
14

27, D.1
17, C.1
19, C.3
37, E.1
39, E.3
47, F.1
49, F.3

xmegaD4 T44 TimerD0
TimerC0

TimerE0

1
3
5
7
9

20, D.0
10, C.0
12, C.2
28, E.0
32, E.2

2
4
6
8

10

21, D.1
11, C.1
13, C.3
29, E.1
33, E.3

1
These devices support mapping of timer output compare pins; the pins listed are the default pins.

8-Bit PWM Timers

The tables below give the set of valid 8-bit PWM channels, the associated timer, and the corresponding
output pin for each channel. See OpenPWM8 for the details of setting up an 8-bit PWM output.

8-bit PWM Timers, Channels and Pins for ZX Devices

ZX Device Timer Chan. Pin Chan. Pin

ZX-24 Timer2 1 25, D.7 -
ZX-40 Timer2 1 21, D.7 -
ZX-44 Timer2 1 16, D.7 -

ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t Timer2 1 25, D.7 2 12, D.6
ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t Timer2 1 21, D.7 2 20, D.6
ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t Timer2 1 16, D.7 2 15, D.6

ZX-328n, ZX-328l Timer2 1 17, B.3 2 5, D.3
ZX-32n, ZX-32l Timer2 1 15, B.3 2 1, D.3
ZX-1281, ZX-1281n Timer0 1 17, B.7 2 1, G.5

ZX-1280, ZX-1280n Timer0 1 26, B.7 2 1, G.5
ZX-24e Timer2 1 13, D.7 -
ZX-24ae, ZX-24ne, ZX-24pe,
ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su

Timer2 1 13, D.7 2 14, D.6

ZX-128e, ZX-128ne Timer2 1 17, B.7 -
ZX-1281e, ZX-1281ne Timer0 1 21, B.7 2 G.5

ZX-328nu Timer2 1 14, B.3 2 6, D.3

ZBasic System Library 19 ZBasic Microcontrollers

8-bit PWM Timers, Channels and Pins for Generic Target Devices

Target Devices Pkg. Timer Chan. Pin Chan. Pin

tiny48, tiny88 all -
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timer0 1 5, B.2 2 6, A.7
 Q20 1 14, B.2 2 15, A.7

tiny87, tiny167 S20 Timer0 1 3, A.2
 T32 1 31, A.2
tiny2313, tiny2313A, tiny4313 P20 Timer0 1 14, B.2 2 9, D.5

 Q20 1 7, B.2 2 12, D.5
tiny828

1
 T32 Timer0 1 31, C.0 2 32, C.1

tiny441, tiny841
1
 S14 Timer0 1 7, A.6 2 8, A.5

 Q20 1 16, A.6 2 20, A.5
tiny1634 S20 Timer0 1 17, C.0 2 4, A.5
 Q20 1 15, C.0 2 2, A.5

mega8, mega8A P28 Timer2 1 17, B.3
 T28 1 13, B.3
 T32 1 15, B.3

mega48, mega48A, mega48P, mega48PA, mega48PB, mega88,
mega88A, mega88P, mega88PA, mega88PB, mega168,
mega168A, mega168P, mega168PA, mega168PB, mega328,
mega328P, mega328PB

P28 Timer2 1 17, B.3 2 5, D.3

 T28 1 13, B.3 2 1, D.3
 T32 1 15, B.3 2 1, D.3

mega16, mega16A, mega32, mega32A P40 Timer2 1 21, D.7

T44 1 16, D.7

mega644, mega644A, mega164A, mega164P, mega164PA,
mega324P, mega324PA, mega644P, mega644PA, mega1284P

P40 Timer2 1 21, D.7 2 20, D.6

T44 1 16, D.7 2 15, D.6

mega64, mega64A, mega128, mega128A, AT90CAN32,
AT90CAN64, AT90CAN128

T64 Timer0 1 17, B.7

mega1281, mega2561 T64 Timer0 1 17, B.7 2 1, G.5
AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 T64 Timer0 1 17, B.7 2 25, D.0
mega640, mega1280, mega2560 T100 Timer0 1 26, B.7 2 1, G.5

mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 T32 Timer0 1 21, B.7 6 6, B.0
mega16U4, mega32U4 T44 Timer4 1

3
32, C.7
27, D.7

2 30, B.6

mega8515 P40 Timer0 1 1, B.0
 T44 1 40, B.0
 L44 1 2, B.0

mega8535 P40 Timer2 1 21, D.7
 T44 1 16, D.7
 L44 1 22, D.7

mega161, mega162 P40 Timer2 1 2, B.1
 T44 1 41, B.1
mega163, mega323 P40 Timer2 1 21, D.7

 T44 1 16, D.7
mega165, mega165A, mega165P, mega165PA, mega325,
mega325P, mega645, mega645A, mega645P, mega169,
mega169A, mega169P, mega169PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P

T64 Timer2 1 17, B.7

mega3250, mega3250P, mega6450, mega6450A, mega6450P,
mega3290, mega3290P, mega6490, mega6490A, mega6490P

T100 Timer2 1 26, B.7

all xmega all -
1
These devices support mapping of timer output compare pins; the pins listed are the default pins.

ZBasic System Library 20 ZBasic Microcontrollers

Input Capture Timers

The tables below give the set of valid pins for the InputCaptureEx subroutine and also indicate (with an
asterisk) the default pin used by the InputCapture subroutine. When an input capture operation has been
started successfully, the corresponding timer busy flag (e.g. Register.Timer1Busy) will be set True

for the duration of the input capture operation. Note that an input capture cannot be used at the same
time as an output capture operation involving the same timer.

For native code ZX devices and all generic target devices, at least two ISRs will be automatically provided
by the compiler to facilitate the input capture operation corresponding to the capture interrupt and the
timer overflow interrupt. The names of the interrupt vectors are related to the timer being used. For
example, for Timer1 the names are Timer1_Capt and Timer1_OVF. Note that if the compiler cannot
determine at compile time which timer will be used, the capture and timer overflow ISRs for all possible
timers will be included in the application.

Valid Input Capture Pins for ZX Devices

ZX Device Timer Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n Timer1 12, D.6*
ZX-40, ZX-40a, ZX-40p, ZX-40n Timer1 20, D.6*

ZX-44, ZX-44a, ZX-44p, ZX-44n Timer1 15, D.6*
ZX-24r, ZX-24s, ZX-24t Timer1

Timer3
12, D.6*

B.5

ZX-40r, ZX-40s, ZX-40t Timer1
Timer3

20, D.6*
6, B.5

ZX-44r, ZX-44s, ZX-44t Timer1
Timer3

15, D.6*
1, B.5

ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu Timer1 14, D.6*
ZX-24ru, ZX-24su Timer1

Timer3
14, D.6*
23, B.5

ZX-328n, ZX-328l Timer1 14 B.0*
ZX-32n, ZX-32l Timer1 12 B.0*

ZX-1281, ZX-1281n Timer1
Timer3

29, D.4*
9, E.7

ZX-1280, ZX-1280n Timer1
Timer3
Timer4
Timer5

47, D.4*
9, E.7
35, L.0
36, L.1

ZX-24x, ZX-24u TimerC0
TimerD0
TimerE0

12, C.0*
26, D.0
25, E.0

ZX-32a4 TimerC0
TimerD0
TimerE0

10, C.0*
20, D.0
28, E.0

ZX-128a1 TimerC0
TimerD0
TimerE0
TimerE1
TimerF0
TimerF1

15, C.0*
25, D.0
35, E.0
39, E.4
45, F.0
49, F.4

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne Timer1
Timer3

8, D.4*
13, E.7

ZX-328nu Timer1 11, B.0*

ZX-24xu TimerC0
TimerD0
TimerE0

12, C.0*
20, D.0
24, E.0

ZBasic System Library 21 ZBasic Microcontrollers

Valid Input Capture Pins for Generic Target Devices

Underlying CPU Type Pkg. Timer Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timer1 6, A.7*
 Q20 Timer1 15, A.7*
tiny48, tiny88 P28 Timer1 14, B.0*

 T28 Timer1 10, B.0*
 T32 Timer1 12, B.0*
tiny441, tiny841 S14 Timer1

Timer2
6, A.7*
5, B.2

 Q20 Timer1
Timer2

15, A.7*
14, B.2

tiny87, tiny167 S20 Timer1 7, A.4*
 T32 Timer1 9, A.4*
tiny2313, tiny2313A, tiny4313 P20 Timer1 11, D.6*

 Q20 Timer1 9, D.6*
tiny828 T32 Timer1 6, C.5*
tiny1634 S20 Timer1 16, C.1*

 Q20 Timer1 14, C.1*
mega48, mega48A, mega48P, mega48PA, mega48PB, mega88,
mega88A, mega88P, mega88PA, mega88PB, mega168,
mega168A, mega168P, mega168PA, mega168PB, mega328,
mega328P, mega328PB

P28 Timer1 14, B.0*

 T32 Timer1 12, B.0*

(mega328PB only) T32 Timer3 19, E.2
(mega328PB only) T32 Timer4 3, E.0*
mega16, mega16A, mega164A, mega164P, mega164PA, mega32,
mega32A, mega324P, mega324PA, mega644, mega644A,
mega644P, mega644PA

P40 Timer1 20, D.6*

 T44 Timer1 15, D.6*

mega1284P P40 Timer1
Timer3

20, D.6*
6, B.5

 T44 Timer1
Timer3

15, D.6*
1, B.5

mega8515 P40 Timer1 31*
 T44 Timer1 21*

 L44 Timer1 35*
mega8535, mega163, mega323 P40 Timer1 20, D.6*
 T44 Timer1 15, D.6*

 L44 Timer1 21, D.6*
mega161, mega162 P40 Timer1 31, E.0*
 T44 Timer1 29, E.0*

mega165, mega165A, mega165P, mega165PA, mega325,
mega325P, mega645, mega645A, mega645P,
mega169, mega169A, mega169P, mega169PA, mega329,
mega329P, mega329PA, mega649, mega649A, mega649P

T64 Timer1 25, D.0*

mega3250, mega3250P, mega6450, mega6450A, mega6450P,
mega3290, mega3290P, mega6490, mega6490A, mega6490P

T100 Timer1 43, D.0*

mega1281, mega2561, mega64, mega64A, mega128, mega128A
AT90CAN32, AT90CAN64, AT90CAN128, AT90USB646,
AT90USB647, AT90USB1286, AT90USB1287

T64 Timer1
Timer3

29, D.4*
9, E.7

mega640, mega1280, mega2560 T100 Timer1
Timer3
Timer4
Timer5

47, D.4*
9, E.7
35, L.0
36, L.1

mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 T32 Timer1 22, C.7*
mega16U4, mega32U4 T44 Timer1

Timer3
25, D.4*
32, C.7

xmegaA1, xmegaA1U T100 TimerC0 15, C.0*

ZBasic System Library 22 ZBasic Microcontrollers

TimerD0
TimerE0
TimerE1
TimerF0
TimerF1

25, D.0
35, E.0
39, E.4
45, F.0
49, F.4

xmegaA3, xmegaA3BU, xmegaA3U, xmegaA3BU T64 TimerC0
TimerD0
TimerE0
TimerF0

16, C.0*
26, D.0
36, E.0
46, F.0

xmegaA4, xmegaA4U T44 TimerC0
TimerD0
TimerE0

10, C.0*
20, D.0
28, E.0

xmegaD3 T64 TimerC0
TimerD0
TimerE0
TimerF0

16, C.0*
26, D.0
36, E.0
46, F.0

xmegaD4 T44 TimerC0
TimerD0
TimerE0

10, C.0*
20, D.0
28, E.0

Output Capture Timers

The tables below give the set of pins and corresponding timers that can be used by the OutputCaptureEx
subroutine and also indicate (with an asterisk) the default pin used by the OutputCapture subroutine.
When an output capture operation has been started successfully, the corresponding timer busy flag (e.g.
Register.Timer1Busy) will be set True for the duration of the output capture operation. Note that an
output capture cannot be used at the same time as an input capture operation involving the same timer.

When performing an output capture on a general I/O pin (i.e. a pin not listed in the tables below), any
available 16-bit timer will be used to generate the required timing. If no 16-bit timer is available at the
time, the routine will return immediately.

For native code ZX devices and all generic target devices, at least one ISR will be provided by the
compiler automatically to facilitate the output capture operation corresponding to the timer compare
interrupt. The names of the interrupt vectors are related to the timer and the compare register being
used. For example, for an ATtiny or ATmega device using Timer1 the ISR name would be
Timer1_COMPB while for an xmega device for TimerC0 the ISR name would be TIMERC0_CCB. Note
that if the compiler cannot determine at compile time which timer and compare register will be used, or if
output capture on a general I/O pin is specified, the “compare B” ISRs for all possible timers will be
included in the application.

Hardware Output Capture Pins for ZX Devices

ZX Device

Timer

Output
Pin

Timer

Output
Pin

ZX-24, ZX-24a, ZX-24p, ZX-24n Timer1 27, D.4*

ZX-40, ZX-40a, ZX-40p, ZX-40n Timer1 18, D.4*
ZX-44, ZX-44a, ZX-44p, ZX-44n Timer1 13, D.4*
ZX-24r, ZX-24s, ZX-24t Timer1 27, D.4* Timer3 B.7

ZX-40r, ZX-40s, ZX-40t Timer1 18, D.4* Timer3 8, B.7
ZX-44r, ZX-44s, ZX-44t Timer1 13, D.4* Timer3 3, B.7
ZX-328n, ZX-328l Timer1 16, B.2*

ZX-32n, ZX-32l Timer1 14, B.2*
ZX-1281, ZX-1281n Timer1

Timer3
16, B.6*
6, E.4

Timer1 17, B.7
1

ZX-1280, ZX-1280n Timer1
Timer3
Timer5

25, B.6*
6, E.4
39, L.4

Timer1
Timer4

26, B.7
1

16, H.4

ZX-24x, ZX-24u TimerC0 11, C.1 TimerD0 27, D.1*

ZBasic System Library 23 ZBasic Microcontrollers

TimerE0 17, E.1
ZX-32a4 TimerC0

TimerE0
11, C.1
29, E.1

TimerD0 21, D.1*

ZX-128a1 TimerC0
TimerE0
TimerF0

16, C.1
36, E.1
46, F.1

TimerD0
TimerE1
TimerF1

26, D.1*
40, E.5
50, F.5

ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu Timer1 13, D.4*
ZX-24ru, ZX-24su Timer1 16, D.4* Timer3 21, B.7

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne Timer1
Timer3

22, B.6*
16, E.4

Timer1 21, B.7
1

ZX-328nu Timer1 13, B.2*

ZX-24xu TimerC0
TimerE0

11, C.1
23, E.1

TimerD0 13, D.1*

*
Denotes the default OutputCapture pin.

1
Requires the TIMER1_COMPC ISR and supports OutputCapture modulation.

Hardware Output Capture Pins for Generic Target Devices

Target Device

Pkg.

Timer

Output
Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timer1 8, A.5*

 Q20 Timer1 20, A.5*
tiny48, tiny88 P28 Timer1 16, B.2*
 T28 Timer1 12, B.2*

 T32 Timer1 14, B.2*
tiny441, tiny841

2
 S14 Timer1

Timer2
6, A.7*
10, A.3

 Q20 Timer1
Timer2

15, A.7*
2, A.3

tiny87, tiny167 S20 Timer1 19, B.1*

 T32 Timer1 27, B.1*
tiny2313, tiny2313A, tiny4313 P20 Timer1 16, B.4*
 Q20 Timer1 14, B.4*

tiny828
2
 T32 Timer1 8, C.7*

tiny1634 S20 Timer1 3, A.6*
 Q20 Timer1 1, A.6*

mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A,
mega88P, mega88PA, mega88PB, mega168, mega168A, mega168P,
mega168PA, mega168PB, mega328, mega328P, mega328PB

P28 Timer1 16, B.2*

 T28 Timer1 12, B.2*
 T32 Timer1 14, B.2*
(mega328PB only) T32 Timer3 32, D.2

(mega328PB only) T32 Timer4 32, D.2
mega16, mega16A, mega32, mega32A, mega644, mega644A, mega164A,
mega164P, mega164PA, mega324P, mega324PA, mega644P, mega644PA

P40 Timer1 18, D.4*

 T44 Timer1 13, D.4*
mega1284P P40 Timer1

Timer3
18, D.4*
8, B.7

 T44 Timer1
Timer3

13, D.4*
3, B.7

mega64, mega64A, mega128, mega128A, mega1281, mega2561,
AT90CAN32, AT90CAN64, AT90CAN128

T64 Timer1
Timer1
Timer3

16, B.6*
17, B.7

1

6, E.4
AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 T64 Timer1

Timer1
Timer3

16, B.6*
17, B.7

1

40, C.5
mega640, mega1280, mega2560 T100 Timer1

Timer1
Timer3

25, B.6*
26, B.7

1

6, E.4

ZBasic System Library 24 ZBasic Microcontrollers

Timer4
Timer5

16, H.4
39, L.4

mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 T32 Timer1 25, C.5*
mega16U4, mega32U4 T44 Timer1 30, B.6*
mega8515 P40 Timer1 29, E.2*

 T44 Timer1 26, E.2*
 L44 Timer1 32, E.2*
mega8535, mega163, mega323 P40 Timer1 18, D.4*

 T44 Timer1 13, D.4*
 L44 Timer1 19, D.4*
mega161 P40 Timer1 29, E.2*

 T44 Timer1 26, E.2*
mega162 P40 Timer1

Timer3
29, E.2*
5, B.4

 T44 Timer1
Timer3

26, E.2*
44, B.4

mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega645, mega645A, mega645P,
mega169, mega169A, mega169P, mega169PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P

T64 Timer1 16. B.6*

mega3250, mega3250P, mega6450, mega6450A, mega6450P, mega3290,
mega3290P, mega6490, mega6490A, mega6490P

T100 Timer1 25. B.6*

xmegaA1, xmegaA1U T100 TimerC0
TimerD0
TimerE0
TimerE1
TimerF0
TimerF1

16, C.1
26, D.1*
36, E.1
40, E.5
46, F.1
50, F.5

xmegaA3, xmegaA3B, xmegaA3B, xmegaA3BU T64 TimerC0
TimerD0
TimerE0
TimerE1
TimerF0

17, C.1
27, D.1*
37, E.1
41, E.5
47, F.1

xmegaA4, xmegaA4U T44 TimerC0
TimerD0
TimerE0

11, C.1
21, D.1*
29, E.1

xmegaD3 T64 TimerC0
TimerD0
TimerE0
TimerF0

17, C.1
27, D.1*
37, E.1
47, F.1

xmegaD4 T44 TimerC0
TimerD0
TimerE0

11, C.1
21, D.1*
29, E.1

*
Denotes the default OutputCapture pin.

1
Requires the TIMER1_COMPC ISR and supports OutputCapture modulation.

2
These devices support mapping of timer output compare pins; the pins listed are the default pins.

As noted in the two tables above, some devices support OutputCapture modulation on a dedicated pin.
This capability allows the OutputCapture waveform to modulate the compare output of the Serial Timer.
See the description of OutputCaptureEx for more information.

SPI Controllers

On some ZX devices, your program is stored in an external EEPROM that is read and written using the
SPI interface. A dedicated I/O pin is required for selecting the EEPROM device during SPI operations
and this I/O pin cannot be used for other purposes. However, the SPI bus itself can be used to
communicate with other SPI devices. Although most SPI devices are tolerant of the ZX device using the
SPI bus to fetch instructions from your program, some are not. Generally speaking, if you can send and

ZBasic System Library 25 ZBasic Microcontrollers

receive all of the data that an SPI device requires using a single call to SPICmd(), then that SPI device is
usable with the ZX models that utilize an external EEPROM.

The table below indicates which ZX devices use an external EEPROM for user program storage and, if
so, the I/O pin used for the chip select. For devices that do not use an external EEPROM for user
program storage, the indicated chip select pin can be used for general purpose I/O with the proviso that if
the SPI controller is used in the application program the chip select pin must either be an output or it must
be held high during SPI transactions.

SPI EEPROM Usage and Control/Data Pins By Controller Index for ZX Devices

ZX Device

Uses SPI
EEPROM

Ctrl.
Idx.

CS
Pin

SCK
Pin

MOSI
Pin

MISO
Pin

ZX-24, ZX-24a, ZX-24p Yes 0¹ B.4 B.7 B.5 B.6

ZX-40, ZX-40a, ZX-40p Yes 0 5, B.4 8, B.7 6, B.5 7, B.6
ZX-44, ZX-44a, ZX-44p Yes 0 44, B.4 3, B.7 1, B.5 2, B.6
ZX-24x, ZX-24u No 0¹

1
D.4

8, C.4
D.7

5. C.7
D.5

7, C.5
D.6

6, C.6
ZX-24n, ZX-24r, ZX-24s, ZX-24t No 0¹ B.4 B.7 B.5 B.6
ZX-40n, ZX-40r, ZX-40s, ZX-40t No 0 5, B.4 8, B.7 6, B.5 7, B.6

ZX-44n, ZX-44r, ZX-44s, ZX-44t No 0 44, B.4 3, B.7 1, B.5 2, B.6
ZX-328n, ZX-328l No 0 16, B.2 19, B.5 17, B.3 18, B.4
ZX-32n, ZX-32l No 0 14, B.2 17, B.5 15, B.3 16, B.4

ZX-1281, ZX-1281n No 0 10, B.0 11, B.1 12, B.2 13, B.3
ZX-1280, ZX-1280n No 0 19, B.0 20, B.1 21, B.2 22, B.3
ZX-32a4 No 0

1
24, D.4
23, C.4

27, D.7
17, C.7

25, D.5
15, C.5

26, D.6
16, C.6

ZX-128a1 No 0
1
2
3

29, D.4
19, C.4
39, E.4
49, F.4

32, D.7
22, C.7
42, E.7
52, F.7

30, D.5
20, C.5
40, E.5
50, F.5

31, D.6
21, C.6
41, E.6
51, F.6

ZX-24e, ZX-24ae, ZX-24pe, ZX-24pu Yes 0 24, B.4 21, B.7 23, B.5 22, B.6

ZX-24ne, ZX-24nu, ZX-24ru, ZX-24su No 0 24, B.4 21, B.7 23, B.5 22, B.6
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne No 0 28, B.0 27, B.1 26, B.2 25, B.3
ZX-328nu No 0 13, B.2 16, B.5 14, B.3 15, B.4

ZX-24xu No 0
1

16, D.4
8, C.4

13, D.7
5. C.7

15, D.5
7, C.5

14, D.6
6, C.6

¹ The SPI pins are found along the edge of the board between pins 1 and 24

For generic target devices, user programs are always stored in internal Flash memory. The table below
shows the chip select pin associated with each on-chip SPI controller as well as the SPI control/data pins.
As described above, the SPI chip select pin(s) may be used for general purpose I/O except that if the
related SPI controller is used in the application program the chip select pin must either be an output or it
must be held high during SPI transactions

SPI Control/Data Pins By Controller Index for Generic Target Devices

Target Device

Pkg.

Ctrl.
Idx.

CS
Pin

SCK
Pin

MOSI
Pin

MISO
Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A,
tiny2313, tiny2313A, tiny4313, tiny1634

all - -

tiny48, tiny88 P28 0 16, B.2 19, B.5 17. B.3 18, B.4
 T28 12, B.2 15, B.5 13. B.3 14, B.4

 T32 14, B.2 17, B.5 15. B.3 16, B.4
tiny441, tiny841 S14 0 6, A.7 9, A.4 7, A.6 8, A.5
 Q20 15, A.7 1, A.4 16, A.6 20, A.5

tiny87, tiny167 S20 0 9, A.6 8, A.5 7, A.4 3, A.2
 T32 11, A.6 10, A.5 9, A.4 31, A.2
tiny828 T32 0 31, C.0 30, D.3 27, D.0 28, D.1

ZBasic System Library 26 ZBasic Microcontrollers

mega48, mega48A, mega48P, mega48PA,
mega48PB, mega88, mega88A, mega88P,
mega88PA, mega88PB, mega168, mega168A,
mega168P, mega168PA, mega168PB, mega328,
mega328P, mega328PB

P28 0 16, B.2 19, B.5 17, B.3 18, B.4

 T28 12, B.2 15, B.5 13, B.3 14, B.4
 T32 14, B.2 17, B.5 15, B.3 16, B.4
(mega328PB only) T32 1 19, E.2 24, C.1 22, E.3 23, C.0

mega16, mega16A, mega164A, mega164P,
mega164PA, mega32, mega32A, mega324P,
mega324PA, mega644, mega644A, mega644P,
mega644PA, mega1284P, mega161, mega162,
mega163, mega323

P40 0 5, B.4 8, B.7 6, B.5 7, B.6

 T44 44, B.4 3, B.7 1, B.5 2, B.6

mega64, mega64A, mega128, mega128A, mega1281,
mega2561, AT90CAN32, AT90CAN64, AT90CAN128

T64 0 10, B.0 11, B.1 12, B.2 13, B.3

mega640, mega1280, mega2560 T100 0 19, B.0 20, B.1 21, B.2 22, B.3

mega8U2, mega16U2, mega32U2
AT90USB82, AT90USB162

T32 0 14, B.0 15, B.1 16, B.2 17, B.3

mega16U4, mega32U4 T44 0 8, B.0 9, B.1 10, B.2 11, B.3

mega8515, mega8535 P40 0 5, B.4 8, B.7 6, B.5 7, B.6
 T44 44, B.4 8, B.7 6, B.5 7, B.6
 L44 6, B.4 9, B.7 7, B.5 8, B.6

mega165, mega165A, mega165P, mega165PA,
mega325, mega325P, mega645, mega645A,
mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA,
mega649, mega649A, mega649P

T64 0 10, B.0 11, B.1 12, B.2 13, B.3

mega3250, mega3250P, mega6450, mega6450A,
mega6450P, mega3290, mega3290P, mega6490,
mega6490A, mega6490P

T100 0 19, B.0 20, B.1 21, B.2 22, B.3

AT90USB646, AT90USB647, AT90USB1286,
AT90USB1287

T64 0 10, B.0 11, B.1 12, B.2 13, B.3

xmegaA1, xmegaA1U T100 0
1
2
3

29, D.4
19, C.4
39, E.4
49, F.4

32, D.7
22, C.7
42, E.7
52, F.7

30, D.5
20, C.5
40, E.5
50, F.5

31, D.6
21, C.6
41, E.6
51, F.6

xmegaA3, xmegaA3B, xmegaA3U, xmegaA3BU T64 0
1
2

30, D.4
20, C.4
40, E.4

33, D.7
23, C.7
43, E.7

31, D.5
21, C.5
41, E.5

32, D.6
22, C.6
42, E.6

xmegaA4, xmegaA4U T44 0
1

24, D.4
23, C.4

27, D.7
17, C.7

25, D.5
15, C.5

26, D.6
16, C.6

xmegaD3 T64 0
1

30, D.4
20, C.4

33, D.7
23, C.7

31, D.5
21, C.5

32, D.6
22, C.6

xmegaD4 T44 0
1

24, D.4
23, C.4

27, D.7
17, C.7

25, D.5
15, C.5

26, D.6
16, C.6

ZBasic System Library 27 ZBasic Microcontrollers

I2C Controllers

For the available hardware I2C channels, the table below gives the pin numbers used for SDA and SCL.

SCL and SDA Pins by Channel for ZX Devices

ZX Device Chan. SCL SDA
ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t 0 12, C.0 11, C.1
ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t 0 22, C.0 23, C.1

ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t 0 19, C.0 20, C.1
ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su 0 12, C.0 11, C.1
ZX-328n, ZX-328l, ZX-32n, ZX-32l 0 28, C.5 27, C.4

ZX-1281, ZX-1281n 0 25, D.0 26, D.1
ZX-1280, ZX-1280n 0 43, D.0 44, D.1
ZX-24x, ZX-24u 0

1
11, C.1
17, E.1

12, C.0
25, E.0

ZX-32a4 0
1

11, C.1
29, E.1

10, C.0
28, E.0

ZX-128a1 0
1
2
3

16, C.1
36, E.1
26, D.1
46, F.1

15, C.0
35, E.0
25, D.0
45, F.0

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne 0 12, D.0 11, D.1
ZX-328nu 0 22, C.5 21, C.4

ZX-24xu 0
1

11, C.1
23, E.1

12, C.0
24, E.0

It is important to note that on the ZX-24n, ZX-24p, ZX-24r, ZX-24s and ZX-24t, the hardware I2C channel
cannot be used while Com2 is open since pin 11 is shared by the SDA signal and TxD for Com2.

SCL and SDA Pins by Channel for Generic Target Devices

Target Device Pkg. Chan. SCL SDA

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny87, tiny167,
tiny2313, tiny2313A, tiny4313, tiny828, tiny441, tiny841, tiny1634

all - - -

tiny48, tiny88 P28 0 28, C.5 27, C.4

 T28 0 24, C.5 23, C.4
 T32 0 28, C.5 27, C.4
mega48, mega48A, mega48P, mega48PA, mega48PB, mega88,
mega88A, mega88P, mega88PA, mega88PB, mega168, mega168A,
mega168P, mega168PA, mega168PB, mega328, mega328P,
mega328PB

P28 0 28, C.5 27, C.4

 T28 0 28, C.5 27, C.4
 T32 0 28, C.5 27, C.4
(mega328PB only) T32 1 6, E.1 3, E.0

mega16, mega16A, mega164A, mega164P, mega164PA, mega32,
mega32A, mega324P, mega324PA, mega644, mega644A, mega644P,
mega644PA, mega1284P, mega8535, mega163, mega323

P40 0 22, C.0 23, C.1

 T44 0 19, C.0 20, C.1
mega64, mega64A, mega128, mega128A, mega1281, mega2561,
AT90CAN32, AT90CAN64, AT90CAN128, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287

T64 0 25, D.0 26, D.1

mega8U2, mega16U2, mega32U2
AT90USB82, AT90USB162, mega8515, mega161, mega162

T32 - - -

mega16U4, mega32U4 T44 0 18, D.0 19, D.1
mega165, mega165A, mega165P, mega165PA,
mega325, mega325P,
mega645, mega645A, mega645P,
mega169, mega169A, mega169P, mega169PA,

T64 0 6, E.4 7, E.5

ZBasic System Library 28 ZBasic Microcontrollers

mega329, mega329P, mega329PA,
mega649, mega649A, mega649P

mega3250, mega3250P,
mega6450, mega6450A, mega6450P,
mega3290, mega3290P,
mega6490, mega6490A, mega6490P

T100 0 6, E.4 7, E.5

mega640, mega1280, mega2560 T100 0 43, D.0 44, D.1
xmegaA1, xmegaA1U T100 0

1
2
3

16, C.1
36, E.1
26, D.1
46, F.1

15, C.0
35, E.0
25, D.0
45, F.0

xmegaA3, xmegaA3U, xmegaA3B, xmegaA3BU, xmegaD3 T64 0
1

16, C.1
36, E.1

15, C.0
35, E.0

xmegaA4, xmegaA4U T44 0
1

11, C.1
29, E.1

10, C.0
28, E.0

xmegaD4 T44 0
1

11, C.1
29, E.1

10, C.0
28, E.0

Analog-to-Digital Converters

Most ZBasic target devices have a multiple analog inputs. These inputs may be fed to an internal analog-
to-digital converter (ADC) or they may be used to perform analog level comparisons. The I/O port
containing the analog inputs varies by target device as indicated in the table below. The System Library
routines GetADC() and ADCtoCom1() use the ADC. The analog comparator is used by

WaitForInterrupt() when configured to await an analog comparator event.

Analog Input Pins for ZX Devices

ZX Device Analog Inputs
ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t 13-20
ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t 33-40

ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t 30-37
ZX-24x, ZX-24u 13-20, B.0-B.3
ZX-328n, ZX-328l 23-28

ZX-32n, ZX-32l 23-28, 19, 22
ZX-1281, ZX-1281n 54-61
ZX-1280, ZX-1280n 82-89, 90-97

ZX-32a4 40-44, 1-3, 4-7
ZX-128a1 95-100, 1-2, 5-12
ZX-24e, ZX-24ae, ZX-24pe, ZX-24ne 29-36

ZX-24pu, ZX-24nu, ZX-24ru, ZX-24su 29-36
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne 54-61
ZX-24xu 29-36, 25-28

ZX-328nu 17-24

Analog Input Pins for Generic Target Devices

Target Device Pkg. Analog Inputs
tiny2313, tiny2313A, tiny4313, mega8515, mega161, mega162,
mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162

all -

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 6-13
 Q20 1-5, 15, 16, 20
tiny441, tiny841 S14 2-13

 Q20 1-5, 11-16, 20
tiny48, tiny88 P28 23-28
 T28 19-24

 T32 23-28, 19, 22
tiny87, tiny167 S20 1-4, 7-10, 12, 13
 T32 29-31, 3, 9-12, 15,

ZBasic System Library 29 ZBasic Microcontrollers

18, 19
tiny828 T32 1-3, 6-17, 19, 20,

22-32
tiny1634 S20 1-6, 15-20
 Q20 1-4, 13-18

mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A,
mega88P, mega88PA, mega88PB, mega168, mega168A, mega168P,
mega168PA, mega168PB, mega328, mega328P, mega328PB

P28 23-28

 T28 19-24
 T32 23-28, 19, 22
mega16, mega16A, mega164A, mega164P, mega164PA, mega32,
mega32A, mega324P, mega324PA, mega644, mega644A, mega644P,
mega644PA, mega1284P

P40 33-40

 T44 40-47

mega64, mega64A, mega128, mega128A, mega1281, mega2561,
AT90CAN32, AT90CAN64, AT90CAN128

T64 54-61

mega640, mega1280, mega2560 T100 82-89, 90-97

mega16U4, mega32U4 T44 36-41
mega8535, mega163, mega323 P40 33-40
 T44 30-37

 L44 36-43
mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega645, mega645A, mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA, mega649, mega649A,
mega649P

T64 54-61

mega3250, mega3250P, mega6450, mega6450A, mega6450P, mega3290,
mega3290P, mega6490, mega6490A, mega6490P

T100 90-97

AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 T64 54-61
xmegaA1, xmegaA1U T100 95-100, 1-2, 5-12

xmegaA3, xmegaA3U, xmegaA3B, xmegaA3BU T64 62-64, 1-5, 6-13
xmegaA4, xmegaA4U T44 40-44, 1-3, 4-7
xmegaD3 T64 62-64, 1-5

xmegaD4 T44 40-44, 1-3

Digital-to-Analog Converters

The table below indicates the available channels and the corresponding DAC hardware used.

Supported DAC Channels for ZX Devices

ZX Devices DACB DACA

ZX-24x, ZX-24u Chan 1, Pin 8
 Chan 2, Pin 9

-

ZX-32a4 Chan 1, Pin 6 (B.2)
 Chan 2, Pin 7 (B.3)

-

ZX-128a1 Chan 1, Pin 7 (B.2)
 Chan 2, Pin 8 (B.3)

Chan 3, Pin 97 (A.2)
 Chan 4, Pin 98 (A.3)

ZX-24xu Chan 1, Pin 26 (B.2)
 Chan 2, Pin 25 (B.3)

-

Supported DAC Channels for Generic Target Devices

ZX Devices DACB DACA

xmegaA1, xmegaA1U Chan 1, Pin 7 (B.2)
 Chan 2, Pin 8 (B.3)

Chan 3, Pin 97 (A.2)
 Chan 4, Pin 98 (A.3)

xmegaA3, xmegaA3B,
xmegaA3U, xmegaA3BU

Chan 1, Pin 7 (B.2)
 Chan 2, Pin 8 (B.3)

-

xmegaA4, xmegaA4U Chan 1, Pin 6 (B.2) -

ZBasic System Library 30 ZBasic Microcontrollers

 Chan 2, Pin 7 (B.3)
xmega16D3, xmegaD4 - -

Note, particularly, that the ATxmega can produce two analog outputs from a single DAC. In the table
above, channels 1 and 2 are the two outputs from one DAC and channels 3 and 4 are the two outputs
from the second DAC (if available). In order to use the second channel on a given DAC, the first channel
must have been opened in dual output mode (see the mode details in the description of OpenDAC). Also
note that using both outputs from a DAC will result in analog levels with significantly more noise due to
the sample-and-hold and automatic refresh circuitry employed. For this reason, it is generally
recommended to use single output per DAC.

Interrupts in General

Some of the System Library routines disable interrupts in order to achieve the precise timing that is
required. Having interrupts disabled for long periods of time can interfere with the operation of other parts
of the system that use interrupts like task management, serial I/O and the real time clock. In most cases,
the System Library routines have been implemented to keep track of real time clock interrupts that should
have occurred during the time interrupts are disabled and then the RTC is updated at the end of the
operation. This strategy avoids the problem of the RTC losing time. However, there is a limit to the
amount of time that missed RTC timer interrupts can be accurately tracked, that limit being 65535 divided
by the RTC fast tick frequency. See Section 3 for more information about the RTC fast tick frequency.

Unfortunately, there is no way to similarly protect the serial I/O process. You can reduce the impact of
having interrupts disabled with respect to serial output by ensuring that all serial output queues are empty
before calling a System Library routine that disables interrupts. This is not as critical for a hardware-
based serial channel (e.g. Com1) as it is for the software-based serial channels Com3 to Com6. There is
no way, however, to work around the problem of serial input data arriving while interrupts are disabled.
The hardware-based serial channels will store one received character and hold it while interrupts are
disabled but if a second character arrives while interrupts are disabled it will be lost. Channels 3-6 rely on
interrupts for every bit received so the situation is much more problematic. In this case, having interrupts
disabled for longer than approximately one-third of the bit time will likely cause garbled input if a
character’s transmit time overlaps the period when interrupts are disabled. For characters being
transmitted by channels 3-6, having interrupts disabled for more than about 10% of the bit time may
cause the receiver to lose synchronization.

For reference purposes, the table below indicates which I/O routines disable interrupts for the duration of
their execution. See the individual descriptions for more detailed information.

System Library Routines that Disable Interrupts

CountTransitions I2CPutByte PutPin
DACPin PlaySound RCTime
FreqOut PulseIn Reset1Wire
Get1Wire PulseOut ShiftIn
Get1WireByte Put1Wire ShiftInEx
Get1WireData Put1WireByte ShiftOut
I2CCmd Put1WireData ShiftOutEx
I2CGetByte PutDAC

The I2C routines do not disable interrupts when the hardware I2C controller is used (e.g. channel 0).

External Interrupts

ATtiny and ATmega target devices (and ZX devices based on them) support a varying number of external
interrupt inputs. (External interrupts are not available on any ATxmega devices.) The table below gives
the available external interrupt input pins for ZX devices.

ZBasic System Library 31 ZBasic Microcontrollers

External Interrupt Pins for ZX Devices

ZX Device

Ext.
Int.

Pin

Ext.
Int.

Pin

ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t INT0
INT2

6, D.2
18, B.2

INT1

11, D.3

ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t INT0
INT2

16, D.2
3, B.2

INT1

17, D.3

ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t INT0
INT2

11, D.2
42, B.2

INT1

12, D.3

ZX-328n, ZX-328l INT0 4, D.2 INT1 5, D.3
ZX-32n, ZX-32l INT0 32, D.2 INT1 1, D.3

ZX-1281, ZX-1281n INT0
INT2
INT4
INT6

25, D.0
27, D.2
6, E.4
8, E.6

INT1
INT3
INT5
INT7

26, D.1
28, D.3
7, E.5
9, E.7

ZX-1280, ZX-1280n INT0
INT2
INT4
INT6

43, D.0
45, D.2
6, E.4
8, E.6

INT1
INT3
INT5
INT7

44, D.1
46, D.3
7, E.5
9, E.7

ZX-24e, ZX-24ae, ZX-24pe, ZX-24ne, ZX-24pu, ZX-24nu,
ZX-24ru, ZX-24su

INT0
INT2

18, D.2
26, B.2

INT1

17, D.3

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne INT0
INT2
INT4
INT6

12, D.0
10, D.2
16, E.4
14, E.6

INT1
INT3
INT5
INT7

11, D.1
9, D.3
15, E.5
13, E.7

ZX-328nu INT0 5, D.2 INT1 6, D.3

The table below gives the available external interrupt input pins for generic target devices. Note that
external interrupts are not available on xmega devices.

External Interrupt Pins for Generic ATtiny and ATmega Targets

Target Device

Pkg.

Ext.
Int.

Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 INT0 5, B.2

 Q20 INT0 14, B.2
tiny48, tiny88 P28 INT0

INT1
4, D.2
5, D.3

 T28 INT0
INT1

28, D.2
1, D.3

 T32 INT0
INT1

32, D.2
1, D.3

tiny441, tiny841 S14 INT0 3, B.1
 Q20 INT0 12, B.1

tiny87, tiny167 S20 INT0
INT1

12, B.6
4, A.3

 T32 INT0
INT1

15, B.6
3, A.3

tiny828 T32 INT0
INT1

32, C.1
1, C.2

tiny1634 S20 INT0 15, C.2
 Q20 INT0 13, C.2
tiny2313, tiny2313A, tiny4313 P20 INT0

INT1
6, D.2
7, D.3

 Q20 INT0
INT1

4, D.2
5, D.3

mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A,
mega88P, mega88PA, mega88PB, mega168, mega168A, mega168P,
mega168PA, mega168PB, mega328, mega328P, mega328PB

P28 INT0
INT1

4, D.2
5, D.3

ZBasic System Library 32 ZBasic Microcontrollers

 T32 INT0
INT1

32, D.2
1, D.3

mega16, mega16A, mega164A, mega164P, mega164PA, mega32, mega32A,
mega324P, mega324PA, mega644, mega644A, mega644P, mega644PA,
mega1284P, mega323, mega8535

P40 INT0
INT1
INT2

16, D.2
17, D.3
3, B.2

 T44 INT0
INT1
INT2

11, D.2
12, D.3
42, B.2

mega161, mega162, mega8515 P40 INT0
INT1
INT2

12, D.2
13, D.3
31, E.0

 T44 INT0
INT1
INT2

8, D.2
9, D.3
29, E.0

 L44 INT0
INT1
INT2

14, D.2
15, D.3
35, E.0

mega163 P40 INT0
INT1

12, D.2
13, D.3

 T44 INT0
INT1

8, D.2
9, D.3

mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega645, mega645A, mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA, mega649, mega649A,
mega649P

T64 INT0 26, D.1

mega3250, mega3250P, mega6450, mega6450A, mega6450P,
mega3290, mega3290P, mega6490, mega6490A, mega6490P

T100 INT0 44, D.1

mega1281, mega2561,
AT90CAN32, AT90CAN64, AT90CAN128

T64 INT0
INT1
INT2
INT3
INT4
INT5
INT6
INT7

25, D.0
26, D.1
27, D.2
28, D.3
6, E.4
7, E.5
8, E.6
9, E.7

mega640, mega1280, mega2560 T100 INT0
INT1
INT2
INT3
INT4
INT5
INT6
INT7

43, D.0
44, D.1
45, D.2
46, D.3
6, E.4
7, E.5
8, E.6
9, E.7

mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 T32 INT0
INT1
INT2
INT3
INT4
INT5
INT6
INT7

6, D.0
7, D.1
8, D.2
9, D.3
22, C.7
10, D.4
12, D.6
13, D.7

mega16U4, mega32U4 T44 INT0
INT1
INT2
INT3
INT6

18, D.0
19, D.1
20, D.2
21, D.3
1, E.6

AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 T64 INT0
INT1
INT2
INT3

25, D.0
26, D.1
27, D.2
28, D.3

ZBasic System Library 33 ZBasic Microcontrollers

INT4
INT5
INT6
INT7

18, E.4
19, E.5
1, E.6
2, E.7

1
The interrupt input configuration is shared between INT0 and INT1. Consequently, if both are used at

the same time the last configured will control the input configuration.

Pin Change Interrupts

The table below shows how ports are mapped to the four possible pin change interrupts on ATtiny and
ATmega devices. See the description of WaitForInterrupt for more information on preparing to await a pin
change interrupt.

ATtiny and ATmega Pin Change Interrupt Support

Target Device WaitForInterrupt
intNum

PinChange
Interrupt

Port
Pins

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441,
tiny841

WaitPinChangeA
WaitPinChangeB

PCINT0
PCINT1

A.7-A.0
B.3-B.0

tiny48, tiny88 WaitPinChangeB
WaitPinChangeC
WaitPinChangeD
WaitPinChangeA

PCINT0
PCINT1
PCINT2
PCINT3

B.7-B.0
C.7-C.0
D.7-D.0
A.3-A.0

tiny87, tiny167 WaitPinChangeA
WaitPinChangeB

PCINT0
PCINT1

A.7-A.0
B.7-B.0

tiny2313, tiny2313A WaitPinChangeB PCINT0 B.7-B.0

tiny4313 WaitPinChangeB
WaitPinChangeA
WaitPinChangeD

PCINT0
PCINT1
PCINT2

B.7-B.0
A.3-A.0
D.6-D.0

tiny828 WaitPinChangeA
WaitPinChangeB
WaitPinChangeC
WaitPinChangeD

PCINT0
PCINT1
PCINT2
PCINT3

A.7-A.0
B.7-B.0
C.7-C.0
D.3-D.0

tiny1634 WaitPinChangeA
WaitPinChangeB
WaitPinChangeC

PCINT0
PCINT1
PCINT2

A.7-A.0
B.3-B.0
C.3-C.0

mega8, mega8A, mega16, mega16A, mega32, mega32A,
mega64, mega64A, mega128, mega128A,
mega8515, mega8535, mega161, mega163, mega323,
AT90CAN32, AT90CAN64, AT90CAN128

- - -

mega48, mega48A, mega48P, mega48PA, mega48PB,
mega88, mega88A, mega88P, mega88PA, mega88PB,
mega168, mega168A, mega168P, mega168PA, mega168PB,
mega328, mega328P, mega328PB
(mega328PB only)

WaitPinChangeB
WaitPinChangeC
WaitPinChangeD

WaitPinChangeE

PCINT0
PCINT1
PCINT2

PCINT3

B.7-B.0
C.6-C.0
D.7-D.0

E.3-E.0

mega164A, mega164P, mega164PA,
mega324P, mega324PA,
mega644, mega644A, mega644P, mega644PA,
mega1284P

WaitPinChangeA
WaitPinChangeB
WaitPinChangeC
WaitPinChangeD

PCINT0
PCINT1
PCINT2
PCINT3

A.7-A.0
B.7-B.0
C.7-C.0
D.7-D.0

mega1281, mega2561 WaitPinChangeB
WaitPinChangeE

PCINT0
PCINT1

B.7-B.0
E.0

mega640, mega1280, mega2560 WaitPinChangeB
WaitPinChangeJ
WaitPinChangeK

PCINT0
PCINT1
PCINT2

B.7-B.0
J.7-J.0
K.7-K.0

mega8U2, mega16U2, mega32U2,
AT90USB82, AT90USB162

WaitPinChangeB
WaitPinChangeC

PCINT0
PCINT1

B.7-B.0
D.5, C.2,
C.4, C.5,

C.6
mega16U4, mega32U4, WaitPinChangeB PCINT0 B.7-B.0

ZBasic System Library 34 ZBasic Microcontrollers

AT90USB646, AT90USB647, AT90USB1286, AT90USB1287
mega162 WaitPinChangeA

WaitPinChangeC
PCINT0
PCINT1

A.7-A.0
C.7-C.0

mega165, mega165A, mega165P, mega165PA, mega325,
mega325P, mega645, mega645A, mega645P, mega169,
mega169A, mega169P, mega169PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P

WaitPinChangeE
WaitPinChangeB

PCINT0
PCINT1

E.7-E.0
B.7-B.0

mega3250, mega3250P, mega6450, mega6450A,
mega6450P, mega3290, mega3290P, mega6490,
mega6490A, mega6490P

WaitPinChangeE
WaitPinChangeB
WaitPinChangeH
WaitPinChangeJ

PCINT0
PCINT1
PCINT2
PCINT3

E.7-E.0
B.7-B.0
H.7-H.0
J.6-J.0

The table below shows how ports are mapped to the four possible pin change interrupts on ATxmega
devices. Note that for each port, there are two independent channels available. See the description of
WaitForInterrupt for more information on preparing to await a pin change interrupt.

ATxmega Pin Change Interrupt Support

Processors WaitForInterrupt
intNum

Pin Change
Trigger

Interrupt

xmegaA1, xmegaA1U,
xmegaA3, xmegaA3U,
xmegaA3B, xmegaA3BU,
xmegaA4, xmegaA4U,
xmegaD3, xmegaD4

WaitPinChangeA0
WaitPinChangeA1
WaitPinChangeB0
WaitPinChangeB1
WaitPinChangeC0
WaitPinChangeC1
WaitPinChangeD0
WaitPinChangeD1
WaitPinChangeE0
WaitPinChangeE1

Port A, channel 0
Port A, channel 1
Port B, channel 0
Port B, channel 1
Port C, channel 0
Port C, channel 1
Port D, channel 0
Port D, channel 1
Port E, channel 0
Port E, channel 1

PORTA_INT0
PORTA_INT1
PORTB_INT0
PORTB_INT1
PORTC_INT0
PORTC_INT1
PORTD_INT0
PORTD_INT1
PORTE_INT0
PORTE_INT1

xmegaA1, xmegaA1U, xmegaA3, xmegaA3U,
xmegaA3B, xmegaA3BU, xmegaD3

WaitPinChangeF0
WaitPinChangeF1

Port F, channel 0
Port F, channel 1

PORTF_INT0
PORTF_INT1

xmegaA1, xmegaA1U WaitPinChangeH0
WaitPinChangeH1
WaitPinChangeJ0
WaitPinChangeJ1
WaitPinChangeK0
WaitPinChangeK1
WaitPinChangeQ0
WaitPinChangeQ1

Port H, channel 0
Port H, channel 1
Port J, channel 0
Port J, channel 1
Port K, channel 0
Port K, channel 1
Port Q, channel 0
Port Q, channel 1

PORTH_INT0
PORTH_INT1
PORTJ_INT0
PORTJ_INT1
PORTK_INT0
PORTK_INT1
PORTQ_INT0
PORTQ_INT1

ZBasic System Library 35 ZBasic Microcontrollers

Analog Comparator Interrupts

The table below shows analog comparator input pins for ZX devices. See the description of
WaitForInterrupt for more information on preparing to await an analog comparator interrupt.

Analog Comparator Input Pins for ZX Devices

ZX Device

AIN0
Pin

AIN1
Pin

ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t 18, B.2 19, B.3
ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t 3, B.2 4, B.3
ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t 42, B.2 43, B.3

ZX-328n, ZX-328l 12, D.6 13, D.7
ZX-32n, ZX-32l 10, D.6 11, D.7
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 4, E.2 5, E.3

ZX-24e, ZX-24ae, ZX-24pe, ZX-24ne, ZX-24pu, ZX-24nu, ZX-24ru, ZX-24su 26, B.2 25, B.3
ZX-128e, ZX-128ne , ZX-1281e, ZX-1281ne 18, E.2 17, E.3
ZX-328nu 9, D.6 10, D.7

On the ZX-24 models, AIN0 is common with pin A.2 and AIN1 is common with pin A.0 so these I/O pins
will need to be configured to be inputs in high-impedance mode. Note, however, that ZX-24 models built
using boards earlier than Rev 5 (see the bottom side of the board), AIN1 has no external connection so
the negative input must be supplied via the analog multiplexor.

The table below shows the analog comparator input pins for generic ATtiny and ATmega targets.

Analog Comparator Input Pins for Generic ATtiny and Atmega Devices

Target Device

Pkg.

AIN0
Pin

AIN1
Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 12, A.1 11, A.2

 Q20 4, A.1 3, A.2
tiny48, tiny88 P28 12, D.6 13, D.7
 T28 8, D.6 9, D.7

 T32 10, D.6 11, D.7
tiny441, tiny841 S14 10, A.3 9, A.4
 Q20 2, A.3 1, A.4

tiny87, tiny167 S20 9, A.6 10, A.7
 T32 11, A.6 12, A.7
tiny2313, tiny2313A, tiny4313 P20 12, B.0 13, B.1

 Q20 10, B.0 11, B.1
tiny828 T32 10, A.1 11, A.2
tiny1634 S20 8, A.1 7, A.2

 Q20 6, A.1 5, A.2
mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A,
mega88P, mega88PA, mega88PB, mega168, mega168A, mega168P,
mega168PA, mega168PB, mega328, mega328P, mega328PB

P28 12, D.6 13, D.7

 T32 10, D.6 11, D.7
mega16, mega16A, mega164A, mega164P, mega164PA, mega32, mega32A,
mega324P, mega324PA, mega644, mega644A, mega644P, mega644PA,
mega1284P, mega161, mega162, mega163, mega323

P40 3, B.2 4, B.3

 T44 42, B.2 43, B.3

mega8515, mega8535 P40 3, B.2 4, B.3
 T44 42, B.2 43, B.3
 L44 4, B.2 5, B.3

mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega645, mega645A, mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA, mega649, mega649A,
mega649P

T64 4, E.2 5, E.3

mega3250, mega3250P, mega6450, mega6450A, mega6450P, T100 4, E.2 5, E.3

ZBasic System Library 36 ZBasic Microcontrollers

mega3290, mega3290P, mega6490, mega6490A, mega6490P
mega1281, mega2561, mega64, mega64A, mega128, mega128A,
AT90CAN32, AT90CAN64, AT90CAN128

T64 4, E.2 5, E.3

mega640, mega1280, mega2560 T100 4, E.2 5, E.3
mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 T32 7, D.1 8, D.2

AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 T64 1, E.6 2, E.7
mega16U4, mega32U4 T44 1, E.6 -

The table below shows the register containing the Analog Comparator Multiplexer Enable (ACME) bit.
Where available, this bit can be used to allow the output of the analog input multiplexer to feed the
negative input of the analog comparator. For target devices having n/a in the second column, this
capaability is not present.

Register Containing the ACME Bit by Target Device

Target Device

ACME bit
Register

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny48, tiny88, tiny87, tiny167 ADCSRB
tiny2313, tiny2313A, tiny4313, tiny828, tiny441, tiny841 n/a
tiny1634 ACSRB

mega8, mega8A, mega16, mega16A, mega32, mega32A, mega163, mega323, mega8535 SFIOR
mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A, mega88P,
mega88PA, mega88PB, mega168, mega168A, mega168P, mega168PA, mega168PB,
mega328, mega328P, mega328PB

ADCSRB

mega8515, mega161, mega162 n/a
mega164A, mega164P, mega164PA, mega324P, mega324PA, mega644, mega644A,
mega644P, mega644PA, mega1284P

ADCSRB

mega165, mega165A, mega165P, mega165PA, mega325, mega325P, mega645,
mega645A, mega645P, mega169, mega169A, mega169P, mega169PA, mega329,
mega329P, mega329PA, mega649, mega649A, mega649P

ADCSRB

mega3250, mega3250P, mega6450, mega6450A, mega6450P,
mega3290, mega3290P, mega6490, mega6490A, mega6490P

ADCSRB

mega64, mega64A, mega128, mega128A, AT90CAN32, AT90CAN64, AT90CAN128 SFIOR
mega1281, mega2561, mega640, mega1280, mega2560, mega16U4, mega32U4 ADCSRB
mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 n/a

AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 ADCSRB

The table below shows the analog comparator input pins for ATxmega targets and ZX devices based on
xmega chips.

ATxmega Analog Comparator Interrupt Support

Processors WaitForInterrupt
intNum

Interrupt
Trigger

Interrupt

xmegaA1, xmegaA1U, xmegaA3,
xmegaA3U, xmegaA3B, xmegaA3BU,
xmegaA4, xmegaA4U, xmegaD3, xmegaD4

waitAnalogCompA0
waitAnalogCompA1
waitAnalogCompAW

AC A, Channel 0
AC A, Channel 1
AC A, Window

ACA_AC0
ACA_AC1
ACA_ACW

xmegaA1, xmegaA1U, xmegaA3,
xmegaA3U, xmegaA3B, xmegaA3BU

waitAnalogCompB0
waitAnalogCompB1
waitAnalogCompBW

AC B, Channel 0
AC B, Channel 1
AC B, Window

ACB_AC0
ACB_AC1
ACB_ACW

Interrupt Service Routines

For the native code devices (e.g. ZX-24n), a few interrupt service routines (ISRs) are typically included in
your program (e.g. for Com1 and the RTC if not specifically disabled) while others are included only if
certain System Library routines are used in your program. In some cases, the additional ISRs that are
included when a specific System Library routine is used depends on how the routine is invoked and what
the compiler can deduce regarding which ISRs might be needed. For example, if OpenCom() is invoked

ZBasic System Library 37 ZBasic Microcontrollers

one or more times but the compiler can determine that the Com1 is always the channel being used, no
additional ISRs are included since the Com1 ISRs are usually included anyway. On the other hand, if the
compiler cannot determine which channel is being opened in one or more cases, it includes the ISRs for
all Com channels, both hardware-based and software-based channels.

In the description of each System Library routine, information is given about the set of ISRs might be
included in your program if you use that routine. This information is only important, of course, if you are
also providing one or more ISRs in your code because conflicts may arise. (See the section entitled
“Defining Interrupt Service Routines” in the ZBasic Language Reference Manual for more information on
how this is done.) The table below gives an overview of which System Library routines may cause ISRs
to be included atomatically in your program.

System Library Routines that May Load ISRs

System Library Routine ISR for ATtiny/ATmega ISR for ATxmega
ADCtoCom1() TIMER#_COMPA n/a
Com1toDAC() TIMER#_COMPA n/a
InputCapture() TIMER*_CAPT

TIMER*_OVF
TC*_CCA
TC*_OVF

OutputCapture() TIMER*_COMPB TC*_CCB
OpenCom() USART#_RX

USART#_TX
USART#_UDRE
TIMER&_COMPA

USART#_RXC
USART#_TXC
USART#_UDRE
TC&_CCA

OpenX10() INT*
TIMER$_COMPB

ACA_AC0
TC$_CCB

WaitForInterrupt() INT#
PCINT#
ANALOG_COMP

PORTx_INT#
ACA_AC0
ACA_AC1
ACA_ACW
ACB_AC0
ACB_AC1
ACB_ACW

In the table above some ISR names (shaded) are given symbolically in the interest of brevity,
representing multiple possible ISR names. The table below describes how to interpret the symbolic ISR
entries.

Key to Symbolic ISR Names

Symbolic ISR Name Meaning
TIMER#_COMPA Replace TIMER# with the name of the I/O Timer, e.g. TIMER1.
TIMER*_COMPB
TIMER*_CAPT
TIMER*_OVF

Replace TIMER* with the applicable 16-bit timer name, e.g. TIMER4.

TIMER&_COMPA Replace TIMER& with the software UART timer name, e.g. TIMER2.
TIMER$_COMPB Replace TIMER$ with the RTC timer name, e.g. TIMER0.

TC*_CCA
TC*_CCB
TC*_OVF

Replace TC* with the applicable timer name, e.g. TCC0.

TC&_CCA Replace TC$ with the software UART timer name, e.g. TCC0.

TC$_CCB Replace TC$ with the RTC timer name, e.g. TCC0.
USART#_RX
USART#_TX
USART#_UDRE

Replace USART# with the applicable UART name, e.g. USART0.

USART#_RXC
USART#_TXC
USART#_UDRE

Replace USART# with the applicable UART name, e.g. USARTC0.

INT# Replace INT# with the external interrupt name, e.g. INT0.
INT* Replace INT* with the X-10 zero-crossing interrupt name, e.g. INT0.

PCINT# Replace PCINT# with the pin change interrupt name, e.g. PCINT0.
PORTx_INT# Replace PORTx with the applicable port name, e.g. PORTA and replace

ZBasic System Library 38 ZBasic Microcontrollers

INT# with the applicable pin change channel designator, e.g. INT0.

Program Memory Page Size

For ZBasic devices having Program Memory in internal Flash Memory, the page size of that memory is an
important value. For example, for an application that writes to Program Memory a buffer of the length of
the page size must be allocated from the heap in order to perform the necessary read-modify-write
operation that is required for updating Flash Memory locations. This is one factor affecting the minimum
heap size for a particular device and application. The tables below give the Program Memory page size
for ZX devices and generic target devices.

Program Memory Page Size for ZX Devices

ZX Device Page Size
ZX-24, ZX-24a, ZX-24p, ZX-40, ZX-40a, ZX-40p, ZX-44, ZX-44a, ZX-44p,
ZX-24e, ZX-24ae, ZX-24pe, ZX-24pu

n/a

ZX-24n, ZX-40n, ZX-44n, ZX-24ne, ZX-24nu 256
ZX-24r, ZX-24s, ZX-24t, ZX-40r, ZX-40s, ZX-40t, ZX-44r, ZX-44s, ZX-44t,
ZX-24ru, ZX-24su

256

ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-328nu 128
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 256
ZX-24x, ZX-24u, ZX-32a4, ZX-24xu 256

ZX-128a1 512
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne 256

Program Memory Page Size for Generic Target Devices

Target Device Page Size

tiny2313, tiny2313A, tiny24, tiny24A, tiny1634
1
 32

tiny4313, tiny44, tiny44A, tiny84, tiny84A, tiny48, tiny88, tiny828, tiny441, tiny841
1
 64

tiny87, tiny167 128

mega48, mega48A, mega48P, mega48PA, mega48PB, mega8, mega8A,
mega88, mega88A, mega88P, mega88PA, mega88PB

64

mega168, mega168A, mega168P, mega168PA, mega168PB, mega328, mega328P,
mega328PB, mega16, mega16A, mega164A, mega164P, mega164PA, mega32, mega32A,
mega324P, mega324PA

128

mega644, mega644A, mega644P, mega644PA, mega1284P, mega64, mega64A, mega128,
mega128A, mega1281, mega2561, mega640, mega1280, mega2560

256

AT90CAN32, AT90CAN64, AT90CAN128 256
mega8U2 64

mega16U2, mega32U2 128
mega16U4, mega32U4 256
mega8515, mega8535 64

mega161, mega162, mega163, mega323 128
mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega169, mega169A, mega169P, mega169PA, mega329, mega329P, mega329PA,
mega3250, mega3250P, mega3290, mega3290P

128

mega645, mega645A, mega645P, mega649, mega649A, mega649P,
mega6450, mega6450A, mega6450P, mega6490, mega6490A, mega6490P

256

AT90USB82, AT90USB162 128
AT90USB646, AT90USB647, AT90USB1286, AT90USB1287 256
xmega with 64K or less of Flash memory 256

xmega with 128K or more of Flash memory 512
1
 For these devices, a block of 4 times the page size is required.

ZBasic System Library 39 ZBasic Microcontrollers

Section 3 - Processor Speed and Device Configuration Issues

For ZX devices, the processor speed and configuration are fixed and specific to each device. The clock
speed for most ATmega-based ZX devices is 14.7456MHz but special versions are available that run
slower and faster. ZX devices based on the ATxmega run at 29.4912MHz. The first table below
summarizes the differences that arise due to the difference in operating speeds. The second table
summarizes the differences at reduced operating speeds obtained by using the clock prescaler directive.

ZX Device Processor Speed Variations

Parameter 7.3728 MHz 14.7456 MHz 18.432 MHz 29.4912 MHz
RTC Tick Frequency 512 Hz 512 Hz 500 Hz 512 Hz

RTC Fast Tick Frequency 512 Hz 1024 Hz 1000 Hz 512 Hz
RTC Scale Factor 1 2 2 1
RTC Timer Frequency 115.2 KHz 230.4 KHz 72 KHz 115.2 KHz

Multi-tasking Time Slice 1.95 mS 1.95 mS 2.0 mS 1.95 mS
Default TimerSpeed1 Units 135.6 nS 67.8 nS 54.4 nS 67.8 nS

Default TimerSpeed2 Units 1.085 µ S 1.085 µ S* 434 nS 271 nS

CountTransitions() Sample Rate 204.8 KHz 409.6 KHz 512 KHz 737.3 KHz

Maximum SW serial baud rate 9600 19200 19200 19200

Parameter 460.8 KHz 921.6 KHz 1.8432 MHz 3.6864 MHz
RTC Tick Frequency 400 Hz 512 Hz 400 Hz 400 Hz
RTC Fast Tick Frequency 400 Hz 512 Hz 400 Hz 400 Hz

RTC Scale Factor 1 1 1 1
RTC Timer Frequency 7.2 KHz 115.2 KHz 7.2 KHz 3.6 KHz
Multi-tasking Time Slice 2.5 mS 1.95 mS 2.5 mS 2.5 mS

Default TimerSpeed1 Units 2.17 µ S 1.085 µ S 542.5 nS 271.3 nS

Default TimerSpeed2 Units 17.36 µ S 8.68 µ S 4.34 µ S 2.17 µ S

CountTransitions() Sample Rate 12.8 KHz 25.6 KHz 51.2 KHz 102.4 KHz

Maximum SW serial baud rate 600 1200 2400 4800

Note, particularly, that the “units” value for TimerSpeed2 on ZX devices running at 14.7456MHz is
scaled to match the value corresponding to operating at 7.3728MHz. This is done for compatibility with
BasicX devices that all operate at the lower speed. Consult the section I/O Timer Prescaler Values for
information on which routines use the TimerSpeed1 and TimerSpeed2 values. The scaling effect

described above can be disabled by setting the value of Register.IOScaling to False.

For generic target devices, the processor speed can be any reasonable value and the RTC frequency can
be any value attainable using the available prescaler and compare value settings for the RTC timer.
Further, the initial I/O Timer prescaler settings Register.TimerSpeed1 and Register.TimerSpeed2 can be
any useful values. Consquently, the meaning of results returned by some ZBasic System Library routines
can only be described in terms of the value of these configurable items (all of which are specified at
compile time).

The table below gives several important values that are dependent on device configuration parameter
values both in the case of ZX devices (with fixed values) or generic target devices (with user-specified
values). The symbols given in the table entries is used in the descriptions of various ZBasic System
Library routines thus allowing you to infer the meaning of the results based on device configuration
values.

ZBasic System Library 40 ZBasic Microcontrollers

ZBasic Device Parameters

Device Parameter

Symbol

Example
Value for ZX-24n

Main Clock Frequency F_CPU 14.7456 MHz
RTC Scale Factor RTC_SCALE 2

RTC Fast Tick Frequency F_RTC_FAST 1024 Hz
RTC Tick Frequency F_RTC_TICK 512 Hz
RTC Timer Frequency F_RTC_TIMER 230.4 KHz

TimerSpeed1 Frequency F_TS1 14.7456 MHz
1

TimerSpeed2 Frequency F_TS2 1.8432 MHz
2

1) Assuming the default Register.TimerSpeed1 value of 1.
2) Assuming the default Register.TimerSpeed2 value of 2.

Main Clock Frequency (F_CPU)

This value represents the operating speed of the target CPU. In the case of generic target devices, it is
specified via the target device parameter ClockFrequency.

RTC Scale Factor (RTC_SCALE)

This value, limited to being 1 or 2, represents a scale factor for mapping RTC timer compare interrupts to
Register.RTCFastTick and Register.RTCTick updates. If RTC_SCALE is 1, Register.RTCFastTick and
Register.RTCTick change at the same rate. If RTC_SCALE is 2, Register.RTCFastTick changes at twice
the rate as Register.RTCTick.

RTC Fast Tick Frequency (F_RTC_FAST)

This value represents the rate of change of Register.RTCFastTick which is updated on every RTC timer
interrupt. The rate of change is equal to RTC_SCALE times the rate of change of Register.RTCTick.

RTC Tick Frequency (F_RTC_TICK)

This value represents the rate of change of Register.RTCTick which is equal to the rate of change of
Register.RTCFastTick divided by RTC_SCALE.

RTC Timer Frequency (F_RTC_TIMER)

This value represents the rate of change of the counting register of the RTC timer and its value is a
fraction of F_CPU determined by the RTC timer prescaler setting. For example, if the RTC timer
prescaler setting indicates a divide-by-64 prescaler, F_RTC_TIMER will be F_CPU / 64. For generic
target devices, the compiler computes the prescaler divisor based on the specified ClockFrequency,
RTCFrequency and RTCScale configuration parameters using the smallest available prescaler setting
given the maximum compare register value for the particular device.

TimerSpeed1 Frequency (F_TS1)

This value represents the rate of change of the counting register of the I/O timer and its value is
computed by dividing F_CPU by the prescaler value selected by the value of Register.TimerSpeed1. For
generic target devices, the initial value of Register.TimerSpeed1 is implied by the configuration parameter
TimerSpeed1Divisor. See the section I/O Timer Prescaler Values for information on the relationship of
prescaler selector values to divisor values.

ZBasic System Library 41 ZBasic Microcontrollers

TimerSpeed2 Frequency (F_TS2)

This value represents the rate of change of the counting register of the I/O timer and its value is
computed by dividing F_CPU by the prescaler value selected by the value of Register.TimerSpeed2. For
generic target devices, the initial value of Register.TimerSpeed2 is implied by the configuration parameter
TimerSpeed2Divisor. See the section I/O Timer Prescaler Values for information on the relationship of
prescaler selector values to divisor values.

It is highly recommended to use the built-in values Register.CPUFrequency,

Register.RTCTickFrequency, and Register.RTCTimerFrequency in your application code
instead of using hard-coded values. Doing so also simplifies code that must run on multiple devices that
operate at different speeds. See the descriptions of these values in the ZBasic Language Reference
Manual for more details.

ZBasic System Library 42 ZBasic Microcontrollers

Section 4 - Detailed Descriptions of Subroutines and Functions

In the descriptions that follow, the parameter types that are accepted by each routine are described.
Some parameters accept a specific fundamental data type while others may accept a few similar types.
Others accept virtually any parameter type. In order to more succinctly describe the types of parameters
accepted, some descriptive type categories are used. For example, the category integral is used to
connote those types that have the integral characteristic, such as Byte, Integer, UnsignedInteger,

Long and UnsignedLong. The table below indicates which types belong to which categories.

Type Category Membership
Type/Category any type numeric integral signed int8/16 int16 int32 any 32-bit
Boolean x
Bit x x x x
Nibble x x x x
Byte x x x x
Integer x x x x x x
UnsignedInteger x x x x x
Long x x x x x x
UnsignedLong x x x x x
Single x x x x
Enum x
String x

The remainder of this document presents complete descriptions of each of the System Library routines,
arranged in alphabetical order. Unless specifically noted otherwise, the descriptions apply to all ZBasic
devices. In some cases, a routine exhibits different behavior in BasicX compatibility mode or operates in
a manner that is slightly different from that implemented in the BasicX environment. In these cases, the
heading Compatibility will appear in the description detailing the differences. The advanced System
Library routines that are not present in the BasicX environment are also similarly noted. If you are not
using BasicX compatibility mode or are not upgrading BasicX code these notations may be safely
ignored.

ZBasic System Library 43 ZBasic Microcontrollers

Abs

Type Function returning the same type as the parameter

Invocation Abs(arg)

Parameter Method Type Description

arg ByVal numeric The value from which the absolute value will be
computed.

Discussion

The absolute value function returns the magnitude of the passed value. It is primarily useful for signed
numeric types such as Single, Integer and Long. Unsigned parameter values will be returned
unchanged.

The type of the return value will be the same as the type of the parameter provided.

Example

Dim i as Integer, j as Integer

i = -45
j = Abs(i) ' result is 45

ZBasic System Library 44 ZBasic Microcontrollers

Acos

Type Function returning Single

Invocation Acos(arg)

Parameter Method Type Description
arg ByVal Single The value from which the arc cosine will be computed.

Discussion

The arc cosine function is the inverse of the cosine function. The return value will be the angle,
expressed in radians, whose cosine corresponds to the passed value. The type of the return value will be
Single and the value will range from 0.0 to π . If the argument is greater than 1.0 or less than –1.0, the

result will be undefined.

Example

Dim val as Single, theta as Single

val = 0.5
theta = Acos(val) 'the result will be approximately 1.0472.

See Also Cos, DegToRad, RadToDeg

ZBasic System Library 45 ZBasic Microcontrollers

ADCtoCom1

Type Subroutine

Invocation ADCtoCom1(pin, rate)

Parameter Method Type Description
pin ByVal Byte The pin number from which analog readings will be taken.

Valid pins are those corresponding to PortA, pins 13 to 20.

rate ByVal int16 The rate at which conversions will be performed. The value is
the number of conversions per second and may range from 28
to 11000 samples per second.

Discussion

Calling this subroutine causes a continuous series of analog-to-digital conversions to be performed on the
signal appearing at the specified pin. Each 8-bit digital result is automatically sent out the Com1 serial
port. Before starting the conversions, the baud rate of Com1 is set to 115,200. The specified pin is
automatically set to the proper state for A/D conversion so no additional setup is required prior to use.
The conversion stream will continue until ADCToCom1() is called again with the pin parameter set to

zero (the rate parameter being meaningless in this case).

The analog input range is approximately 0.25 to 0.75 times Vcc (1.25 volts to 3.75 volts when running on
5 volts) and the resulting digital range is 0 to 255. Analog input levels below the low end of the range and
above the high end of the range will produce the low and high digital values, respectively.

Note that the subroutine Com1ToDAC() is designed to receive the data stream generated by this
Subroutine. For best accuracy, state changes on other pins of the port containing the analog input should
be avoided during the conversion process.

Resource Usage

This subroutine uses the processor’s A/D converter, Com1 and the I/O Timer. No other use of these
resources should be attempted while the conversion is active. For native code devices, the following
ISRs are required.

ISRs Required

Underlying CPU ISR Name
mega328P, mega644P, mega128 Timer1_CompA
mega1284P Timer3_CompA
mega1281 Timer4_CompA
mega1280 Timer4_CompA

Compatibility

This subroutine is only available on ATmega-based ZX devices.

See Also Com1toDAC

ZBasic System Library 46 ZBasic Microcontrollers

Asc

Type Function returning Byte

Invocation Asc(str)
 Asc(str, index)

Parameter Method Type Description
str ByVal String The string from which a character will be returned.

index ByVal int8/16 The 1-based position in the string from which the character
will be returned.

Discussion

This function returns the ASCII character code of the character at the position of the string that is
specified. If the second parameter is missing, position 1 is assumed. Note that if the index is less than 1
or larger than the number of characters in the string the return value will be zero.

Example

Dim s as String
Dim b as Byte

s = "Howdy"
b = Asc(s)

After execution, the variable b will have the value of 72 (48 hex), the character code for H.

Compatibility

BasicX does not support the presence of the second parameter.

See Also Chr

ZBasic System Library 47 ZBasic Microcontrollers

Asin

Type Function returning Single

Invocation Asin(arg)

Parameter Method Type Description
arg ByVal Single The value from which the arc sine will be computed.

Discussion

The arc sine function is the inverse of the sine function. The return value will be the angle, expressed in
radians, whose sine corresponds to the passed value. The type of the return value will be Single and
the value will range from -π /2 to π /2. If the argument is greater than 1.0 or less than –1.0, the result will
be undefined.

Example

Dim val as Single, theta as Single

val = 0.5
theta = Asin(val) ' result is approximately 0.5236

See Also Sin, DegToRad, RadToDeg

ZBasic System Library 48 ZBasic Microcontrollers

Atn

Type Function returning Single

Invocation Atn(arg)

Parameter Method Type Description
arg ByVal Single The value from which the arc tangent will be computed.

Discussion

The arc tangent function is the inverse of the tangent function. The return value will be the angle,
expressed in radians, whose tangent corresponds to the passed value. The return value will be of type
Single and the value will range from -π /2 to π /2.

Example

Dim val as Single, theta as Single

val = 0.5
theta = Atn(val) ' result is approximately 0.4636

See Also Atn2, DegToRad, RadToDeg

ZBasic System Library 49 ZBasic Microcontrollers

Atn2

Type Function returning Single

Invocation Atn2(y, x)

Parameter Method Type Description
y ByVal Single y coordinate.
x ByVal Single x coordinate.

Discussion

This function computes the principal value of the arc tangent of y/x, using the signs of both arguments to
determine the quadrant of the return value. The return value will be the angle, expressed in radians, from
the positive x-axis to the line connecting the origin and the given point. The type of the return value will be
Single and the value will range from -π to π . If both x and y are zero, the value 0.0 will be returned as

a special case.

Example

Dim x as Single, y as Single, theta as Single

x = 1.0
y = -1.0
theta = Atn2(y, x) ' result is –0.7854

Compatibility

This function is not available in BasicX compatibility mode.

See Also Atn, DegToRad, RadToDeg

ZBasic System Library 50 ZBasic Microcontrollers

BitCopy

Type Subroutine

Invocation BitCopy(destAddr, destBitOfst, srcAddr, srcBitOfst, bitCount)

Parameter Method Type Description
dstAddr ByVal integral The address to which to begin copying.
dstBitOfst ByVal integral The bit offset to which to begin copying.

srcAddr ByVal integral The address from which to begin copying.
srcBitOfst ByVal integral The bit offset from which to begin copying.
bitCount ByVal integral The number of bits to copy.

Discussion

This subroutine can be used to copy an arbitrary number of bits from one location in RAM to another.
The copy operation may begin and/or end in the middle of a byte if desired. An overlapping copy (when
the destination is in the midst of the data being copied) is handled correctly so that the data to be copied
is not overwritten.

For the purposes of this subroutine, RAM considered a sequence of bits with the least significant bits of
each byte preceding the more significant bits. This is the same model of RAM that is utilized by
GetBit() and PutBit(). The least significant bit of a byte is at offset zero and the most significant bit

is at offset 7.

Note that the bit offsets specified for the second and fourth parameters may have values greater than 7.
If a bit offset greater than 7 is given, the corresponding address component is adjusted internally to give
the same effect. For example, i f an address of 200 and a bit offset of 19 are specified, these are
converted internally to 202 and 3, respectively.

All six parameters are converted internally to UnsignedInteger.

Caution

This subroutine should be used with care because it is possible to overwrite important data on the stack
or other areas of memory which may cause your program to malfunction.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24). Moreover, it is not available in BasicX compatibility mode.

See Also MemCopy, MemSet

ZBasic System Library 51 ZBasic Microcontrollers

BlockMove

Type Subroutine

Invocation BlockMove(count, source, destination)

Parameter Method Type Description
count ByVal integral The number of bytes to copy.
source ByVal integral The address from which to begin copying.

destination ByVal integral The address to which to begin copying.

Discussion

This subroutine is provided for compatibility with BasicX. The more aptly named MemCopy() should be

used by new applications. An overlapping copy (when the destination is in the midst of the data being
copied) is handled correctly so that the data to be copied is not overwritten.

Compatibility

With VM firmware versions prior to v1.1.0 an overlapping copy is not handled correctly nor is it handled
correctly in BasicX. A BasicX application that relies on the incorrect handling will, therefore, not work as
expected when run on ZX processors.

See Also BitCopy, MemCopy

ZBasic System Library 52 ZBasic Microcontrollers

BusRead

Type Subroutine

Invocation BusRead(addr, data, count)
 BusRead(addr, data, count, delta)

Parameter Method Type Description
addr ByVal integral The bus address at which to begin reading.

data ByRef anyType A buffer to receive the data read.
count ByVal integral The number of bytes to read.
delta ByVal integral The amount by which the address should be changed after

each byte is read.

Discussion

For ZBasic devices that support external RAM (e.g. ZX-1281), if the external RAM interface is enabled
and a bus has not been defined using DefineBus(), then the external RAM interface is used for the read
operation. In this case, the full 16 bits of the specified address are used and the delta parameter is
interpreted as a signed 8-bit value that is sign-extended before adding it to the address with each
iteration.

For ZBasic devices that do not support external RAM or i f the external RAM interface is not enabled, this
routine performs a series of read operations on the bus previously defined with the DefineBus() call. This
is called the “bit bang” mode. For each read cycle, the low 8-bits of the address is output on the
previously specified port and then the ALE pin is strobed (high, then back low). Next, the port is made an
input and the RD pin is set low, data is read via the PIN register corresponding to the port, and the RD pin
is set back high again. The data value read is stored in the buffer, the specified delta is added to the 8-bit
bus address and the cycle is repeated until the specified number of bytes has been read.

It is important to remember that in the bit bang mode only 8 bits of the address are used. Depending on
the values of the addr, count and delta parameters, the effective address may wrap around to zero.

For example, with delta=1 specifying a count parameter larger than (256 – LoByte(addr)) will
result in the effective address wrapping around to zero.

In either mode, if the optional delta parameter is not specified, the value of 1 is assumed. Specifying
the delta as zero will result in multiple reads from the same address. A delta of –1 or &Hff will result in

the address being decremented after each read.

Example

Dim data(1 to 20) as Byte
Call DefineBus(Port.A, C.0, C.1, C.2)
Call BusRead(0, data, SizeOf(data))

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24) nor is is available on ATxmega-based ZBasic devices. Moreover, it is not available in BasicX
compatibility mode.

See Also BusWrite, DefineBus

ZBasic System Library 53 ZBasic Microcontrollers

BusWrite

Type Subroutine

Invocation BusWrite(addr, data, count)
 BusWrite(addr, data, count, delta)

Parameter Method Type Description
addr ByVal integral The bus address at which to begin writing.

data ByRef anyType The data to be written.
count ByVal integral The number of bytes to write.
delta ByVal integral The amount by which the address should be changed after

each byte is written.

Discussion

For ZBasic devices that support external RAM (e.g. ZX-1281), if the external RAM interface is enabled
and bus has not been defined using DefineBus(), then the external RAM interface is used for the write
operation. In this case, the full 16 bits of the specified address are used and the delta parameter is
interpreted as a signed 8-bit value that is sign-extended before adding it to the address with each
iteration.

For ZBasic devices that do not support external RAM or i f the external RAM interface is not enabled, this
routine performs a series of write operations on the bus previously defined with the DefineBus() call. This
is called the “bit bang” mode. For each write cycle, the low 8-bits of the address is output on the
previously specified port and then the ALE pin is strobed (high, then back low). Then, the next data value
to be written is output on the port and the WR pin is strobed (low then back high). Finally, the specified
delta is added to the bus address and the cycle is repeated until the specified number of bytes has been
written.

It is important to remember that in the bit bang mode only 8 bits of the address are used. Depending on
the values of the addr, count and delta parameters, the effective address may wrap around to zero.

For example, with delta=1 specifying a count parameter larger than (256 – LoByte(addr)) will
result in the effective address wrapping around to zero.

In either mode, if the optional delta parameter is not specified, the value of 1 is assumed. Specifying
the delta as zero will result in multiple writes to the same address. A delta of –1 or &Hff will result in the

address being decremented after each write.

Example

Dim data(1 to 20) as Byte
Call DefineBus(Port.A, C.0, C.1, C.2)
Call BusWrite(0, data, SizeOf(data))

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24) nor is is available on ATxmega-based ZBasic devices. Moreover, it is not available in BasicX
compatibility mode.

See Also BusRead, DefineBus

ZBasic System Library 54 ZBasic Microcontrollers

CallTask

Type Special Purpose

Invocation CallTask taskName, taskStack

CallTask taskName, taskStack, taskStackSize
CallTask taskName(parameterList), taskStack
CallTask taskName(parameterList), taskStack, taskStackSize

Parameter Method Type Description
taskName ByVal identifier The name of the task to invoke.
parameterList varies varies Zero or more parameters to be passed to the task,

separated by commas.
taskStack ByRef array of Byte The stack for the task (see discussion)
taskStackSize ByVal integral The size of the stack.

Discussion

This construct is used to prepare a task for running; the task doesn’t actually execute until its turn comes
up in the normal task rotation. In the first and second cases, the taskName given must be the name of a

user-defined subroutine that takes no parameters. In the third and fourth cases, the taskName given
must be a user-defined subroutine that takes a number of parameters whose type and number match that
of the supplied parameter list. The subroutine may be public or private but if it is private it must exist in the
same module as the CallTask invocation that refers to it.

The taskStack may be a Byte array, typically defined at the module level, that contains a sufficient
amount of space for the task’s stack needs. The array can be public or private but if it is private it must
exist in the same module as the CallTask invocation that refers to it. Alternately, the stack for a task may
be specified by giving its address as an integral expression. In this case, it is usually also advisable to
specify the size of the stack since the compiler cannot deduce the size. A task must have exclusive use
of the memory dedicated to its task stack. A particular task stack may be used by more than one task but
one task must terminate before the next task can re-use the task stack.

If a task is passed parameters when it is invoked, it is advisable that those parameters be passed ByVal
because the lifetime of the task may exceed the lifetime of the routine from which the task was invoked. If
parameters are passed ByRef (explicitly or implicitly), the compiler will issue a warning. Also, certain
types of expressions (notably, those involving user-defined functions that return String types) may not be
used as parameter values for task invocation because they require the creation of temporary variable
space on the stack during evaluation. The compiler will issue an error message when it detects such
situations. This problem can be rectified by manually creating a variable (preferably at the module level)
to hold the parameter value.

For native mode devices (e.g. ZX-24n), the task stack size must either be explicitly specified or it must be
determinable by the compiler from the size of the task stack array. The compiler will issue an error
message if it cannot determine the size of the task stack.

Please read the section on multi-tasking in the ZBasic Reference Manual for more details, including
information about how to determine the proper task stack size.

Example 1

Dim taskStack(1 to 50) as Byte

Sub Main()
 CallTask MyTask, taskStack
 Do
 Debug.Print "Hello from Main"
 Call Delay(1.0)

ZBasic System Library 55 ZBasic Microcontrollers

 Loop
End Sub

Sub MyTask()
 Do
 Debug.Print "Hello from MyTask"
 Call Delay(2.0)
 Loop
End Sub

Example 2

Dim taskStack(1 to 50) as Byte

Sub Main()
 CallTask MyTask(2.0), taskStack
 Do
 Debug.Print "Hello from Main"
 Call Delay(1.0)
 Loop
End Sub

Sub MyTask(ByVal taskDelay as Single)
 Do
 Debug.Print "Hello from MyTask"
 Call Delay(taskDelay)
 Loop
End Sub

Example 3

Dim taskStack(1 to 50) as Byte

Sub Main()
 Dim stkAddr as UnsignedInteger
 Dim stkSize as Integer

 stkAddr = taskStack.DataAddress
 stkSize = SizeOf(taskStack)
 CallTask MyTask(2.0), stkAddr, stkSize
 Do
 Debug.Print "Hello from Main"
 Call Delay(1.0)
 Loop
End Sub

Sub MyTask(ByVal taskDelay as Single)
 Do
 Debug.Print "Hello from MyTask"
 Call Delay(taskDelay)
 Loop
End Sub

Compatibility

In BasicX compatibility mode, the task name must be enclosed in quotes (i.e. so that it appears to be a
string). Also, task parameters, specifying the task stack by address, and specifying the task stack size
are not supported in BasicX compatibility mode. CallTask cannot be used unless the RTC is enabled in
your application.

ZBasic System Library 56 ZBasic Microcontrollers

CBit

Type Function returning Bit

Invocation CBit(arg)

Parameter Method Type Description
arg ByVal integral, String or Boolean The value to convert to a Bit value.

Discussion

This function converts a numeric, String or Boolean value to a Bit value as described in the table below.

Input Type Result
integral, Boolean The value is the least significant bit of the supplied value.
String The result is the least significant bit of the numeric value of the

characters in the string, ignoring leading space and tab characters.
The value string may begin with a plus or minus sign and an optional
radix indicator (&H for hexadecimal, &O for octal, &B or &X for binary,
all case insensitive). The conversion is terminated upon reaching the
end of the string or encountering the first character that is not valid for
the indicated radix.

Example

Dim pinVal as Bit

pinVal = CBit(GetPin(12))

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 57 ZBasic Microcontrollers

CBool

Type Function returning Boolean

Invocation CBool(arg)

Parameter Method Type Description
arg ByVal Byte The value to convert to a Boolean value.

Discussion

This function converts a Byte value to a Boolean value. If the byte has the value 0 the result will be
False, otherwise it will be True.

Example

Dim pinHi as Boolean

pinHi = CBool(GetPin(12))

ZBasic System Library 58 ZBasic Microcontrollers

CByte

Type Function returning Byte

Invocation CByte(arg)

Parameter Method Type Description
arg ByVal numeric, String, Boolean or Enum The value to convert to Byte.

Discussion

This function converts any numeric or enumeration value to a Byte value. See the table below for details
of the conversion.

Input Type Result
Boolean Returns the byte value of the Boolean data item: 0 or 255.
Byte No effect, the value is as supplied.
Integer Returns the low byte of the value provided. However, if the supplied

value is negative or greater than 255, the returned value will be 255.
UnsignedInteger Returns the low byte of the value provided. However, if the supplied

value is greater than 255, the returned value will be 255.
Enum Returns the low byte of the value provided. However, if the supplied

value is greater than 255, the returned value will be 255.
Long Returns the low byte of the value provided. However, if the supplied

value is negative or greater than 255, the returned value will be 255.
UnsignedLong Returns the low byte of the value provided. However, if the supplied

value is greater than 255, the returned value will be 255.
Single The supplied value is converted to a Long value (signed 32-bit integer),

rounded to the nearest integer. If the fractional part is exactly 0.5, the
resulting integer will be even. This is known as “statistical rounding”. If
the resulting integer value is negative or larger than 255, the result will
be 255. Otherwise, the result will be the integral value.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&O for octal, &B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Compatibility

In BasicX, calling CByte() with an UnsignedInteger argument returns the low byte of the value. This

behavior is inconsistent with the other type conversions. This implementation attempts to make them
consistent.

ZBasic System Library 59 ZBasic Microcontrollers

CByteArray

Type Function returning a reference to a Byte array

Invocation CByteArray(addr)

Parameter Method Type Description
addr ByVal int16 The address to be converted to a reference to a Byte array.

Discussion

This special function is useful when you have an integral value that you know to be the address of a Byte
array and you want to pass it to a subroutine or function that requires a Byte array parameter. The
example below shows it being used to determine the number of bytes of data available in the system
input queue.

Example

Dim cnt as Integer
cnt = GetQueueCount(CByteArray(Register.RxQueue))

See Also StatusTask

ZBasic System Library 60 ZBasic Microcontrollers

Ceiling

Type Function returning Single

Invocation Ceiling(arg)

Parameter Method Type Description
arg ByVal Single The value of which to compute the ceiling.

Discussion

This function returns a Single value that is the smallest integer that is greater than or equal to the
supplied value, effectively rounding up to the nearest integer.

Example

Dim ceil as Single

ceil = Ceiling(1.5) ' result is 2.0
ceil = Ceiling(-1.5) ' result is -1.0

Compatibility

This function is not available in BasicX compatibility mode.

See Also Floor, Fraction

ZBasic System Library 61 ZBasic Microcontrollers

Chr

Type Function returning String

Invocation Chr(arg)

Parameter Method Type Description
arg ByVal integral The character code to place in the string.

Discussion

This function returns a string containing a single character having the value of the supplied parameter. If
the parameter is a multi-byte type such as Integer or Long the least significant byte of the value is used
and the remaining bytes are ignored.

Tables of ASCII character values may be found in many places on the Internet. A search for “ASCII
table” or “ASCII chart” will produce many results.

Example

Dim s as String
s = Chr(33)

After execution, s will be "!" because 33 is the decimal code for the exclamation mark.

See Also Asc

ZBasic System Library 62 ZBasic Microcontrollers

CInt

Type Function returning Integer

Invocation CInt(arg)

Parameter Method Type Description
arg ByVal numeric, Boolean, String or Enum The value to convert to Integer.

Discussion

This function converts any numeric or enumeration value to an Integer value. See the table below for
details of the conversion.

Input Type Result
Byte, Boolean High byte zero, low byte as supplied.
Integer No effect, the value is as supplied.
UnsignedInteger Value bits are the same as supplied, although interpreted

as a signed value.
Enum The resulting value is the Enum member value.
Long The resulting value will be the low word of the supplied

value.
UnsignedLong The resulting value will be the low word of the supplied

value.
Single The supplied value is converted to signed 32-bit integer,

rounded to the nearest integer. If the fractional part is
exactly 0.5, the resulting integer will be even. This is
known as “statistical rounding”. If the resulting integer is
larger than will fit in 16-bits, the result is undefined.

String The result is the numeric value of the characters in the
string, ignoring leading space and tab characters. The
value string may begin with a plus or minus sign and an
optional radix indicator (&H for hexadecimal, &O for octal,
&B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or
encountering the first character that is not valid for the
indicated radix.

Example

Dim i as Integer

i = CInt(2.5) ' result is 2
i = CInt(1.5) ' result is 2

ZBasic System Library 63 ZBasic Microcontrollers

ClearQueue

Type Subroutine

Invocation ClearQueue(queue)

Parameter Method Type Description
queue ByRef array of Byte The queue to be cleared.

Discussion

This routine modifies the tracking information contained in the queue data structure to indicate that the
queue is empty. If the queue is already empty, this has no effect. If there are characters in the queue,
they will be discarded.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

Dim inQueue(1 to 40) as Byte

Call OpenQueue(inQueue, SizeOf(inQueue))
Call PutQueueStr(inQueue, "Hello")
Call ClearQueue(inQueue)

After the call to ClearQueue() the queue will no longer contain the characters that were added.

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

ZBasic System Library 64 ZBasic Microcontrollers

CLng

Type Function returning Long

Invocation CLng(arg)

Parameter Method Type Description
arg ByVal numeric, Boolean, String or Enum The value to convert to Long.

Discussion

This function converts any numeric or enumeration value to a Long value. See the table below for details
of the conversion.

Input Type Result
Byte, Boolean High 3 bytes zero, low byte as supplied.
Integer High word will be all ones if the supplied value is negative, zero

otherwise. Low word as supplied.
UnsignedInteger High word zero, low word as supplied.
Enum The resulting value is the Enum member value.
Long No effect, the value is as supplied.
UnsignedLong Value bits are the same as supplied, although interpreted as a signed

value.
Single The supplied value is converted to a signed 32-bit integer, rounded to

the nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
magnitude of the supplied value is too large to be represented in 32 bits,
the result is undefined.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&O for octal, &B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Example

Dim l as Long

l = CLng(2.5) ' result is 2
l = CLng(1.5) ' result is 2

ZBasic System Library 65 ZBasic Microcontrollers

CloseCom

Type Subroutine

Invocation CloseCom(channel, inQueue, outQueue)

Parameter Method Type Description
channel ByVal Byte The serial channel to close.
inQueue ByRef array of Byte The input queue associated with the channel.

outQueue ByRef array of Byte The output queue associated with the channel.

Discussion

This routine shuts down the specified serial channel. All communication is terminated even if there are
still characters in the output queue that have not yet been sent. This call does not clear the queues. If
that is a requirement, calls to ClearQueue() will need to be made. Alternately, you may want to use the
value returned by StatusCom() to wait for all queued characters to be transmitted before invoking

CloseCom().

When used with ZX devices, invoking this subroutine for Com1 (channel = 1) does not actually close the
Com1 channel if the application was configured with Com1 implicitly open at startup time. In this case,
the effect of the call is to cause Com1 to revert to the default speed (19.2K baud) and to using the default
I/O queues.

If the specified serial channel is not open or if an invalid channel number is given the call has no effect. If
the channel being closed is the only one of the software-based channels (Com3-Com6) that is open, the
Serial Timer will be turned off and the corresponding timer busy flag will be set to False indicating that the
Serial Timer is available for other uses.

See Also ClearQueue, DefineCom, OpenCom, StatusCom

ZBasic System Library 66 ZBasic Microcontrollers

CloseDAC

Type Subroutine

Invocation CloseDAC(channel)

 CloseDAC(channel, status)

Parameter Method Type Description
channel ByVal Byte The DAC channel to close.

status ByRef Boolean A variable to receive the status code.

Discussion

This subroutine terminates the DAC operation on the specified channel. The status parameter, if

supplied, receives a value to indicate success or failure of the call. If the second channel of the DAC
channel pair is also open, it will continue to operate unaffected.

Example

Call CloseDAC(1) ' terminate DAC on channel 1

Compatibility

This subroutine is only available for xmega devices and is not available in BasicX compatibility mode.

See Also DAC, OpenDAC

ZBasic System Library 67 ZBasic Microcontrollers

CloseI2C

Type Subroutine

Invocation CloseI2C(channel)

Parameter Method Type Description
channel ByVal Byte The I2C channel number (0-4).

Discussion

This subroutine closes an I2C channel. For the hardware I2C channel, it disables the on-board I2C
controller allowing the hardware I2C pins to be used for other purposes. For software I2C channels it has
no effect.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenI2C

ZBasic System Library 68 ZBasic Microcontrollers

ClosePWM

Type Subroutine

Invocation ClosePWM(channel)

 ClosePWM(channel, status)

Parameter Method Type Description
channel ByVal Byte The PWM channel to close.

status ByRef Boolean A variable to receive the status code.

Discussion

This subroutine terminates the PWM signal generation on the specified channel and all other PWM
channels associated with the same 16-bit timer. The resulting state of the output pins for the affected
channels is indeterminate. If your application requires a specific output state, it is recommended that you
call PutPin() to set the desired state prior to calling ClosePWM().

A side effect of a successful ClosePWM() call is that the timer busy flag for the associated timer (e.g.

Register.Timer1Busy) will be set to False indicating that the timer may be used for other purposes.

Example

Call ClosePWM(1) ' terminate PWM on channel 1 and 2

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenPWM, PWM

ZBasic System Library 69 ZBasic Microcontrollers

ClosePWM8

Type Subroutine

Invocation ClosePWM8(channel)

 ClosePWM8(channel, status)

Parameter Method Type Description
channel ByVal Byte The 8-bit PWM channel to close.

status ByRef Boolean A variable to receive the status code.

Discussion

This subroutine terminates the PWM signal generation on the specified 8-bit channel and all other PWM
channels associated with the same 8-bit timer. The resulting state of the output pins for the affected
channels is indeterminate. If your application requires a specific output state, it is recommended that you
call PutPin() to set the desired state prior to calling ClosePWM8().

The status parameter, if supplied, receives a value to indicate success or failure of the call.

A side effect of a successful ClosePWM8() call is that the timer busy flag for the associated timer (e.g.
Register.Timer2Busy) will be set to False indicating that the timer may be used for other purposes.

Example

Call ClosePWM8(1) ' terminate PWM on channel 1 (and channel 2)

Compatibility

This subroutine is not available in BasicX compatibility mode nor is it available on ATxmega-based
ZBasic devices.

See Also OpenPWM8, PWM8

ZBasic System Library 70 ZBasic Microcontrollers

CloseSPI

Type Subroutine

Invocation CloseSPI(channel)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).

Discussion

This subroutine closes an SPI channel. The primary purpose for this subroutine is to cancel SPI Slave
mode. It has no effect for channels that are not open or channels that are open in Master mode.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenSPI, SPICmd, SPIGetByte, SPIPutByte, SPIGetData, SPIPutData,
 SPIStart, SPIStop

ZBasic System Library 71 ZBasic Microcontrollers

CloseWatchDog

Type Subroutine

Invocation CloseWatchDog()

Discussion

This subroutine disables the watchdog timer.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenWatchDog, WatchDog

ZBasic System Library 72 ZBasic Microcontrollers

CloseX10

Type Subroutine

Invocation CloseX10(channel, inQueue, outQueue)

Parameter Method Type Description
channel ByVal Byte The X-10 channel to close.
inQueue ByRef array of Byte The input queue associated with the channel.

outQueue ByRef array of Byte The output queue associated with the channel.

Discussion

This routine shuts down the specified X-10 communication channel. All communication is terminated
even if there are still data in the output queue that have not yet been sent. This call does not clear the
queues. If that is a requirement, calls to ClearQueue() will need to be made.

If the specified X-10 channel is not open or if an invalid channel number is given the call has no effect.
The inQueue and outQueue parameters are currently not used but are present for congruency with

CloseCom(). Zero values may be used for either or both parameters.

Resource Usage

The X-10 communication requires the use of a zero-crossing signal input to the ZX. See the description
of OpenX10() for more information.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24). Moreover, it is not available in BasicX compatibility mode.

See Also DefineX10, OpenX10, StatusX10

ZBasic System Library 73 ZBasic Microcontrollers

CNibble

Type Function returning Nibble

Invocation CNibble(arg)

Parameter Method Type Description
arg ByVal integral, String or Boolean The value to convert to a Nibble value.

Discussion

This function converts a numeric, String or Boolean value to a Nibble value as described in the table
below.

Input Type Result
integral, Boolean The value is the four least significant bits of the supplied value.
String The result is the four least significant bits of the numeric value of the

characters in the string, ignoring leading space and tab characters.
The value string may begin with a plus or minus sign and an optional
radix indicator (&H for hexadecimal, &O for octal, &B or &X for binary,
all case insensitive). The conversion is terminated upon reaching the
end of the string or encountering the first character that is not valid for
the indicated radix.

Example

Dim nVal as Nibble

nVal = CNibble(Register.PortC)

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 74 ZBasic Microcontrollers

Com1toDAC

Type Subroutine

Invocation Com1toDAC(pin)

Parameter Method Type Description
pin ByVal Byte The pin number on which the analog voltage will be re-created.

Discussion

Calling this subroutine prepares Com1 to receive a continuous stream of 8-bit values from an external
source. The baud rate is automatically set 115,200. When each value is received, the value is output as
an analog voltage on the specified pin. The resulting analog voltage will range from near 0 volts
corresponding to the received value of 0 to near the processor voltage (usually +5 volts) corresponding to
the received value of 255. The method used to create the analog voltage is similar to that used for
PutDAC() and the signal will require some filtering. See the description of PutDAC() for more details.

The output pin is updated at a fixed rate of 11,000 times per second.

This routine returns immediately after setting up the conversion process. The conversion process will be
terminated if Com1toDAC() is called again with a parameter of zero. Also, if data is not received for
approximately 200 cycles, the conversion process will be automatically terminated.

Note that the subroutine ADCtoCom1() is designed to produce the data stream to be received by this
subroutine.

Resource Usage

This subroutine uses Com1 and the I/O Timer. No other use of these resources should be attempted
while the reception is active. For native code devices, the following ISRs are automatically loaded.

ISRs Required

Underlying CPU ISR Name
mega328P, mega644P, mega128 Timer1_CompA
mega1284P Timer3_CompA
mega1281 Timer4_CompA
mega1280 Timer4_CompA

Compatibility

This subroutine is only available on ATmega-based ZX devices.

See Also ADCtoCom1

ZBasic System Library 75 ZBasic Microcontrollers

ComChannels

Type Subroutine

Invocation ComChannels(chanCount, maxSpeed)

Parameter Method Type Description
chanCount ByVal Byte The total desired number of software-based serial channels.
maxSpeed ByVal int8/16 The desired maximum baud rate to be supported.

Discussion

In addition to the serial channels implemented in hardware on the processor (e.g. Com1), ZBasic can
support up to four additional serial communication channels that are implemented in the system software.
The software-based serial channels are numbered Com3 through Com6. However, by default, only one
additional channel, Com3, is supported. If you want to use serial channels 4 through 6 you must call this
subroutine first to specify the maximum number (generally, up to 4) that you want to have available. This
subroutine must be called only when there are no open software-based serial channels (COM3 through
COM6). If it is called when one or more channels are already open, it will have no effect. For native
mode devices, the upper limit of the chanCount parameter may be lower than 4 if the Option

ComChannels directive is used. If the value of chanCount exceeds the upper limit the call will fail
silently.

After ComChannels() has been invoked, the serial channels that will be available depends on the value
specified by the chanCount parameter. If the value 2 is specified, for example, channels Com3 and

Com4 will be available. Once the number of software-based serial channels has been established you
may then use DefineCom(), OpenCom(), and CloseCom() to manage the available channels by
specifying the appropriate channel number in those calls.

In addition to specifying the total number of software-based serial channels that you want, you must also
specify the maximum baud rate that you wish to utilize. The supported rates are 300, 600, 1200, 2400,
4800, 9600 and 19,200 baud but see below for additional discussion about the maximum baud.

Because the COM3 to COM6 serial channels are implemented in software, when one or more of the
channels is open there will be a certain amount of processing overhead that will reduce the speed at
which program instructions will be executed. Moreover, the processing overhead is higher when
supporting higher baud rates as compared to lower baud rates and the overhead is higher when
supporting a larger number of channels. It is prudent, therefore, to choose the lowest baud rate and
lowest number of channels that is practical for your application.

Also note that when supporting two or more channels, there is a small possibility that incoming characters
might not be properly recognized at the highest rate. The probability of not being able to properly
synchronize on the incoming character’s start bit increases with each additional channel that is supported.
For this reason, it is recommended that the maximum baud rate be limited to 9600 when configured for 2
or more channels.

For devices operating at speeds between 7.37MHz and 14.7456MHz, the number of software-
implemented serial channels should be limited to two and the maximum speed should be limited to 9600
baud. At slower speeds, further reductions in the channel use and maximum speed may be necessary.

Resource Usage

The software-implemented serial channels utilize the Serial Timer for the bit rate timing. No other use of
the Serial Timer should be attempted when serial channels 3-6 are open. The “Busy” flag for the timer
used to implement the software serial channels will be set to True when one or more of the software-
implemented serial channels is open.

ZBasic System Library 76 ZBasic Microcontrollers

Example

Dim iq4(1 to 20) as Byte
Dim oq4(1 to 20) as Byte

Call ComChannels(4, 4800)
Call DefineCom(6, 12, 13, &H80)
Call OpenCom(6, 4800, iq4, oq4)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also DefineCom, CloseCom, OpenCom, StatusCom, SerialGetByte, SerialOut

ZBasic System Library 77 ZBasic Microcontrollers

Console.Read

Type Function returning Byte

Invocation Console.Read()

Discussion

This function can be invoked to ret rieve a character from the input queue associated with Com1 (by
default, but see Option Console in the ZBasic Language Reference Manual). If the value of
Register.Console.Echo is True, the character will automatically be sent back out via the output

queue associated with the designated serial channel. When this function is called it will not return until a
character is available. However, other tasks will continue to execute. You may wish to query the
designated queue to find out if there are characters available before calling this function. See the
example below.

Example

Dim b as Byte
b = Console.Read() ' this will wait until a character is available

If (GetQueueCount(CByteArray(Register.RxQueue)) > 0) Then
 b = Console.Read() ' read the next available character
End If

Compatibility

This function is not available in BasicX compatibility mode.

See Also Console.ReadLine, Console.Write, Console.WriteLine

ZBasic System Library 78 ZBasic Microcontrollers

Console.ReadLine

Type Function returning String

Invocation Console.ReadLine()

Discussion

This function can be invoked to ret rieve a sequence of characters from from the input queue associated
with Com1 (by default, but see Option Console in the ZBasic Language Reference Manual) terminated by
an end-of-line character. If the value of Register.Console.Echo is True, each character received

will automatically be sent back out via the output queue associated with the designated serial channel.
When this function is called it will not return until an end-of-line character is received. However, other
tasks will continue to execute. The end-of-line character is line feed (&H0a) by default but you may

change it using Register.Console.EOL.

While the characters of the line are being read, if a backspace character is received (&H08) the most
recently received character will be deleted from the internal buffer. Additional backspace characters will
each remove another character from the buffer until it is empty. If a carriage return is received (&H0d) it
will be ignored unless Register.Console.EOL is a carriage return.

The end-of-line character is not included in the returned string and the maximum length of the string is
255 characters. Additional characters received after the 255

th
 character will be discarded while awaiting

the end-of-line character.

Example

Dim s as String
s = Console.ReadLine()

Compatibility

This function is not available in BasicX compatibility mode.

See Also Console.Read, Console.Write, Console.WriteLine

ZBasic System Library 79 ZBasic Microcontrollers

Console.Write

Type Special Purpose

Invocation Console.Write(arg)

Parameter Method Type Description
arg ByVal String A string to send out the console port

Discussion

Console.Write is neither a subroutine nor a function. It has more in common with ZBasic statements but it
is described here for ease of reference. This special purpose method is useful for outputting debugging
information and other data to Com1 (by default, but see Option Console in the ZBasic Language
Reference Manual). Note that no carriage return/new line is output after the string.

When this method is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue.

Example

Console.Write("Hello, world! ")

Console.Write("The value is " & CStr(val))

This example uses the concatenation operator to produce a single string that is passed to the method.

See Also Debug.Print, Console.Read, Console.ReadLine, Console.WriteLine

ZBasic System Library 80 ZBasic Microcontrollers

Console.WriteLine

Type Special Purpose

Invocation Console.WriteLine(arg)

Parameter Method Type Description
arg ByVal String A string to send out the console port

Discussion

Console.WriteLine is neither a subroutine nor a function. It has more in common with ZBasic statements
but it described here for ease of reference. This special purpose method is useful for outputting
debugging information and other data to Com1 (by default, but see Option Console in the ZBasic
Language Reference Manual). Note that a carriage return/new line is always output following the string.

When this method is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. This caveat
applies separately to the string specified by the parameter and to the end-of-line sequence that is also
output.

Examples

Console.WriteLine("Hello, world! ")

Console.WriteLine("The value is " & CStr(val))

The second example uses the concatenation operator to produce a single string that is passed to the
method.

See Also Debug.Print, Console.Read, Console.ReadLine, Console.Write

ZBasic System Library 81 ZBasic Microcontrollers

ControlCom

Type Subroutine

Invocation ControlCom(chan, rxFlowPin, txFlowPin)

 ControlCom(chan, rxFlowPin, txFlowPin, flags)

Parameter Method Type Description
chan ByVal Byte The serial channel of interest.

rxFlowPin ByVal Byte The pin to use for receive flow control.
txFlowPin ByVal Byte The pin to use for transmit flow control.
flags ByVal Byte Flag bits controlling the sense of the flow control lines.

Discussion

This subroutine sets a flow control pin for the receive side and/or transmit side of a serial channel. Either
or both of the second and third parameters may be zero indicating that that type of flow control is not
desired. If the fourth parameter is not specified, it defaults to the value zero indicating that the flow
control pins should be active high. If the fourth parameter is specified, the bits of its value have the
meaning given in the table below.

Flag Parameter Values

Value Meaning

&H01 The receive flow control pin should be active low.
&H02 The transmit flow control pin should be active low.

The remaining bits are currently undefined but may be used in the future. For compatibility with new
functionality that may be added in the future, the unused bits should always be zero.

If a receive flow control pin is specified, the pin will be made an output and placed in the active state.
This indicates to the sender that the ZX is ready to accept serial data. When the channel’s receive queue
is nearly full (two bytes of space left), the receive flow control pin will be set to the inactive state indicating
to the sender that data transmission should be temporarily suspended. When additional space becomes
available in the receive queue (at least three bytes), the receive flow control pin will be set back to the
active state.

If a transmit flow control pin is specified, the pin will be made an input. Before sending data, the ZX will
check the state of the transmit flow control pin and, if it is at the inactive level, no data will be sent. Note
that the input is checked periodically and transmission will resume if the transmit flow control pin is in the
active state when sampled.

The current state of the flow control signals is part of the value returned by StatusCom().

It is important to note that a receive queue that is too small is likely to result in a deadlock since there will
never be enough free space to activate the flow control signal. Also, when a channel is closed the flow
control settings for the channel are cleared. For that reason, it is recommended that the call to
ControlCom() be made, if desired, some time after a channel is opened and before it is closed.

Compatibility

This subroutine is not available on ZX devices based on the mega32 (e.g. ZX-24). Moreover it is not
available in BasicX compatibility mode.

See Also CloseCom, ComChannels, DefineCom, OpenCom, StatusCom

ZBasic System Library 82 ZBasic Microcontrollers

Cos

Type Function returning Single

Invocation Cos(arg)

Parameter Method Type Description
arg ByVal Single The angle, in radians, of which the cosine will be computed.

Discussion

The return value will be the cosine of the supplied value, ranging from –1.0 to 1.0.

Example

Const pi as Single = 3.14159
Dim val as Single

val = Cos(pi) ' result is –1.0

See Also Acos, DegToRad, RadToDeg

ZBasic System Library 83 ZBasic Microcontrollers

CountTransitions

Type Function returning Long

Invocation CountTransitions(pin, interval)

Parameter Method Type Description
pin ByVal Byte The pin on which logic transitions will be counted.
interval ByVal Single or

Long
The time interval specified in seconds or I/O Timer ticks,
respectively, during which transitions will be counted. See the
discussion below for information on range and resolution.

Discussion

When called, this routine will begin counting logic transitions on the specified pin and will continue until
the specified interval has elapsed. During the counting process processor interrupts are disabled. This
strategy allows high precision in measuring the interval but has the drawback that other processes that
utilize interrupts will not function correctly. Among such affected processes are all serial communication
and multi-tasking. For this reason, the counting interval should be kept as short as possible. RTC ticks
that occur during the counting process are accumulated and the RTC is updated when the counting is
finished.

The specified pin, which you must configure to be an input before calling, is sampled at a fixed rate of
approximately 1/36 (ATtiny, ATmega) or 1/40 (ATxmega) of the CPU frequency. The sample rate, default
resolution and maximum measurement interval are shown in the table below for various CPU
frequencies. You may modify the range and resolution of the measurement interval by modifying the
built-in variable Register.TimerSpeed1. See the special section I/O Timer Prescaler Values for more

details.
Important Values for ZX Devices

Processor
Family

Frequency

Sample Rate

Default
Resolution

Maximum
Interval

ATmega 7.3738 MHz 204.8 KHz 4.883 µ S 10,485 sec.
ATmega 14.7456 MHz 409.6 KHz 2.441 µ S 5,242 sec.

ATmega 18.432 MHz 512.0 KHz 1.953 µ S 4,194 sec.
ATxmega 29.4912 MHz 737.3 KHz 1.356 µ S 2,912 sec.

For generic target devices, which can operate at an arbitrary main frequency and RTC frequency, the
important values related to CountTransitions are shown in the table below where F_CPU is the main
processor frequency.

Important Values for Generic Target Devices

Processor
Family

Sample Rate
F_SAMP

Default
Resolution

Maximum
Interval

ATtiny, ATmega F_CPU/36 1/F_SAMP 2147483647/F_SAMP

ATxmega F_CPU/40 1/F_SAMP 2147483647/F_SAMP

Resource Usage

This function uses the I/O Timer and disables interrupts during the counting process. However, RTC ticks
are accumulated during the process and the RTC is updated upon completion. The maximum number of
missed RTC ticks that can be tracked is 65,535. A measurement interval longer than that number of RTC
fast ticks will result in incorrect RTC accumulator values. The maximum measurement interval for correct
adjustment the RTC is shown in the tables above.

Compatibility

In BasicX missed RTC ticks are not accounted for.

ZBasic System Library 84 ZBasic Microcontrollers

CPUSleep

Type Subroutine

Invocation CPUSleep()
 CPUSleep(mode)

Parameter Method Type Description
mode ByVal Byte The sleep mode to use.

Discussion

This routine puts the processor into a special sleep mode in which activity and power consumption are
reduced. The characteristics of the sleep mode are controlled by certain bits in one or more CPU
registers (see the tables below). For more information about the modes, consult the Atmel
documentation for the ATtiny, ATmega or ATxmega processor being used. If the optional mode
parameter (not supported for VM devices) is not given, the existing sleep mode bit values will be used.

Registers Containing the Sleep Mode Bits for ZX Devices

ZX Device Register

ZX-24, ZX-40, ZX-44, ZX-24e, ZX-128e, ZX-128ne Register.MCUCR

ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t, ZX-24ae, ZX-24ne, ZX-
24pe, ZX-24ru, ZX-24su

Register.SMCR

ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t Register.SMCR

ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t Register.SMCR

ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-328nu Register.SMCR

ZX-1281, ZX-1281n, ZX-1280, ZX-1280n, ZX-1281e, ZX-1281ne Register.SMCR

ZX-24x, ZX-24u, ZX-32a4, ZX-128a1, ZX-24xu Register.SLEEP_CTRL

Registers Containing the Sleep Mode Bits for Generic Target Devices

Target Device Register

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny2313, tiny2313A,
tiny4313, tiny1634, tiny441, tiny841

Register.MCUCR

tiny48, tiny88, tiny87, tiny167, tiny828 Register.SMCR

mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A,
mega88P, mega88PA, mega88PB, mega168, mega168A, mega168P,
mega168PA, mega168PB, mega328, mega328P, mega328PB

Register.SMCR

mega8515, mega161, mega162 Register.MCUCR
Register.MCUCSR
Register.EMCUCR

mega8, mega8A, mega16, mega16A, mega32, mega32A, mega64, mega64A,
mega128, mega128A, mega163, mega323, mega8535

Register.MCUCR

mega164A, mega164P, mega164PA, mega324P, mega324PA, mega644,
mega644A, mega644P, mega644PA, mega1284P, mega1281, mega2561,
mega640, mega1280, mega2560

Register.SMCR

mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega645, mega645A, mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA, mega649, mega649A,
mega649P, mega3250, mega3250P, mega6450, mega6450A, mega6450P,
mega3290, mega3290P, mega6490, mega6490A, mega6490P, mega16U4,
mega32U4, mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162,
AT90CAN32, AT90CAN64, AT90CAN128, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287

Register.SMCR

all ATxmega Register.SLEEP_CTRL

ZBasic System Library 85 ZBasic Microcontrollers

CRC16

Type Function returning UnsignedInteger

Invocation CRC16(data, count, crcPoly, crcInit, crcFlags)

Parameter Method Type Description
data ByRef anyType The data bytes to add to the CRC value.
count ByVal integral The number of bytes to process.

crcPoly ByVal UnsignedInteger The CRC polynomial to use.
crcInit ByVal UnsignedInteger The initial value of the CRC.
crcFlags ByVal integral Flag bits that control the CRC computation.

Discussion

This function computes the CRC value over a number of data bytes using a specified polynomial and
initial value. The values to use for the polynomial and the initial value depend on the style of CRC that
you need to generate. See the discussion below for further details. The flags parameter contains bits
that control aspects of the CRC computation as described in the table below.

Flag Values for the CRC Compuation

Constant Hex Binary Description
zxCRCRefIn &H01 xxxx xxx1 Each input data bytes will be “reflected”.
zxCRCRefOut &H02 xxxx xx1x The final CRC value will be “reflected”.

The remaining bits are reserved for future use and should always be zero.

In this context, the term “reflection” refers to reversing the order of the bits in a data item so that the most
significant becomes the least significant and vice versa. For a multi-byte data item, the bits in each byte
are reversed and the order of the bytes is reversed as well.

Although this function will typically be used to compute the CRC value for an entire block of data at once,
it may also be used in a byte-by-byte or data burst mode. To do so, you would pass the computed CRC
value from the previous iteration as the initial value. Note, however, that you shouldn’t use the zxRefOut

flag bit in this case. Rather, if you need reflected output you would perform the bit reversal on the final
CRC value when you reach the end of the data stream. You can reverse the bit order of a 16-bit value by
using the following code fragment.

crc = MakeWord(FlipBits(HiByte(crc)), FlipBits(LoByte(crc)))

CRC algorithms can be described by a parametric model known as the RockSoft model (see
http://www.repairfaq.org/filipg/LINK/F_crc_v34.html#CRCV_005). This CRC implementation supports the
POLY, INIT, REFIN and REFOUT parameters of the model with WIDTH=16 and XOROUT=0. If
necessary, you can easily implement a non-zero XOROUT parameter by using the following code
fragment.

crc = crc Xor XorOutValue

The Rocksoft model parameters for commonly used CRC computations are given in the table below.

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

ZBasic System Library 86 ZBasic Microcontrollers

Rocksoft Model Parameters for Common CRC Algorithms

Parameter/Type CRC-16 CRC-CCITT ModBus CRC-32
WIDTH 16 16 16 32
POLY &H8005 &H1021 &H8005 &H04c11db7
INIT &H0000 &Hffff &Hffff &Hffffffff
REFIN True False True True
REFOUT True False True True
XOROUT &H0000 &H0000 &H0000 &Hffffffff
CHECK &Hbb3d &H29b1 &H4b37 &Hcbf43926

The parameters are included in the table above for the CRC-32 algorithm but, of course, they must be
used with the CRC32() function. The CHECK value is the CRC result for the string of characters

"123456789".

Additional information on CRC calculations may be found in many places on the Internet. One useful site
that implements a CRC calculator is http://www.zorc.breitbandkatze.de/crc.html. If you don’t know the
parameters required for a particular CRC, you may be able to deduce the correct parameters by using the
calculator if you have a sample message and its CRC value. One of the variables available in the CRC
calculator on the web page mentioned is “direct” vs. “nondirect”. This implementation uses the “direct”
method.

Example

Dim data(1 to 20) as Byte
Dim crc as UnsignedInteger
' compute the CRC using the CRC-16 algorithm
crc = CRC16(data, 10, &H8005, &H0000, zxCRCRefIn Or zxCRCRefOut)

Compatibility

This function is not available in BasicX compatibility mode. Also, on ZX models that are based on the
ATmega32 processor (e.g. the ZX-24) this function is implemented in “user code” (as opposed to being
part of the VM) and is consequently slower than on other ZX models and ZBasic devices generally.

See Also CRC32

http://www.zorc.breitbandkatze.de/crc.html
http://www.zorc.breitbandkatze.de/crc.html

ZBasic System Library 87 ZBasic Microcontrollers

CRC32

Type Function returning UnsignedLong

Invocation CRC32(data, count, crcPoly, crcInit, crcFlags)

Parameter Method Type Description
data ByRef anyType The data bytes to add to the CRC value.
count ByVal integral The number of bytes to process.

crcPoly ByVal UnsignedLong The CRC polynomial to use.
crcInit ByVal UnsignedLong The initial value of the CRC.
crcFlags ByVal integral Flag bits that control the CRC computation.

Discussion

This function computes the CRC value over a number of data bytes using a specified polynomial and
initial value. The values to use for the polynomial and the initial value depend on the style of CRC that
you need to generate. The flags parameter contains bits that control aspects of the CRC computation
as described in the table below.

Flag Values for the CRC Compuation

Constant Hex Binary Description
zxCRCRefIn &H01 xxxx xxx1 The input data bytes will be “reflected”.
zxCRCRefOut &H02 xxxx xx1x The final CRC will be “reflected”.

The remaining bits are reserved for future use and should always be zero.

Although this function will typically be used to compute the CRC value for an entire block of data at once,
it may also be used in a byte-by-byte or data burst mode. To do so, you would pass the computed CRC
value from the previous iteration as the initial value. Note, however, that you shouldn’t use the zxRefOut
flag bit in this case. Rather, if you need reflected output you would perform the bit reversal on the final
CRC value when you reach the end of the data stream.

See the discussion of the CRC16() function for additional information.

Example

Dim data(1 to 20) as Byte
Dim crc as UnsignedLong
crc = Not CRC32(data, 10, &H04c11db7, &Hffffffff, zxCRCRefIn Or zxCRCRefOut)

Compatibility

This function is not available in BasicX compatibility mode. Also, on ZX models that are based on the
ATmega32 processor (e.g. the ZX-24) this function is implemented in “user code” (as opposed to being
part of the VM) and is consequently slower than on other ZX models and ZBasic devices generally.

See Also CRC16

ZBasic System Library 88 ZBasic Microcontrollers

CSng

Type Function returning Single

Invocation CSng(arg)

Parameter Method Type Description
arg ByVal numeric or Enum The value to convert to Single.

Discussion

This function converts any numeric or enumeration value to a Single value. For integral and Enum
types, the result will be the floating point approximation of the integral value. If a Single type parameter

is supplied, the result is identical to the parameter value. If a String type parameter is supplied, the
result will be the numeric value of the character string. The form of the character representation
supported is identical to that supported by ValueS().

Example

Dim b as Byte
Dim f as Single

b = 21
f = CSng(b)

Compatibility

In BasicX, passing an UnsignedLong value larger than 2,147,483,647 erroneously generates a negative

Single result. This implementation handles UnsignedLong values correctly.

ZBasic System Library 89 ZBasic Microcontrollers

CStr

Type Function returning String

Invocation CStr(arg)

Parameter Method Type Description
arg ByVal any type The value to convert to String.

Discussion

This function converts any Boolean, numeric or enumeration value to a String value. See the table below
for details of the conversion.

Input Type Result
Boolean The string "True" or "False".

Byte, Bit, Nibble A string containing decimal digits representing the
value.

Integer A string containing decimal digits representing the
value. If the value is negative, the string will begin
with a minus sign.

UnsignedInteger A string containing decimal digits representing the
value.

Enum A string containing decimal digits representing the
Enum member value.

Long A string containing decimal digits representing the
value. If the value is negative, the string will begin
with a minus sign.

UnsignedLong A string containing decimal digits representing the
value.

Single A string representing the value. Depending on the
value, the form may be standard decimal form with a
decimal point separating the whole and fractional
parts or it may be in “scientific notation” form. In some
cases, there will be no decimal point at all, e.g. with
values having no fractional part.

When converting Single values, some special cases are detected resulting in the strings shown in the

table below. See the function SngClass() for more information about the special cases.

Special Value Result

NaN "*.*".

±Infinity "&.&"

Denormalized value "#.#"

Compatibility

In BasicX the special Single values are not handled properly.

See Also CStrHex, Fmt

ZBasic System Library 90 ZBasic Microcontrollers

CStrHex

Type Function returning String

Invocation CStrHex(arg)

Parameter Method Type Description
arg ByVal numeric The value to convert to a hexadecimal String.

Discussion

This function converts any Boolean, numeric or enumeration value to a String value. The content of the
string will be hexadecimal characters that represent the value of the bytes comprising the passed value.
The number of characters in the string varies depending on the type of the value passed. See the table
below.

Input Type Number of Characters
Boolean, Bit, Nibble, Byte 2
Integer, UnsignedInteger, Enum 4
Long, UnsignedLong, Single 8

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 91 ZBasic Microcontrollers

CType

Type Function returning a converted type (see discussion below)

Invocation CType(value1, enumType) or
 CType(value2, typeCast)

Parameter Method Type Description
value1 ByVal numeric or Enum The value to convert to another type.

enumType ByVal Enum The name of an Enum type.
value2 ByVal any type The value to convert to another type.
typeCast ByVal string A C/C++ typecast.

Discussion

In the first form shown above, this function converts any numeric value or enumeration member to be a
member of specified enumeration type. No checking is done to confirm that the given value actually
corresponds to one of the members of the enumeration. See the section on enumerations in the ZBasic
Reference Manual for more information.

Example

Enum Color
 Red
 Green
 Blue
End Enum

Dim c as Color

c = CType(1, Color) ' c will have the value Green

In the second form, useful only for native mode devices, the specified value is emitted along with the
specified typecast string in a form intended to coerce the value to a desired type. The typecast string,
which may be any valid C/C++ cast, may have one of two forms. If the typecast string contains a dollar
sign, the value given, which may be an arbitrarily complex expression, is substituted in place of the dollar
sign and the result is emitted. If no dollar sign is present in the typecast string, the typecast string is
emitted verbatim followed immediately by the value (enclosed in parentheses if the value comprises a
complex expression).

Examples

Call foo(CType(val + 10, "(char *)"))
addr = CType(bar(3), "reinterpret_cast<uint16_t>($)")

In the first example, assuming that foo() is an external C/C++ function that requires a char * parameter,

the generated code would look something like this:

foo((char *)(zv_val + 10));

In the second example, assuming that bar() is an external C/C++ function that returns a pointer of some
type, the generated code would look something like this:

zv_addr = reinterpret_cast<uint16_t>(bar(3));

ZBasic System Library 92 ZBasic Microcontrollers

CUInt

Type Function returning UnsignedInteger

Invocation CUInt(arg)

Parameter Method Type Description
arg ByVal numeric, Boolean, String or Enum The value to convert to UnsignedInteger.

Discussion

This function converts any numeric or enumeration value to an UnsignedInteger value. See the table
below for details of the conversion.

Input Type Result
Byte, Boolean High byte zero, low byte as supplied.
Integer Value bits are the same as supplied, although interpreted as an

unsigned value.
UnsignedInteger No effect, the value is as supplied.
Enum Resulting value is the Enum member value.
Long Resulting value is the low word of the supplied value.
UnsignedLong Resulting value is the low word of the supplied value.
Single The supplied value is converted to a signed 32-bit integer, rounded to

the nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
resulting signed integer is negative or larger than 65535, the result is
undefined. Otherwise, the result is the value of the integer.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&O for octal, &B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Example

Dim u as UnsignedInteger

u = CUInt(2.5) ' result is 2
u = CUInt(1.5) ' result is 2

Compatibility

The ability to convert from Single is not supported in BasicX compatibility mode.

ZBasic System Library 93 ZBasic Microcontrollers

CULng

Type Function returning UnsignedLong

Invocation CULng(arg)

Parameter Method Type Description
arg ByVal numeric, Boolean, String or Enum The value to convert to UnsignedLong.

Discussion

This function converts any numeric or enumeration value to an UnsignedLong value. See the table below
for details of the conversion.

Input Type Result
Byte, Boolean High 3 bytes zero, low byte as supplied.
Integer High word will be zero, low word as supplied.
UnsignedInteger High word will be zero, low word as supplied.
Enum High word zero, low word contains Enum member value.
Long Value bits are the same as supplied, although interpreted as an

unsigned value.
UnsignedLong No effect, the value is as supplied.
Single Supplied value converted to signed 32-bit integer, rounded to the

nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
supplied value is negative or i f it is too large to be represented in 32
bits, the result is undefined.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for
hexadecimal, &O for octal, &B or &X for binary, all case insensitive).
The conversion is terminated upon reaching the end of the string or
encountering the first character that is not valid for the indicated radix.

Example

Dim ul as UnsignedLong

ul = CULng(2.5) ' result is 2
ul = CULng(1.5) ' result is 2

ZBasic System Library 94 ZBasic Microcontrollers

DAC

Type Subroutine

Invocation DAC(channel, dacValue)

 DAC(channel, dacValue, stat)

Parameter Method Type Description
channel ByVal Byte The DAC channel to use.

dacValue ByVal integral The desired DAC value (see discussion below).
stat ByRef Boolean The variable to receive the status code.

Discussion

This routine creates an analog signal on the pin corresponding to the specified channel (see OpenDAC()
for more information). Only the least significant 12 bits of the specified value are used and the resulting
analog level will be approximately equal to dacValue divided by 4095 times the DAC reference voltage

specified with OpenDAC().

Compatibility

This subroutine is only available for xmega devices and is not available in BasicX compatibility mode.

See Also CloseDAC, OpenDAC

ZBasic System Library 95 ZBasic Microcontrollers

DACPin

Type Subroutine

Invocation DACPin(pin, dacValue, dacAccumulator)

Parameter Method Type Description
pin ByVal Byte The pin to which the DAC signal will be output.
dacValue ByVal Byte The value representing the desired analog output. See the

discussion below.
dacAccumulator ByRef Byte A value used in the DAC process. See discussion below.

Discussion

This routine creates a digital approximation of an analog signal on the specified pin using a pseudo-PWM
technique. ZBasic supports this routine for backward compatibility. New applications should use
PutDAC() as it is more flexible. See the description of PutDAC() for more information.

For ZBasic devices based on the ATxmega, a hardware DAC is available. In most applications requiring
a DAC, using the hardware DAC will produce much better results.

Resource Usage

This routine disables interrupts for approximately 200µ S during the generation process.

See Also DAC, OpenDAC, PutDAC

ZBasic System Library 96 ZBasic Microcontrollers

Debug.Print

Type Special Purpose

Invocation Debug.Print stringList

Parameter Method Type Description
stringList ByVal String One or more strings or values to send out the console port.

Discussion

Debug.Print is neither a subroutine nor a function. It has more in common with ZBasic statements but it
described here for ease of reference. This special purpose method is useful for outputting debugging
information and other data to Com1 (by default, but see Option Console in the ZBasic Language
Reference Manual). The arguments provided to the command consist of zero or more strings or values
each separated by a semicolon. Unless the list ends with a semicolon, a carriage return/new line will also
be output after all of the strings have been output.

If a non-string scalar value is supplied, it is output as if it were converted to a string using the CStr()
function. If a RAM-resident Byte array name is given, its content is output, byte by byte, up to but not
including the first byte having the value zero (i.e it is treated as a null-terminated sequence of characters).

When this statement is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. This caveat
applies independently to each string in the semicolon-separated list as well as to the end-of-line string, if
applicable. The latency-inducing effect described above can be mitigated by preparing a new output
queue that is sufficiently large such that there is always enough free space in the queue when this
method is invoked.

Examples

Debug.Print "Hello, world! "

This prints the given string followed by a carriage return/new line.

Debug.Print "The value is "; val;

This prints the string followed immediately by the string equivalent of the value. Note that since the
command ends with a semicolon, no carriage return/new line will be generated.

Dim ba(1 to 10) as Byte
ba(1) = Asc("A")
ba(2) = Asc("B")
ba(3) = Asc("C")
ba(4) = 0
Debug.Print ba

This is equivalent to Debug.Print "ABC".

Compatibility

This function is not available on VM mode devices nor in BasicX compatibility mode.

See Also Console.Write, Console.WriteLine

ZBasic System Library 97 ZBasic Microcontrollers

ZBasic System Library 98 ZBasic Microcontrollers

DefineBus

Type Subroutine

Invocation DefineBus(port, alePin, rdPin, wrPin)

Parameter Method Type Description
port ByVal integral The port to use for address and data. PortA=0, PortB=1, etc.
alePin ByVal integral The pin to use for the address latch strobe.

rdPin ByVal integral The pin to use for the read data strobe.
wrPin ByVal integral The pin to use for the write data strobe.

Discussion

This subroutine is used to define the parameters to use for subsequent BusRead() and BusWrite()
operations. The port specified by the port parameter is used both for outputting the address from which
to read/write and for reading/writing the data. The port is specified by giving a port index – PortA = 0,
PortB = 1, etc. You may use the built-in constants Port.A, Port.B, etc. to specify the port index. If all
the parameters are valid, the pin specified by the alePin parameter is set to output low while the pins

specified by the rdPin and wrPin parameters are set to output high. If any of the provided parameters
is invalid, the bus will not be properly configured and subsequent calls to BusRead() or BusWrite()

will return immediately with no effect.

The pin numbers specified for the alePin, rdPin and wrPin parameters must all be different and none

of them should be in the port specified by the port parameter. If these conditions are violated, the result
is undefined.

Example

Call DefineBus(Port.A, C.0, C.1, C.2)

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24) nor is is available on ATxmega-based ZBasic devices. Moreover, it is not available in BasicX
compatibility mode.

See Also BusRead, BusWrite

ZBasic System Library 99 ZBasic Microcontrollers

DefineCom

Type Subroutine

Invocation DefineCom(channel, rxPin, txPin, flags)
 DefineCom(channel, rxPin, txPin, flags, stopBits)

Parameter Method Type Description
channel ByVal Byte The serial channel being defined.

rxPin ByVal Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.
flags ByVal Byte Configuration flags. See the discussion below.

stopBits ByVal Byte The desired number of stop bits.

Discussion

This routine configures a serial channel, preparing it to be opened using OpenCom(). This routine may

be called with the channel parameter specifiying either a hardware UART channel (1, 2 and 7-12) or a
software UART channel (3-6). If the specified channel is already open, this routine does nothing.
Likewise, there is no effect if the specified channel is invalid or if either of the rxPin and txPin
parameters is invalid for the target device or the specified serial channel. Further, if the number of data
bits specified in the flags parameter in invalid for the specified serial channel, this routine does nothing.

Hardware Channels

For hardware UART channels the rxPin and txPin parameters are meaningless and, therefore,

ignored. By default, a hardware channel is opened in “8 data bits, no parity, 1 stop bit” mode (sometimes
referred to as 8-N-1), the most common serial format. Unless you want to configure a hardware channel
for a different mode it is not necessary to call DefineCom() before opening the channel. Specifying a
value for the optional stopBits parameter that is greater than 1 will select 2 stop bits; otherwise, the
default of 1 stop bit is used. Note that some of the bits in the flags parameter are ignored for hardware

channels as indicated by shaded entries in the table below.

Software Channels

For software UART channels, either of the rxPin and txPin parameters (but not both) may be zero

allowing you to define a transmit-only or receive-only serial. If the two parameter values are different, the
specified pins are automatically configured as input and output, respectively. As a special case, the
rxPin and txPin parameters may specify the same pin and the pin is initially configured as an input to

support half-duplex, bussed operation. In this mode, the the pin will be made an output when transmitting
a zero bit if configured for non-inverted operation or when transmitting a one bit if configured for inverted
operation. A pull-up resistor (non-inverted mode) or pull-down resistor (inverted mode) is required for
bussed operation since the pin will only be actively driven in one of the two output states.

If the optional stopBits parameter is not specified, one stop bit is transmitted for each character sent.
Otherwise, the specified number of stop bits is transmitted. The allowable range for stopBits is 1 to

240 for software-based channels and 1 to 2 for hardware based channels. If a value outside the
acceptable range is specified, the default of 1 stop bit will be used. The ability to specify two or more stop
bits is useful for slowing down the transmission of data in cases where the receiver needs additional time
to process received data.

Configuration Flags

ZBasic System Library 100 ZBasic Microcontrollers

The flags parameter contains several bit fields used to specify some of the details of the operation of

the serial channel. Note, however, that some of the bits are applicable only to software UART channels.

Serial Channel Configuration Flag Values

Function Hex Value Bit Mask
Inverted Logic

1
 &H80 1x xx xxxx

Non-inverted Logic &H00 0x xx xxxx

Ignore Parity Bit &H40 x1 xx xxxx

Store Parity Bit &H00 x0 xx xxxx

Even Parity &H30 xx 11 xxxx

Odd Parity &H20 xx 10 xxxx

No Parity &H00 xx 00 xxxx

5-bit Data
2
 &H05 xx xx 0101

6-bit Data
2
 &H06 xx xx 0110

7-bit Data &H07 xx xx 0111

8-bit Data &H08 xx xx 1000

7-bit Data, bussed mode
1
 &H0b xx xx 1011

8-bit Data, bussed mode
1
 &H0c xx xx 1100

1
 Applicable only to software-based channels (3-6).

2
 Applicable only to hardware-based channels (1, 2, 7 and up).

The remaining bit values are currently undefined but may be employed in the future.

When Non-inverted Logic is selected, the idle state of the transmit line will be logic 1. When a character
transmission is begun, a “start bit” of logic zero will be sent for one bit time (the inverse of the baud rate).
Next the data bits are sent, each for one bit time, beginning with the least significant bit and continuing
through the eighth data bit or parity bit as the case may be. Finally, one or more “stop bits” of logic one
are sent, each for one bit time. With Inverted Logic, each of these elements is complemented – the idle
state of the transmit line is logic 0.

Whether you should choose the inverted or non-inverted mode depends on the device that you intend to
communicate with and how many, if any, level converters exist between the two devices. Typically, if the
other device is capable of sending and receiving TTL-level serial data, you’ll likely choose non-inverted
Logic.

If the “Ignore Parity” flag is asserted, in 7-bit mode the most significant bit of each character received will
be zero and in 8-bit mode only one byte will be stored in the queue for each character received. If the
“Ignore Parity” bit is not asserted, in 7-bit mode the MSB will contain the received parity bit and in 8-bit
mode a second byte containing the parity bit will be stored in the queue for each character received. The
ParityCheck() function is useful for checking the parity of a received character.

The software UART channels support a bussed mode where the transmit pin is actively driven only during
logic zero periods (low for non-inverted mode, high for inverted mode). This mode, selected by using the
special values shown in the table above for 7-bit and 8-bit data widths (i.e., the normal values augmented
by 4), is useful for having multiple devices driving the same transmit line. This mode is commonly
referred to as open drain (non-inverted mode) or open source (inverted mode) operation and requires a
pullup resistor (non-inverted mode) or a pulldown resistor (inverted mode) on the common transmit line in
order to establish the proper logic level when the line is not being actively driven by any device.

Note that a pullup resistor (non-inverted mode) or a pulldown resistor (inverted mode) is recommended
on the transmit line to force the transmit line to the idle state prior to the time your program initializes the
COM port. If you don’t do this, the receiving device may see false transmissions prior to the first
character actually transmitted. Depending on what other circuitry is connected to the receive line, you
may need to do the same to prevent the ZBasic device from receiving false transmissions.

Example

Call ComChannels(2, 9600)
Call DefineCom(4, 0, 12, &H08)

ZBasic System Library 101 ZBasic Microcontrollers

This call sequence prepares software-based channel 4 for transmit-only using pin 12, eight data bits, no
parity and non-inverted logic.

Call DefineCom(2, 0, 0, &H07, 2)
Call OpenCom(2, 19200, iq, oq)

This call sequence prepares hardware-based channel 2 for seven data bits, no parity, and two stop bits.

Compatibility

This routine is not available in BasicX compatibility mode; you must use DefineCom3(). Additionally,
BasicX does not support 8-bit plus parity modes nor does it support the “Ignore Parity” mode.
Furthermore, in BasicX characters received in 7-bit/no parity mode are aligned toward the MSB while in
this implementation they are properly aligned toward the LSB. The 5-bit and 6-bit modes are only
supported for native mode targets.

For mega32-based ZX devices (e.g. the ZX-24), the ability to define the characteristics of Com1 is not
supported nor is half-duplex bussed mode supported. Specifying the same pin for rx and tx on these
devices will produce undefined results.

See Also ComChannels, ControlCom, OpenCom, StatusCom

ZBasic System Library 102 ZBasic Microcontrollers

DefineCom3

Type Subroutine

Invocation DefineCom3(rxPin, txPin, flags)

Parameter Method Type Description
rxPin ByVal Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.

flags ByVal Byte Configuration flags. See the discussion below.

Discussion

This routine is provided solely for BasicX compatibility. It is equivalent to using Call DefineCom(3,

rxPin, txPin, flags). See the DefineCom() routine for more information.

ZBasic System Library 103 ZBasic Microcontrollers

DefineSPI

Type Subroutine

Invocation DefineSPI(clkPin, mosiPin, misoPin)

Parameter Method Type Description
clkPin ByVal Byte The pin to serve as the SPI clock signal (output).

mosiPin ByVal Byte The pin to serve as the SPI MOSI signal (output).
misoPin ByVal Byte The pin to serve as the SPI MISO signal (input).

Discussion

This subroutine is used to specify the clock and data pins to use for the software driven SPI
implementation (sometimes known as a “bit banged” implementation). If the flags parameter to the
OpenSPI subroutine requests software SPI, OpenSPI will initialize the specified pins (clkPin and

mosiPin as output, misoPin as input) and set clkPin to the idle state specified by the flags
parameter to OpenSPI. If software SPI is not requested, OpenSPI will initialize the hardware SPI
controller according to the flags parameter to OpenSPI.

It is important to be aware that the pin values set by DefineSPI are used by both the OpenSPI and
SPICmd routines. This fact requires some extra attention if your application uses multiple SPI channels
and two or more of them use the software-driven implementation. In such cases, you must ensure that
the SPI pins have been correctly set by a prior call to DefineSPI before each call to OpenSPI and
SPICmd. If your application uses just one channel with software SPI, a single call to DefineSPI will
suffice and if it does not use software SPI at all then DefineSPI needn’t be called either.

Compatibility

This subroutine is not supported in BasicX mode nor it is supported on any VM mode ZX device.

See Also CloseSPI, OpenSPI, OpenSPISlave, SPICmd, SPIGetByte, SPIPutByte,
 SPIGetData, SPIPutData, SPIStart, SPIStop

ZBasic System Library 104 ZBasic Microcontrollers

DefineX10

Type Subroutine

Invocation DefineX10(channel, rxPin, txPin, flags)

 DefineX10(channel, rxPin, txPin, flags, agcResetPin, agcWindowPin)

Parameter Method Type Description
channel ByVal Byte The X-10 channel being defined. The valid range is 1-2.

rxPin ByVal Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.
flags ByVal Byte Configuration flags. See the discussion below.

agcResetPin ByVal Byte The pin on which to generate the AGC reset signal.
agcWindowPin ByVal Byte The pin on which to generate the AGC window signal.

Discussion

This routine configures an X-10 communication channel, preparing it to be opened using OpenX10(). If
the specified channel is already open, this routine does nothing. Likewise if the specified channel is
invalid or i f both the rxPin and txPin parameters are zero or invalid. Note that either rxPin or txPin

may be zero, allowing you to define a transmit-only or a receive-only X-10 channel. If valid, the pins
specified by rxPin and txPin are automatically configured as input and output, respectively.

The flags parameter contains several bit fields used to specify some of the details of the operation of

the X-10 channel.

Configuration Flags Bit Values

Function Hex Value Bit Mask
50Hz mode (only used in 3-phase mode) &H40 x1 xx xx xx
60Hz mode (only used in 3-phase mode) &H00 x0 xx xx xx

Three phase mode &H20 xx 1x xx xx
Single phase mode &H00 xx 0x xx xx
Attempt to detect transmit/receive collisions &H10 xx x1 xx xx

LSB-first Transmit Bit Order &H08 xx xx 1x xx
MSB-first Transmit Bit Order &H00 xx xx 0x xx
Inverted Transmit Logic &H04 xx xx x1 xx

Non-inverted Transmit Logic &H00 xx xx x0 xx
LSB-first Receive Bit Order &H02 xx xx xx 1x
MSB-first Receive Bit Order &H00 xx xx xx 0x

Inverted Receive Logic &H01 xx xx xx x1
Non-inverted Receive Logic &H00 xx xx xx x0

The remaining bits are currently undefined but may be employed in the future.

When non-inverted modes are selected, the idle state of the transmit line or receive line will be logic 0.
Whether you should choose the inverted or non-inverted mode depends on the interface circuitry that you
use to connect to your X-10 transmitter/receiver.

When LSB-first modes are selected, the first bit to be sent/received will be the least significant bit of each
byte. This is useful when a Bit array is used to assemble/decompose the data that is sent/received since
the lower-indexed bits in a byte are of lower significance.

The second form with the additional parameters is provided for use with the CM15A and similar modules.
The fi fth parameter specifies a pin number on which to generate an active low signal to reset the CM15A
AGC circuitry. The sixth parameter specifies a pin number on which to generate an active high signal

ZBasic System Library 105 ZBasic Microcontrollers

marking the CM15A AGC window, approximately 1mS following each zero crossing. Note that support for
these CM15A AGC functions is disabled in 3 phase mode.

Example

Call DefineX10(1, 0, 12, &H00)

This call prepares channel 1 for transmit-only using pin 12, non-inverted logic, MSB-first operation.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24). The second form is only available on native mode devices. Neither form is available in BasicX
compatibility mode.

Support for 3 phase mode is only available on native mode devices.

See Also CloseX10, OpenX10, SetQueueX10, StatusX10

ZBasic System Library 106 ZBasic Microcontrollers

DegToRad

Type Function returning Single

Invocation DegToRad(angle)

Parameter Method Type Description
angle ByVal Single The angle, in degrees, to convert to radian measure.

Discussion

The trigonometric functions in the System Library all use radian angle measure. Depending on the
programming task, it is sometimes more convenient to think of angles in terms of degrees. This function
and its inverse RadToDeg() facilitate the conversion between the two systems.

Depending on optimization settings, if the parameter supplied to this function is known to be constant at
compile time, the compiler converts the value at compile time. Otherwise, code is generated to perform
the conversion (multiplication by a conversion factor) at run time.

Example

Dim f as Single
Dim theta as Single ' the angle in degrees

f = Sin(DegToRad(theta))

Compatibility

This function is not available in BasicX compatibility mode.

See Also RadToDeg

ZBasic System Library 107 ZBasic Microcontrollers

Delay

Type Subroutine

Invocation Delay(time)

Parameter Method Type Description
time ByVal Single The amount of time to delay, in seconds.

Discussion

This routine suspends the current task for a period of time at least as long as specified. The actual delay
depends on what other tasks actually do that may run in the interim. It is possible that the task will be
suspended indefinitely depending on what another task might do. If the RTC is not enabled in your
application, the resolution of the delay period is 1mS. If the RTC is enabled, the resolution is the same as
an RTC tick period, i.e. 1/F_RTC_TICK (typically 1.95mS for ZX devices).

Note that i f the current task is locked, this call will unlock it.

There is a subtle difference between Delay() and Sleep() when the RTC is enabled and the

arguments are non-zero. For Delay() the specified time is the minimum amount of delay that the task
will experience assuming that no other task is ready to run and the actual delay could be up to 1 unit
longer than the specified delay. For Sleep(), the specified time is the maximum amount of delay that
the task will experience assuming that no other task is ready to run and the actual delay could be up to 1
unit less than the specified delay.

Example

Do
 Call PutPin(Pin.RedLED, 0)
 Call Delay(0.5)
 Call PutPin(Pin.RedLED, 1)
 Call Delay(0.5)
Loop

This loop causes the red LED to turn on and off alternately for a half second each.

Compatibility

The BasicX documentation specifically indicates that Delay() will unlock a locked task. However, tests
indicate that this only happens if the parameter to Delay() is non-zero. This implementation unlocks a
task on any Delay() call.

See Also DelayMicroseconds, DelayMilliseconds, DelayUntilClockTick, Pause, Sleep,
 Register.RTCStopWatch

ZBasic System Library 108 ZBasic Microcontrollers

DelayCycles

Type Subroutine

Invocation DelayCycles(count)

Parameter Method Type Description
count ByVal constant integral The number of CPU cycles to delay.

Discussion

This routine effects a delay for at least as long as the specified number of cycles. The actual delay may
be longer if interrupts are enabled, i.e. the delay will be extended by the amount of time required to
service any interrupt that occurs. Further, if a task switch occurs (which will occur only if interrupts are
enabled), the delay will be extended further until the task containing the delay resumes execution.

The delay is effected by executing a series of instructions in a loop repeatedly and possibly executing one
or more NOP instructions to consume at least the specified number of cycles.

Example

Do
 Call PutPin(pin, 0)
 Call DelayCycles(20)
 Call PutPin(pin, 1)
 Call DelayCycles(20)
Loop

This loop causes the pin to go low and then high alternately for approximately 20 cycles each.

Compatibility

This subroutine is only available for native mode devices and is not available in BasicX compatibility
mode.

See Also Delay, DelayMilliseconds, DelayUntilClockTick, Pause, Sleep, Register.RTCStopWatch

ZBasic System Library 109 ZBasic Microcontrollers

DelayMicroseconds

Type Subroutine

Invocation DelayMicroseconds(usDelay)

Parameter Method Type Description
usDelay ByVal constant integral The amount of time to delay, in microseconds.

Discussion

This routine effects a delay for at least as long as the specified time. The actual delay depends on the
particular processor clock frequency and whether interrupts are enabled. If interrupts are enabled, the
delay will be extended by the amount of time required to service any interrupt that occurs. Further, if a
task switch occurs (which will occur only if interrupts are enabled), the delay will be extended further until
the task containing the delay resumes execution.

The delay is effected by executing a series of instructions in a loop repeatedly and possibly executing one
or more NOP instructions to consume at least the specified delay time. As an example, requesting a 10
microsecond delay on a device running at 14.7456MHz will result in a series of instructions that consume
149 cycles; the actual delay being slightly more than 10.1 microseconds.

The minimum delay incurred by calling this subroutine is 1 CPU cycle. The maximum delay obtainable is
approximately (2 2̂4 * 5) cycles; slightly more than 5.6 seconds at 14.7MHz.

Example

Do
 Call PutPin(Pin.RedLED, 0)
 Call DelayMicroseconds(500000)
 Call PutPin(Pin.RedLED, 1)
 Call DelayMicroseconds(500000)
Loop

This loop causes the red LED to turn on and off alternately for approximately one half second each.

Compatibility

This subroutine is only available for native mode devices and is not available in BasicX compatibility
mode.

See Also Delay, DelayCycles, DelayMilliseconds, DelayUntilClockTick, Pause, Sleep,
 Register.RTCStopWatch

ZBasic System Library 110 ZBasic Microcontrollers

DelayMilliseconds

Type Subroutine

Invocation DelayMilliseconds(msDelay)

Parameter Method Type Description
msDelay ByVal constant integral The amount of time to delay, in milliseconds.

Discussion

This routine effects a delay for at least as long as the specified time. The actual delay depends on the
particular processor clock frequency and whether interrupts are enabled. If interrupts are enabled, the
delay will be extended by the amount of time required to service any interrupt that occurs. Further, if a
task switch occurs (which will occur only if interrupts are enabled), the delay will be extended further until
the task containing the delay resumes execution.

The delay is effected by executing a series of instructions in a loop repeatedly and possibly executing one
or more NOP instructions to consume at least the specified delay time. As an example, requesting a 1
millisecond delay on a device running at 14.7456MHz will result in a series of instructions that consume
14,746 cycles; the actual delay being slightly more than 1.0 miilliseconds.

The minimum delay incurred by calling this subroutine is 1 CPU cycle. The maximum delay obtainable is
approximately (2 2̂4 * 5) cycles; slightly more than 5.6 seconds at 14.7MHz.

Example

Do
 Call PutPin(Pin.RedLED, 0)
 Call DelayMilliseconds(500)
 Call PutPin(Pin.RedLED, 1)
 Call DelayMilliseconds(500)
Loop

This loop causes the red LED to turn on and off alternately for approximately one half second each.

Compatibility

This subroutine is only available for native mode devices and is not available in BasicX compatibility
mode.

See Also Delay, DelayCycles, DelayMicroseconds, DelayUntilClockTick, Pause, Sleep,
 Register.RTCStopWatch

ZBasic System Library 111 ZBasic Microcontrollers

DelayUntilClockTick

Type Subroutine

Invocation DelayUntilClockTick()

Discussion

This routine suspends the current task until at least the next tick of the RTC. The actual delay depends
on what other tasks actually do that may run in the interim. It is possible that the task will be suspended
indefinitely.

If no other tasks are ready to run, the actual delay could be between 0 and 1 RTC tick.

This routine is exactly equivalent to Sleep(1). However, the RTC must be enabled in your application in
order to use this subroutine.

See Also Delay, Pause, Sleep

ZBasic System Library 112 ZBasic Microcontrollers

DisableInt

Type Function returning Byte

Invocation DisableInt()

Discussion

This routine disables interrupts, preventing any interrupt source from interrupting the current task. Most
commonly, this function is used to temporarily disable interrupts thereby allowing a sequence of
instructions to execute without interruption. Of course, interrupts should be disabled for the shortest
possible time in order to avoid missing important interrupts (e.g. real time clock interrupts). If interrupts
are disabled for longer than one period of the RTC fast tick (i.e. 1/F_RTC_FAST) you run the risk of
missing an RTC tick which will result in the RTC losing time.

The most common use for DisableInt() is to implement “atomic access” to variables. This should be done
for any variable that occupies multiple bytes of memory (e.g. Integer, Long, etc.) or for a read-modify-

write operation on any variable when there is a possibility that another task or interrupt handler might
attempt to access the same variable.

The value returned by DisableInt() should be passed to EnableInt(). Doing so will allow proper nesting of
DisableInt() and EnableInt() calls.

Note

The Atomic block construct (described in the ZBasic Language Reference Manual) is the preferred
method for implementing atomic access.

Example

Dim iflag as Byte

iflag = DisableInt()
' place code here that must not be interrupted
Call EnableInt(iflag)

See Also EnableInt, UpdateRTC, Yield

ZBasic System Library 113 ZBasic Microcontrollers

DrainQueue

Type Subroutine

Invocation DrainQueue(queue, count)

Parameter Method Type Description
queue ByRef array of Byte The queue to be drained.
count ByVal anyIntegral The number of bytes to remove.

Discussion

This routine removed up to the specified number of bytes of data from the queue.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

Dim inQueue(1 to 40) as Byte

Call OpenQueue(inQueue, SizeOf(inQueue))
Call PutQueueStr(inQueue, "Hello")
Call DrainQueue(inQueue, 3)

After the call to DrainQueue() the queue will contain only l and o.

Compatibility

This routine is not available in BasicX mode.

ZBasic System Library 114 ZBasic Microcontrollers

EnableInt

Type Subroutine

Invocation EnableInt(flag)

Parameter Method Type Description
flag ByVal Byte The value controlling re-enabling of interrupts.

Discussion

This routine conditionally re-enables interrupts depending on the value of the flag parameter. If the

most significant bit of the flag parameter is a 1, interrupts will be re-enabled. Otherwise, the state of the
interrupt enabling will not change. Passing the value returned from DisableInt() implements proper
nesting of DisableInt() and EnableInt() calls so they are most often used in pairs as shown in the example
below.

Note

The Atomic block construct (described in the ZBasic Language Reference Manual) is the preferred
method for implementing atomic access.

Example

Dim iflag as Byte

iflag = DisableInt()
' place code here that must not be interrupted
Call EnableInt(iflag)

See Also DisableInt, UpdateRTC, Yield

ZBasic System Library 115 ZBasic Microcontrollers

ExitTask

Type Subroutine

Invocation ExitTask(taskStack)

ExitTask()

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This routine attempts to terminate an active task. If no task stack is explicitly given, the task stack for the
Main() routine is assumed.

If this routine is invoked using an array other than one that is or was being used for a task stack the result
is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information
regarding task management.

When a task exits, whether normally or via ExitTask(), that task’s status is first set to 254 indicating that it
is in the process of exiting but that it is still in the task list. The exiting task will remain in the task list until
the task manager runs again. The task manager runs whenever a task switch is called for but you can
force it to run by invoking Sleep() or Yield(). Once the task manager removes an exiting task from the
task list, its status will change to 255 indicating that it is fully terminated.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also ResumeTask, RunTask, StatusTask

ZBasic System Library 116 ZBasic Microcontrollers

Exp

Type Function returning Single

Invocation Exp(arg)

Parameter Method Type Description
arg ByVal Single The power of e to be computed.

Discussion

This function returns the Single value corresponding to the value e raised to the specified power. The
transcendental value e, upon which the natural logarithm is based, is approximately 2.718. This function
is the inverse of the Log() function.

See Also Exp10, Log, Log10,Pow

ZBasic System Library 117 ZBasic Microcontrollers

Exp10

Type Function returning Single

Invocation Exp10(arg)

Parameter Method Type Description
arg ByVal Single The power of 10 to be computed.

Discussion

This function returns the Single value corresponding to the value 10 raised to the specified power. This
function is the inverse of the Log10() function.

See Also Exp, Log, Log10,Pow

ZBasic System Library 118 ZBasic Microcontrollers

FirstTime

Type Function returning Boolean

Invocation FirstTime()

Discussion

When called the first time after downloading a program, this function will return True. Thereafter, it will
always return False even if the processor is powered down or reset. Subsequently downloading again
will again cause the function to return True on the first call, etc.

ZBasic System Library 119 ZBasic Microcontrollers

Fix

Type Function returning Single

Invocation Fix(arg)

Parameter Method Type Description
arg ByVal Single The value to be “fixed”.

Discussion

This function returns the Single representation of the integer that is nearest the supplied value, rounding
toward zero.

Example

Dim f as Single

f = Fix(1.5) ' result is 1.0
f = Fix(-1.5) ' result is -1.0

See Also Ceiling, Floor, Fraction

ZBasic System Library 120 ZBasic Microcontrollers

FixB

Type Function returning Byte

Invocation FixB(arg)

Parameter Method Type Description
arg ByVal Single The value to be changed to integral form.

Discussion

The supplied Single value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 8 bits of that value is returned. The result isn’t particularly useful i f the provided Single value is

negative or larger than 255.

Example

Dim b as Byte

b = FixB(100.5) ' result is 100

ZBasic System Library 121 ZBasic Microcontrollers

FixI

Type Function returning Integer

Invocation FixI(arg)

Parameter Method Type Description
arg ByVal Single The value to be changed to integral form.

Discussion

The supplied Single value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 16 bits of that value is returned. The result isn’t particularly useful if the provided Single value is

outside the range –32768 to 32767, inclusive.

Example

Dim i as Integer

i = FixI(-100.5) ' result is -100

Compatibility

For compatibility with BasicX, if the provided Single value is larger than 32767 this function returns
32767. Similarly, if the value is less than –32767 (not –32768 as one would expect) this function returns
–32767.

ZBasic System Library 122 ZBasic Microcontrollers

FixL

Type Function returning Long

Invocation FixL(arg)

Parameter Method Type Description
arg ByVal Single The value to be changed to integral form.

Discussion

The supplied Single value is converted to a signed 32-bit integer, rounding toward zero, and that value
is returned. The result isn’t particularly useful i f the provided Single value is outside the range –

2,147,485,648 to 2,147,485,647, inclusive.

Example

Dim l as Long

l = FixL(-100.5) ' result is -100

ZBasic System Library 123 ZBasic Microcontrollers

FixUI

Type Function returning UnsignedInteger

Invocation FixUI(arg)

Parameter Method Type Description
arg ByVal Single The value to be changed to integral form.

Discussion

The supplied Single value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 16 bits of that value is returned. The result isn’t particularly useful if the provided Single value is

outside the range 0 to 65535, inclusive.

Example

Dim ui as UnsignedInteger

ui = FixUI(100.5) ' result is 100

ZBasic System Library 124 ZBasic Microcontrollers

FixUL

Type Function returning UnsignedLong

Invocation FixUL(arg)

Parameter Method Type Description
arg ByVal Single The value to be changed to integral form.

Discussion

The supplied Single value is converted to a signed 32-bit integer, rounding toward zero, and that value
is returned. The result isn’t particularly useful i f the provided Single value is outside the range 0 to

4,294,967,295, inclusive.

Example

Dim ul as UnsignedLong

ul = FixUL(100.5) ' result is 100

ZBasic System Library 125 ZBasic Microcontrollers

FlipBits

Type Function returning Byte

Invocation FlipBits(arg)

Parameter Method Type Description
arg ByVal Byte The value to be bit-wise reversed.

Discussion

This function reverses the order of the bits in the supplied value and returns the result. This is useful, for
example, i f you want to send data using ShiftOut() but you want the least significant bit to be sent first.

Example

Dim b as Byte

b = &B1011_0110
b = FlipBits(b) ' result is &B0110_1101

ZBasic System Library 126 ZBasic Microcontrollers

Floor

Type Function returning Single

Invocation Floor(arg)

Parameter Method Type Description
arg ByVal Single The value of which to compute the floor.

Discussion

This function returns a Single value that is equal to the largest integer that is less than or equal to the
supplied value, effectively rounding down to the nearest integer.

Example

Dim flr as Single

flr = Floor(1.5) ' result is 1.0
flr = Floor(-1.5) ' result is -2.0

Compatibility

This function is not available in BasicX compatibility mode.

See Also Ceiling, Fix

ZBasic System Library 127 ZBasic Microcontrollers

Fmt

Type Function returning String

Invocation Fmt(val, fracDigits)

Parameter Method Type Description
val ByVal Single The value to convert to a string.
fracDigits ByVal Byte The number of digits to produce following the decimal point.

Discussion

This function returns a String that represents the value of the val parameter. The string will have a
number of digits following the decimal point as specified by the fracDigits parameter. The maximum

number of digits to the right of the decimal point is 6. If the fracDigits parameter specifies a larger
number, it will be ignored and 6 will be used.

For very large and very small values, the returned string may be in scientific notation form. Also, some
special cases are detected resulting in the strings shown in the table below. See the System Library
function SngClass() for more information about the special values.

Special Value Result
1

NaN "*.**".

±Infinity "&.&&"

Denormalized value "#.##"
1
The number of special characters following the decimal

point will be the same as the number of fraction digits that
would have been generated had the value been normal.

Compatibility

In BasicX, the maximum number of fraction digits is 3 and the valid range of the value parameter is –
999.0 to +999.0. If either of those ranges is exceeded, BasicX produces a string containing a single
asterisk. Moreover, no provision is made for detecting special values such as NaN.

ZBasic System Library 128 ZBasic Microcontrollers

Fraction

Type Function returning Single

Invocation Fraction(val)

Parameter Method Type Description
val ByVal Single The value from which the fractional part will be returned.

Discussion

This function returns the fractional portion of the supplied value. The sign of the returned value will be the
same as that of the value provided.

Example

Dim frac as Single

frac = Fraction(1.5) ' result is 0.5
frac = Fraction(-1.5) ' result is -0.5

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 129 ZBasic Microcontrollers

FreqOut

Type Subroutine

Invocation FreqOut(pin, freqA, freqB, duration)

Parameter Method Type Description
pin ByVal Byte The pin on which the signal will be created.
freqA ByVal Integer The primary frequency, in Hertz.

freqB ByVal Integer The secondary frequency, in Hertz.
duration ByVal Single or Integer The duration of the signal, in seconds or units. See

the discussion below for more details.

Discussion

This routine generates a signal on the specified pin that is a digital approximation of two superimposed
sine waves having the specified frequencies. The method used to produce the signal is a pseudo-PWM
technique similar to that used for DACPin(). The output signal is actually purely digital, consisting of a
series of precisely timed pulses that have an average value approximating that of two superimposed sine
waves. This signal must be filtered to get an analog approximation. Depending on what you want to do
with the signal, it may need to be amplified as well.

The duration of the signal may be specified in seconds by providing a Single value. Alternately, the time
may be specified in units of approximately 1 millisecond by giving duration as an Integer or
UnsignedInteger value. In either case, the valid range is approximately 1ms to 32 seconds.

Before beginning the frequency generation, the specified pin will be made an output. When the routine
returns, the pin will still be an output.

If the pin is invalid, or both frequencies are zero, or the duration is zero, this routine does nothing. The
maximum frequency that can be produced is approximately 14.4KHz. Requesting higher frequencies will
produce undefined results.

Resource Usage

This routine uses the I/O Timer and disables interrupts until the signal generation is completed. RTC ticks
are accumulated during the process so long signal durations should not cause a loss in RTC accuracy.

Example

Call FreqOut(pin, 440, 880, 5.0) ' play middle C/high C for 5 seconds

Because of the high frequency nature of the pulse train used to synthesize the waveform some filtering is
required. The example circuit below may be used to couple the output to a high impedance speaker (>
40Ω) or an amplifier. Note, however, that the signal is too large to be fed to the microphone input of an
amplifier. Instead, the Auxiliary or Line input should be used.

ZBasic System Library 130 ZBasic Microcontrollers

Compatibility

In BasicX, the RTC will lose time if the duration is longer than 1 millisecond. Also, the duration is
documented as being limited to about 2.5 seconds

ZBasic System Library 131 ZBasic Microcontrollers

Get1Wire

Type Function returning Byte

Invocation Get1Wire(pin)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.

Discussion

This function retrieves a single bit using the 1-Wire protocol. To perform a 1-Wire operation, this function
along with related 1-Wire routines must be used in the proper sequence. See the specifications of your 1-
Wire device for more information.

The value returned will be either 0 or 1.

Resource Usage

This routine uses the I/O Timer and disables interrupts for approximately 100µ S.

Example

Dim b as Byte

b = Get1Wire(12)

See Also Get1WireByte, Get1WireData, Put1Wire,

Put1WireByte, Put1WireData, Reset1Wire

ZBasic System Library 132 ZBasic Microcontrollers

Get1WireByte

Type Function returning Byte

Invocation Get1WireByte(pin)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.

Discussion

This function reads a byte value (LSB first) using the 1-Wire protocol. It may be used instead of a series
of calls to Get1Wire() in order to read a byte at a time. To perform a 1-Wire operation, this function
along with related 1-Wire routines must be used in the proper sequence. See the specifications of your 1-
Wire device for more information.

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100µ S for each bit received.

Example

Dim b as Byte

b = Get1WireByte(12)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Get1Wire, Get1WireData, Put1Wire,

Put1WireByte, Put1WireData, Reset1Wire

ZBasic System Library 133 ZBasic Microcontrollers

Get1WireData

Type Subroutine

Invocation Get1WireData(pin, data, count)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.
data ByRef any type The variable to receive the bytes read.

count ByVal Byte The number of bytes to read.

Discussion

This function retrieves 1 or more bytes (each LSB first) using the 1-Wire protocol and writes them to the
given variable. To perform a 1-Wire operation, this function along with related 1-Wire routines must be
used in the proper sequence. See the specifications of your 1-Wire device for more information.

Caution

If the variable provided has fewer bytes than the given count, subsequent memory locations will be
altered, usually with undesirable consequences.

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100µ S for each bit received.

Example

Dim ba(1 to 10) as Byte

Call Get1WireData(12, ba, SizeOf(ba))

See Also Get1Wire, Get1WireByte, Put1Wire,

Put1WireByte, Put1WireData, Reset1Wire

ZBasic System Library 134 ZBasic Microcontrollers

GetADC (subroutine form)

Type Subroutine

Invocation GetADC(pin, val)

 GetADC(pin, val, fullScale)
 GetADC(pin, val, fullScale, offset)

Parameter Method Type Description

pin ByVal Byte The pin from which to read an analog voltage.
Val ByRef Single The variable in which to return the result.
fullScale ByVal Single The full-scale voltage value.

offset ByVal Integral The offset to apply before scaling.

Discussion

This function performs an analog-to-digital conversion on the signal present on the specified pin that must
be one of the analog port pins (see Resource Usage below). The return value will be a 10-bit (for
ATmega-based and ATtiny-based devices) or 12-bit (for ATxmega-based devices) digital approximation
of the input voltage with a range from zero to the reference voltage (see below). For the first form, the
returned value is scaled to the range 0.0 to 1.0 and for the remaining forms it is scaled to the range 0.0 to
value of the fullScale parameter. For the third form, the value of the offset parameter (which could be
negative) is added to the ADC value before scaling. This is useful, for example, for removing the effect of
a non-zero offset voltage of the ADC.

You must make the pin an input before calling this routine.

For ATtiny and ATmega target devices, the conversion is performed using the AVcc reference voltage
(connected internally to Vcc on the ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t, ZX-24e, ZX-
24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-328nu, ZX-128e, ZX-128ne, ZX-
1281e and ZX-1281ne). For ATxmega target devices, the conversion is performed using a reference
voltage of Vcc/1.6.

Resource Usage

Only analog port pins may be used to perform an analog-to-digital conversion. The number and location
of analog port pins vary depending on the ZBasic target device. See the section Analog-to-Digital
Converters for more information.

Most ZBasic target devices contain a single analog-to-digital converter thus allowing only one conversion
to be performed at a time (some have none at all). The conversion process takes approximately 220uS
during which time the calling task will be awaiting conversion completion.

Compatibility

Although the BasicX manual indicates that that it is not necessary to configure the pin to be an input
before calling, tests indicate that it is, in fact, necessary to do so. Consequently, the behavior of this
implementation matches the actual behavior of the BasicX platform. The second and third forms are not
available in BasicX mode.

ZBasic System Library 135 ZBasic Microcontrollers

GetADC (function form)

Type Function returning Integer

Invocation GetADC(pin)

Parameter Method Type Description
pin ByVal Byte The pin from which to read an analog voltage.

Discussion

This function performs an analog-to-digital conversion of the voltage present on the specified pin which
must be one of the analog port pins (see Resource Usage below). The return value will be a 10-bit (for
ATmega-based and ATtiny-based devices) or 12-bit (for ATxmega-based devices) digital approximation
of the input voltage with a range from zero to the reference voltage (see below). The return value
represents the measured voltage voltage according to the formula Vref * adcVal / FS where Vref is
the reference voltage, adcVal is the value returned by GetADC(), and FS is 1024 for ATmega and

ATtiny-based devices and 4096 for ATxmega-based devices.

You must make the specified pin an input before calling this routine.

For ATtiny and ATmega target devices, the conversion is performed using the AVcc reference voltage
(connected internally to Vcc on the ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t, ZX-24e, ZX-
24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-328nu, ZX-128e, ZX-128ne, ZX-
1281e and ZX-1281ne). For ATxmega target devices, the conversion is performed using a reference
voltage of Vcc/1.6.

Resource Usage

Only analog port pins may be used to perform an analog-to-digital conversion. The number and location
of analog port pins vary depending on the ZBasic target device. See the section Analog-to-Digital
Converters for more information.

Most ZBasic target devices contain a single analog-to-digital converter thus allowing only one conversion
to be performed at a time (some have none at all). The conversion process takes approximately 220uS
during which time the calling task will be awaiting conversion completion.

Compatibility

Although the BasicX manual indicates that that it is not necessary to configure the pin to be an input
before calling, tests indicate that it is, in fact, necessary to do so. Consequently, the behavior of this
implementation matches the actual behavior of the BasicX platform.

ZBasic System Library 136 ZBasic Microcontrollers

GetBit

Type Function returning Byte

Invocation GetBit(var, bitNumber)

Parameter Method Type Description
var ByRef any type The variable from which the bit will be read.
bitNumber ByVal int8/16 The bit number to read.

Discussion

This function extracts a single bit from memory beginning at the location of the specified variable. Bit
numbers 0-7 are taken from the byte at the specified location, bit numbers 8-15 are taken from the
subsequent byte, etc. In each case, the lower bit number corresponds to the least significant bit of the
byte while the higher bit number corresponds to the most significant bit.

The return value will always be 0 or 1.

Compatibility

In BasicX compatibility mode the second parameter must be a Byte type.

See Also PutBit

ZBasic System Library 137 ZBasic Microcontrollers

GetDate

Type Subroutine

Invocation GetDate(year, month, day)
 GetDate(year, month, day, dayNum)

Parameter Method Type Description
year ByRef int16 The variable in which to place the year value (1999-2177).

month ByRef Byte The variable in which to place the month value (1-12).
day ByRef Byte The variable in which to place the day value (1-31).
dayNum ByVal integral The day number to convert to year, month, day.

Discussion

This routine decomposes a day number into the corresponding year, month and day components. The
month value of 1 corresponds to January while 12 corresponds to December. If the day number is
omitted, the value of Register.RTCDay is used.

Note that Register.RTCDay is initialized to zero on power-up or reset. This day number corresponds to

January 1, 1999.

Compatibility

This subroutine is not available if the RTC is not enabled in your application. Also, the second form of
this subroutine is not available in BasicX compatibility mode.

See Also GetDateValue, GetDayNumber, GetDayOfWeek, GetDayOfYear, PutDate

ZBasic System Library 138 ZBasic Microcontrollers

GetDateValue

Type Function returning UnsignedInteger

Invocation GetDateValue()
 GetDateValue(dayNum)

Parameter Method Type Description
dayNum ByVal integral The day number to convert to year, month, day.

Discussion

This function decomposes a day number into the corresponding year, month and day components and
packs them into a 16-bit value as shown in the table below. If the day number is omitted, the value of
Register.RTCDay is used.

Note that Register.RTCDay is initialized to zero on power-up or reset. This day number corresponds to

January 1, 1999.

Date Value Fields

Bits Position Mask Description
15-9 &Hfe00 Year relative to 1999 (0 to 127)

8-5 &H01e0 Month (1 to 12)
4-0 &H001f Day (1 to 31)

Compatibility

This subroutine is not available if the RTC is not enabled in your application. Also, the second form of
this subroutine is not available in BasicX compatibility mode.

See Also GetDate, GetTime, GetTimeValue

ZBasic System Library 139 ZBasic Microcontrollers

GetDayNumber

Type Function returning UnsignedInteger

Invocation GetDayNumber(dayOfYear, year)

 GetDayNumber(year, month, day)

Parameter Method Type Description
dayofYear ByVal integral The ordinal day number of the year (Jan 1 = 1).

year ByVal integral The year (1999 to 2178).
month ByVal integral The month (1 to 12).
day ByVal integral The day (1 to 31).

Discussion

This routine computes the day number corresponding to the day of the year specified by the parameters.
Day number 0 is January 1, 1999. The first form is used when you have a day number and year. (The
days in a year are numbered beginning with 1.) The second form is used when you have the year, month
and day.

Examples

Dim dayNum as UnsignedInteger

dayNum = GetDayNumber(59, 2005)
dayNum = GetDayNumber(2006, 3, 20)

Compatibility

This function is not available if the RTC is not enabled in your application. Also, it is not available in
BasicX compatibility mode.

See Also GetDate, GetDayOfWeek, GetDayOfYear, PutDate

ZBasic System Library 140 ZBasic Microcontrollers

GetDayOfWeek

Type Function returning Byte

Invocation GetDayOfWeek()
 GetDayOfWeek(dayNum)

Parameter Method Type Description
dayNum ByVal integral The day number to convert to year, month, day.

Discussion

This routine computes the day of the week corresponding to a day number. If the day number is omitted,
the value of Register.RTCDay is used.. A return value of 1 corresponds to Sunday and a value of 7
corresponds to Saturday with the remaining days falling in order in between. There are built-in constants
that represent the day numbers as shown in the table below.

Day of Week Constants

Constant Value
zxSunday 1
zxMonday 2
zxTuesday 3
zxWednesday 4
zxThursday 5
zxFriday 6
zxSaturday 7

Note that Register.RTCDay is initialized to zero on power-up or reset. This day number corresponds to
Friday, January 1, 1999.

Compatibility

This function is not available if the RTC is not enabled in your application.

See Also GetDate, GetDayNumber, GetDayOfYear

ZBasic System Library 141 ZBasic Microcontrollers

GetDayOfYear

Type Function returning UnsignedInteger

Invocation GetDayOfYear(dayNum)
 GetDayOfYear(dayNum, year)

Parameter Method Type Description
dayNum ByVal integral The day number to convert to day of year and year.

year ByRef int16 The variable in which the year will be stored.

Discussion

This routine computes the day of the year and the year corresponding to a day number (such as
represented by Register.RTCDay). The first day of the year is numbered 1. If the second parameter is

present, the variable to which it refers will receive the year value.

Example

Dim dayOfYear as UnsignedInteger
Dim year as UnsignedInteger

dayOfYear = GetDayOfYear(Register.RTCDay, year)

Compatibility

This function is not available if the RTC is not enabled in your application. Also, it is not available
in BasicX compatibility mode.

See Also GetDate, GetDayNumber, GetDayOfWeek

ZBasic System Library 142 ZBasic Microcontrollers

GetEEPROM

Type Subroutine

Invocation GetEEPROM(addr, var, count)

Parameter Method Type Description
addr ByVal Long The Program Memory address from which to begin reading.
var ByRef any type The variable in which to place the data read.

count ByVal int16 The number of bytes to read.

Discussion

This routine is provided for compatibility with BasicX. The more aptly named GetProgMem() should be
used by new applications.

See Also GetProgMem, PutProgMem

ZBasic System Library 143 ZBasic Microcontrollers

GetElapsedMicroTime

Type Function returning UnsignedLong

Invocation GetElapsedMicroTime(timeBuf)

 GetElapsedMicroTime(timeBuf, timeBuf2)

Parameter Method Type Description
timeBuf ByRef Microtime_t structure or array of Byte The earlier time data.

timeBuf2 ByRef Microtime_t structure or array of Byte The later time data.

Discussion

This function is useful for implementing higher precision timing than can be obtained using
Register.RTCTick. It calculates the elapsed time between an earlier instant in time (as captured by
GetMicroTime()) and a later instant in time. If the second parameter is not provided, the later instant is
represented by the RTC time data at the time of the call.

The pre-defined structure, Microtime_t, can be incorporated in your application using the directive
Option Include Microtime_t. Using this structure instead of an array of bytes is preferable not

least because it automatically adapts if you change the target device.

The return value has units of the period of the frequency at which the TCNT register of the RTC timer
changes, i.e. 1/F_RTC_TIMER (typically about 4.34uS for ZX devices). The value of
Register.RTCTimerFrequency may be useful for converting the return value to seconds.

The array must contain at least 5 bytes (6 bytes for xmega devices), populated by a previous call to
GetMicroTime(). The return value will range from 0 to the equivalent of about 15,000 seconds. A
return value of &HFFFFFFFF indicates that an overflow has occurred, i.e. an elapsed time that is too
large to represent.

Although this function does not take into account the value of the “day” counter of the RTC, it does
properly handle an elapsed time that spans one midnight rollover.

Example

Dim t0(1 to 5) as Byte ' must be 6 bytes for xmega devices
Call GetMicroTime(t0)
<other code>
Dim delta as UnsignedLong
delta = GetElapsedMicroTime(t0)

Compatibility

This function is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-24)
nor is it available if the RTC is not enabled in your application. Moreover, it is not available in BasicX
compatibility mode.

See Also GetMicroTime

ZBasic System Library 144 ZBasic Microcontrollers

GetMicroTime

Type Subroutine

Invocation GetMicroTime(timeBuf)

Parameter Method Type Description
timeBuf ByRef Microtime_t structure or

array of Byte
A buffer to be populated with time data.

Discussion

This routine populates the provided buffer, which must be at least 5 bytes long (6 bytes for xmega
devices), with high resolution timing data. This information is most useful in conjunction with a
subsequent call to GetElapsedMicroTime() to compute an elapsed time.

The data in the time buffer comprises of the value of the TCNT register of the RTC Timer at the moment
of the call followed by the RTC tick value converted to “fast ticks” (that typically occur at 1024Hz for ZX
devices).

The pre-defined structure, Microtime_t, can be incorporated in your application using the directive
Option Include Microtime_t. Using this structure instead of an array of bytes is preferable not

least because it automatically adapts if you change the target device.

Example

Dim start(1 to 5) as Byte ' must be 6 bytes for xmega devices
Dim mt0 as Microtime_t
Call GetMicroTime(start)
Call GetMicroTime(mt0)

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24) nor is it available if the RTC is not enabled in your application. Moreover, it is not available in BasicX
compatibility mode.

See Also GetElapsedMicroTime

ZBasic System Library 145 ZBasic Microcontrollers

GetNibble

Type Function returning Nibble

Invocation GetNibble(var, nibbleNumber)

Parameter Method Type Description
var ByRef any type The variable from which the nibble will be read.
nibbleNumber ByVal int8/16 The nibble number to read.

Discussion

This function extracts a nibble value from memory beginning at the location of the specified variable.
Nibble numbers 0-1 are taken from the byte at the specified location, nibble numbers 2-3 are taken from
the subsequent byte, etc. In each case, the lower nibble number corresponds to the least significant four
bits of the byte while the higher nibble number corresponds to the most significant four bits of the byte.

The return value will always be in the range 0 to 15.

Compatibility

This function is not available in BasicX compatibility mode.

See Also PutNibble

ZBasic System Library 146 ZBasic Microcontrollers

GetPersistent

Type Subroutine

Invocation GetPersistent(addr, var, count)

Parameter Method Type Description
addr ByVal int16 The address in Persistent Memory from which to read.
var ByRef any type The variable in which to place the data read.

count ByVal int8/16 The number of bytes to read.

Discussion

This routine reads one or more bytes from Persistent Memory and places them in RAM beginning at the
location of the specified variable. Note that if a number of bytes is specified that is larger than the given
variable, adjacent memory will be overwritten, possibly with detrimental results.

The DataAddress property is useful to get the address of a Persistent Memory data item.

Example

Dim pvar(1 to 10) as PersistentByte
Dim var(1 to 10) as Byte

Call GetPersistent(pvar.DataAddress, var, SizeOf(pvar))

Compatibility

This routine is not available in BasicX compatibility mode.

See Also PutPersistent

ZBasic System Library 147 ZBasic Microcontrollers

GetPin

Type Function returning Byte

Invocation GetPin(pin)

Parameter Method Type Description
pin ByVal Byte The pin to read.

Discussion

If the specified pin is configured to be an input, this function reads the state of the pin and returns the
value 0 or 1 corresponding to logic zero and logic one. If the pin number is invalid the result is undefined.
If the pin is configured to be an output, it is reconfigured to be an input in tri-state mode before reading
the input value.

Compatibility

The BasicX documentation says that the result is undefined if GetPin() is called for a pin that is

configured as an output. Tests show that the pin is actually reconfigured to be an input in tri-state mode.
The ZBasic implementation of GetPin() does the same.

See Also PinRead, PutPin

ZBasic System Library 148 ZBasic Microcontrollers

GetProgMem

Type Subroutine

Invocation GetProgMem(addr, var, count)

Parameter Method Type Description
addr ByVal Long The Program Memory address from which to begin reading.
var ByRef any type The variable in which to place the data read.

count ByVal int16 The number of bytes to read.

Discussion

This routine reads one or more bytes from Program Memory (where the user program is stored) and
places them in RAM beginning at the location of the specified variable. Note that if a number of bytes is
specified that is larger than the given variable, adjacent memory will be overwritten, possibly with
detrimental results.

See Also PutProgMem

ZBasic System Library 149 ZBasic Microcontrollers

GetQueue

Type Subroutine

Invocation GetQueue(queue, var, count)

 GetQueue(queue, var, count, timeLimit, timeoutFlag)

Parameter Method Type Description
queue ByRef array of Byte The queue from which to read data.

var ByRef any type The variable to which to write the data from the queue.
count ByVal int16 The number of bytes to read from the queue.
timeLimit ByVal Single The amount of time to wait for data availability, in seconds.

timeoutFlag ByRef Boolean A variable to indicate if the call timed out.

Discussion

This routine has two forms. The first form simply attempts to read the given number of bytes from the
specified queue and place them in RAM beginning at the location of the given variable. In this case, the
routine will not return until requested number of bytes is available. If not enough data is placed in the
queue, the routine will never return. Note that if the calling task is locked and the queue contains
insufficient space for the data to be written data when this routine is called, the task will be unlocked to
allow other tasks to run.

The second form specifies, additionally, a timeLimit and a flag variable. In this case, if the requested
number of bytes does not become available within the specified time, the routine will return, having
transferred zero bytes, and the flag variable will be set to True indicating that the routine timed out. If

the requested number of bytes does become available before the specified time expires, that number of
bytes will be removed from the queue and transferred to the specified memory location and the flag

variable will be set to False indicating that the transfer did not time out. The resolution of the timeout
value is the same as the RTC tick, approximately 1.95mS.

In either case, if data is removed from the queue it is written to RAM beginning at the location of the
specified variable. Note that if the count specifies a number of bytes larger than the variable, the
additional bytes will be written to subsequent RAM locations. This may have exactly the effect that you
intended but depending on the function of those subsequent bytes it may have a deleterious effect on
your program.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to retrieve data from a queue that has

been assigned to a Com port as the transmit queue will produce undefined results.

Although this subroutine will accept a String variable as the second parameter it is generally not useful to
do so because the control bytes at the beginning of the string will be overwritten. If you want to populate
a string using data from a queue the alternatives are:

1) Build up the string by retrieving individual characters one by one and appending them to a string.
2) Retrieve a group of bytes to a Byte array and use the MakeString() function to create a string

from the constituent bytes.
3) Use the GetQueueStr() function to obtain a string containing characters from the queue.

Example

Dim inQueue(1 to 40) as Byte
Dim lval as Long

Call OpenQueue(inQueue, SizeOf(inQueue))

ZBasic System Library 150 ZBasic Microcontrollers

Call GetQueue(inQueue, lval, SizeOf(lval))

Alternately,

Dim inQueue(1 to 40) as Byte
Dim lval as Long
Dim timeOut as Boolean

Call OpenQueue(inQueue, SizeOf(inQueue))
Call GetQueue(inQueue, lval, SizeOf(lval), 1.0, timeOut)

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

The BasicX manual indicates that the range of values for the timeLimit parameter is 0.0 to 65.536
seconds implying a 1ms resolution. This implementation has a 1.95ms resolution and a range of 0.0 to
about 127.0 seconds.

See Also GetQueueStr, OpenQueue

ZBasic System Library 151 ZBasic Microcontrollers

GetQueueBufferSize

Type Function returning Integer

Invocation GetQueueBufferSize(queue)

Parameter Method Type Description
queue ByRef array of Byte The queue of interest.

Discussion

This function returns the number of bytes of data space in a queue that has been properly initialized using
OpenQueue(). Note that the data space in a queue is somewhat less than the number of bytes in the
byte array comprising the queue due to space required for queue management information. See
OpenQueue() for more details.

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

See Also GetQueueCount, GetQueueSpace

ZBasic System Library 152 ZBasic Microcontrollers

GetQueueCount

Type Function returning Integer

Invocation GetQueueCount(queue)

Parameter Method Type Description
queue ByRef array of Byte The queue of interest.

Discussion

This function returns the number of bytes of data currently in the specified queue. It is useful to note that
this value subtracted from that returned by GetQueueBufferSize() indicates the remaining available
data space in the queue.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

See Also GetQueueBufferSize, GetQueueSpace

ZBasic System Library 153 ZBasic Microcontrollers

GetQueueSpace

Type Function returning Integer

Invocation GetQueueSpace(queue)

Parameter Method Type Description
queue ByRef array of Byte The queue of interest.

Discussion

This function returns the number of bytes of space remaining in the specified queue, effectively the same
result as the expression GetQueueBufferSize() – GetQueueCount().

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Compatibility

This function is not available in BasicX compatibility mode.

See Also GetQueueBufferSize, GetQueueCount

ZBasic System Library 154 ZBasic Microcontrollers

GetQueueStr

Type Function returning String

Invocation GetQueueStr(queue) or

 GetQueueStr(queue, maxChars)

Parameter Method Type Description
queue ByRef array of Byte The queue of interest.

maxChars ByVal integral The maximum number of characters to retrieve.

Discussion

This function extracts a number of characters from the specified queue and returns a string populated
with those characters. The number of characters is limited to the lesser of 1) the number of characters in
the queue at the time of the call, 2) the value of maxChars (i f specified), and 3) the maximum number of
characters allowed in a string.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to retrieve data from a queue that has

been assigned to a Com port as the transmit queue will produce undefined results.

Compatibility

This function is not available in BasicX compatibility mode.

See Also GetQueue, OpenQueue

ZBasic System Library 155 ZBasic Microcontrollers

GetTime

Type Subroutine

Invocation GetTime(hour, minute, seconds)

 GetTime(hour, minute, seconds, tick)

Parameter Method Type Description
hour ByRef Byte The variable in which to place the hour value (0-23).

minute ByRef Byte The variable in which to place the minutes value (0-59).
seconds ByRef Single The variable in which to place the seconds value.
tick ByVal integral The tick count to decompose.

Discussion

This routine decomposes a tick count into the equivalent hour, minute and second components. If the tick
count is omitted, the value of Register.RTCTick is used. The resolution of the seconds value is

1/F_RTC_TICK (typically 1.95ms for ZX devices).

Note that Register.RTCTick is initialized to zero on power-up or reset. This corresponds to 0:00:00.

Compatibility

This subroutine is not available if the RTC is not enabled in your application. Also, explicitly specifying
the tick count to use (fourth parameter) is not supported in BasicX compatibility mode.

See Also GetDate, GetTimestamp, GetTimeValue

ZBasic System Library 156 ZBasic Microcontrollers

GetTimestamp

Type Subroutine

Invocation GetTimestamp(year, month, day, hour, minute, seconds)

Parameter Method Type Description
year ByRef int16 The variable in which to place the year value (1999-2177).
month ByRef Byte The variable in which to place the month value (1-12).

day ByRef Byte The variable in which to place the day value (1-31).
hour ByRef Byte The variable in which to place the hour value (0-23).
minute ByRef Byte The variable in which to place the minutes value (0-59).

seconds ByRef Single The variable in which to place the seconds value.

Discussion

This routine decomposes the value of Register.RTCDay and Register.RTCTick into year, month,

day, hour, minute and second components. See GetDate() and GetTime() for more details.

Compatibility

This subroutine is not available if the RTC is not enabled in your application.

ZBasic System Library 157 ZBasic Microcontrollers

GetTimeValue

Type Function returning UnsignedLong

Invocation GetTimeValue()

 GetTimeValue(tick)

Parameter Method Type Description
tick ByVal integral The tick count to decompose.

Discussion

This function decomposes a tick count into the equivalent hour, minute, second and fractional second
components and packs them into a 32-bit value as shown below. If the tick count is omitted, the value of
Register.RTCTick is used.

Note that Register.RTCTick is initialized to zero on power-up or reset. This corresponds to 0:00:00.

Time Value Fields

Bits Position
Mask

Description

31-27 &Hf8000000 Hour (0 to 23)

26-21 &H07e00000 Minute (0 to 59)
20-15 &H001f8000 Second (0 to 59)
14-0 &H00007fff Fractional Second (0 to F_RTC_TICK-1)

The 'fractional second' field represents the accumulation of RTC ticks between each second. The floating
point equivalent of the seconds value represented by the converted time value can be calculated using
code like that shown in the example below.

Example

Dim time as UnsignedLong
Dim seconds as Single

' compute the equivalent full and fractional seconds value
time = GetTimeValue()
seconds = CSng(Shr(time, 15) And &H3f) + _
 CSng(time And &H7fff) / CSng(Register.RTCTickFrequency)

Compatibility

The first form of the function is not available if the RTC is not enabled in your application. Neither form is
supported in BasicX compatibility mode or on VM mode ZX devices.

See Also GetDate, GetDateValue, GetTime, GetTimestamp

ZBasic System Library 158 ZBasic Microcontrollers

HiByte

Type Function returning Byte

Invocation HiByte(val)

Parameter Method Type Description
val ByVal numeric The value of which the high byte is desired.

Discussion

This function returns the most significant byte of the specified value except that if the specified value is a
Byte value, the result will be zero.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiWord, LoByte, LoWord, MidWord

ZBasic System Library 159 ZBasic Microcontrollers

HiWord

Type Function returning UnsignedInteger

Invocation HiWord(val)

Parameter Method Type Description
val ByVal numeric The value of which the high word is desired.

Discussion

This function returns the most significant word of the specified value except that if the specified value is a
Byte, Integer or UnsignedInteger value, the result will be zero.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, LoByte, LoWord, MidWord

ZBasic System Library 160 ZBasic Microcontrollers

I2CCmd

Type Function returning Integer

Invocation I2CCmd(channel, slaveID, writeCnt, writeData, readCnt, readData)

Parameter Method Type Description
channel ByVal Byte The I2C channel number (0-4).
slaveID ByVal Byte The identifier of the I2C slave device (in the 7 high order bits).

writeCnt ByVal integral The number of bytes to write (0 – 65535).
writeData ByRef any type The variable containing the data to write.
readCnt ByVal integral The number of bytes to read (0 – 65535).

readData ByRef any type The variable in which to place the data read.

Discussion

The routine allows you to send and/or receive data from an I2C device. The specified channel must have
been previously opened with a call to OpenI2C(). If the channel has not been opened, the results are

undefined. If an invalid channel is specified or if both writeCnt and readCnt are zero, the function
returns immediately without doing anything and the return value is zero. You may specify the value 0 for
writeData or readData if no data is being provided for writing or reading, respectively. If you do this,
the corresponding data count parameter must also be zero or the compiler will issue an error message.

The execution of the I2C command sequence begins by issuing an I2C start condition on the SDA and
SCL lines. Next, if writeCnt is non-zero the given slaveID value is transmitted (with the least

significant bit being zero) followed by the specified number of bytes taken from writeData. Then, if
readCnt is non-zero the slaveID value is transmitted again but with the least significant bit being one

and the specified number of bytes is read from the slave and placed in readData. Finally, an I2C stop
condition is issued followed by both the SDA and SCL lines returning to the idle state.

The return value may be negative, zero or positive. If the return value is negative it signifies that the
slave failed to positively acknowledge one of the transmitted bytes. The value is the negative of the
number of bytes that were not successfully transmitted. If the slave fails to positively acknowledge either
the slave ID or the first data byte, the return value will be the negative of the writeCnt parameter value.
If the return value is non-negative it represents the number of data bytes read from the slave and placed
in readData.

Example

Dim odata(1 to 2) as Byte, idata(1 to 10) as Byte
Dim ival as Integer

Call OpenI2C (1, 12, 13)
odata(1) = &H06
odata(2) = &H00
ival = I2CCmd(1, &H7e, 2, odata(1), 10, idata(1))

Resource Usage

This function uses the I/O Timer for channels 1 to 4. If the timer is already in use, the result and the
return value are both undefined. Interrupts are disabled for periods of about 9 times the selected I2C bit
time plus additional amounts due to slave clock stretching for each byte sent and received (interrupts are
reenabled between bytes). However, RTC ticks are accumulated during the process so the RTC should
not lose time.

ZBasic System Library 161 ZBasic Microcontrollers

Compatibility

This function is not available in BasicX compatibility mode.

See Also OpenI2C, I2CGetByte, I2CPutByte, I2CStart, I2CStop, CloseI2C

ZBasic System Library 162 ZBasic Microcontrollers

I2CGetByte

Type Function returning Byte

Invocation I2CGetByte(channel, ackValue)

Parameter Method Type Description
channel ByVal Byte The I2C channel number (0-4).
ackValue ByVal Boolean The value to send to the slave in acknowledgement of the data byte.

Discussion

This function retrieves a data value from an I2C slave and responds to the receipt of that data by sending
back the specified acknowledgement value. The value returned by this function is the data byte received
from the slave.

This function can be used in conjunction with I2CStart(),I2CPutByte() and I2CStop() to perform

a lower level interaction with an I2C slave device. Knowledge of the I2C protocol and the specifications of
the particular I2C device are required in order to use this function.

If the specified I2C channel has not been properly prepared using OpenI2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.

Resource Usage

This function uses the I/O Timer for channels 1 to 4. If the timer is already in use, the function will do
nothing and the return value is undefined. Interrupts are disabled for about 9 times the selected I2C bit
time plus additional amounts due to slave clock stretching. However, RTC ticks are accumulated during
the process so the RTC should not lose time.

Compatibility

This function is not available in BasicX compatibility mode.

See Also OpenI2C, CloseI2C, I2CPutByte, I2CStart, I2CStop, I2CCmd

ZBasic System Library 163 ZBasic Microcontrollers

I2CPutByte

Type Function return Boolean

Invocation I2CPutByte(channel, dataVal)

Parameter Method Type Description
channel ByVal Byte The I2C channel number (0-4).
dataVal ByVal Byte The data byte to send to the slave.

Discussion

This function transmits a data value to an I2C slave and reads the acknowledgement bit returned by the
slave. The value returned by this function is the value of the acknowledge bit received from the slave
device – a positive acknowledgement results in a True value being returned.

This function can be used in conjunction with I2CStart(), I2CGetByte() and I2CStop() to perform

a lower level interaction with an I2C slave device. Knowledge of the I2C protocol and the specifications of
the particular I2C device are required in order to use this function.

If the specified I2C channel has not been properly prepared using OpenI2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.

Resource Usage

This function uses the for channels 1 to 4. If the timer is already in use, the function will do nothing and
the return value is undefined. Interrupts are disabled for about 9 times the selected I2C bit time plus
additional amounts due to slave clock stretching. However, RTC ticks are accumulated during the
process so the RTC should not lose time.

Compatibility

This function is not available in BasicX compatibility mode.

See Also OpenI2C, CloseI2C, I2CGetByte, I2CStart, I2CStop, I2CCmd

ZBasic System Library 164 ZBasic Microcontrollers

I2CStart

Type Subroutine

Invocation I2CStart(channel)

Parameter Method Type Description
channel ByVal Byte The I2C channel number (0-4).

Discussion

This subroutine initiates an I2C bus cycle by implementing the proper sequence of transitions on the SDA
and SCL lines.

This subroutine can be used in conjunction with I2CGetByte(), I2CPutByte() and I2CStop() to
perform a lower level interaction with an I2C slave device. Knowledge of the I2C protocol and the
specifications of the particular I2C device are required in order to use this function.

If the specified I2C channel has not been properly prepared using OpenI2C(), the results are undefined.

If an invalid channel number is specified, the function returns immediately without doing anything.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenI2C, CloseI2C, I2CGetByte, I2CPutByte, I2CStop, I2CCmd

ZBasic System Library 165 ZBasic Microcontrollers

I2CStop

Type Subroutine

Invocation I2CStop(channel)

Parameter Method Type Description
channel ByVal Byte The I2C channel number (0-4).

Discussion

This subroutine terminates an I2C bus cycle by implementing the proper sequence of transitions on the
SDA and SCL lines.

This subroutine can be used in conjunction with I2CStart(), I2CGetByte() and I2CPutByte() to
perform a lower level interaction with an I2C slave device. Knowledge of the I2C protocol and the
specifications of the particular I2C device are required in order to use this function.

If the specified I2C channel has not been properly prepared using OpenI2C(), the results are undefined.

If an invalid channel number is specified, the function returns immediately without doing anything.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenI2C, CloseI2C, I2CGetByte, I2CPutByte, I2CStart, I2CCmd

ZBasic System Library 166 ZBasic Microcontrollers

IIf

Type Function returning the same type as the second parameter

Invocation IIf(testExpr, trueExpr, falseExpr)

Parameter Method Type Description
testExpr ByVal Boolean The expression to evaluate, the result of which

determine which expression value will be returned.

trueExpr ByVal any type The value to return if testExpr evaluates to True.
falseExpr ByVal any type The value to return if testExpr evaluates to False.

Discussion

This function is adapted from VB6 where it is sometimes called “Immediate If”. It is used to select one of
two values based on the result of a test. Employing this function will generally result in less code than an
equivalent If-Then-Else structure. On the other hand, the execution of this function does use more stack
space than an equivalent If-Then-Else structure. Also, it is important to note that using this function is not
exactly the same as an If-Then-Else because both the trueExpr and the falseExpr are always evaluated.
This difference is only significant if the evaluation of one or both of these expressions has side effects.

Note that trueExpr and falseExpr must have the same type or be of compatible types.

Examples

Dim a as Byte
Dim b as UnsignedInteger
Dim u as UnsignedInteger

u = IIf(a > 3, 5, b)

Debug.Print IIf(a = 5, "Hello", "Goodbye")

Compatibility

This function is not available in BasicX compatibility mode. Also, it is only supported by ZX firmware
v1.1.0 or later.

ZBasic System Library 167 ZBasic Microcontrollers

InputCapture

Type Subroutine

Invocation InputCapture(data, count, flags)

 InputCapture(data, count, flags, timeout)

Parameter Method Type Description
data ByRef array of

UnsignedInteger
The array in which pulse width information will be stored.

count ByVal int16 The number of pulse widths to store. This should be no
larger than the number of entries in the passed array.

flags ByVal Byte A value of zero requests that a falling edge begin the
capture process while a value of 1 indicates a rising edge.
All other values are reserved.

timeout ByVal Integral If non-zero, this parameter specifies a timeout value that, if
exceeded, will terminate the input capture process.

Discussion

Invoking this routine is equivalent to the call InputCaptureEx(pin, data, count, flags) or
InputCaptureEx(pin, data, count, flags, timeout) where pin is the default input capture

pin for the device as shown in the table below. See the description of InputCaptureEx() for more detailed
information. Also, see the section Input Capture Timers for information on the default input capture pin
used by this subroutine.

The stored values represent the number of I/O Timer ticks (i.e. 1/F_CPU or about 67.8ns for 14.7MHz
devices) measured for each segment of the pulse train. However, the value of
Register.TimerSpeed1 may be changed to allow longer pulse widths to be measured. See the
section on Timers for more information.

Example

Dim pd(1 to 5) as UnsignedInteger

Call PutPin(12, zxInputTriState)
Call InputCapture(pd, UBound(pd), 1)

Compatibility

The BasicX compiler erroneously allows any variable for the first parameter. This implementation
requires the data type to be UnsignedInteger or Integer although it needn’t be an array. For
practical purposes, an array will almost always be used.

In BasicX compatibility mode, the use of the optional fourth parameter is not supported. Also, because
the processor runs at twice the speed of the BX-24 processor, the default time unit is one half of that
provided for by BasicX.

ZBasic System Library 168 ZBasic Microcontrollers

InputCaptureEx

Type Subroutine

Invocation InputCaptureEx(pin, data, count, flags)

 InputCaptureEx(pin, data, count, flags, timeout)

Parameter Method Type Description
pin ByVal Byte The input capture pin to use.

data ByRef array of
UnsignedInteger

The array in which pulse width information will be stored.

count ByVal int16 The number of pulse widths to store. This should be no
larger than the number of entries in the passed array.

flags ByVal Byte A value of zero requests that a falling edge begin the
capture process while a value of 1 indicates a rising edge.
All other values are reserved.

timeout ByVal integral If non-zero, this parameter specifies a timeout value that, if
exceeded, will terminate the input capture process.

Discussion

This routine collects timing data from a pulse train applied to the specified input capture pin and stores it
in the specified array. The stored data reflects the width of the successive high and low portions of the
pulse train. If any segment is longer than can be represented in a 16-bit value, the stored value will be
65535 (&Hffff) and the immediately following value, if any, will be meaningless.

Prior to commencing the input capture process all of the elements of the data array are initialized with the
value 65534 (&Hfffe). This fact can be used to determine the actual number of timing data stored in the
array during input capture.

The stored values represent the number of I/O Timer ticks (i.e. 1/F_CPU or about 67.8ns for 14.7MHz
devices) measured for each segment of the pulse train. However, the value of
Register.TimerSpeed1 may be changed to allow longer pulse widths to be measured. See the
section on Timers for more information.

Due to the overhead of servicing the input capture interrupt and possible RTC interrupts the shortest
interval (high or low segment) that can be reliably measured corresponds to about 300 CPU cycles (about
21µ s for 14.7MHz devices). If an input waveform had a 50% duty cycle this would correspond to about
24KHz. Additional interrupt sources may increase the minimum interval that can be measured reliably.

If the optional timeout parameter is specified and is non-zero, the Input Capture process will be
terminated if N * 65536 I/O Timer ticks occur (where N is the value of the timeout parameter) before the

specified number of datapoints has been stored. This gives a range of possible timeout values from
about 4.5mS to 290 seconds with a resolution of 4.5mS (using the default value of
Register.TimerSpeed1) for 14.7MHz devices.

The calling task will be suspended until the specified number of datapoints has been stored, the timeout
value is exceeded or the task is resumed using ResumeTask(). Other tasks will be allowed to run but you
must be careful to not call any routines that may disable interrupts for long periods of time because that
could interfere with the accuracy of the input capture timing.

Resource Usage

This routine utilizes a timer to collect the timing information of the pulse train. See the section Input
Capture Timers for information on the valid input capture pins and the timer associated with each and the
ISRs utilized for native mode devices.

ZBasic System Library 169 ZBasic Microcontrollers

Example

Dim pd(1 to 5) as UnsignedInteger

Call PutPin(D.6, zxInputTriState)
Call InputCaptureEx(D.6, pd, UBound(pd), 1)

Compatibility

This routine is not available in BasicX compatibility mode.

ZBasic System Library 170 ZBasic Microcontrollers

LBound

Type Function returning an integral value

Invocation LBound(array) or

 LBound(array, dimension)

Parameter Method Type Description
array ByRef any array The array about which the bound information is desired.

dimension ByVal int16 The dimension of interest. See the description for more
details.

Discussion

This function returns the lower bound of a dimension of the specified array. There are two forms. The
first requires only the array to be specified. In this case, the lower bound of the first dimension of the
array is returned. The second form specifies a dimension number (which must be a constant value), the
valid range of which is 1 to the number of dimensions of the array. The array may be located in RAM,
Program Memory or Persistent Memory.

Note that the use of this function instead of hard-coding values makes your code easier to maintain
because it automatically adapts if the definition of an array changes.

Example

Dim ba(1 to 20) as Byte
Dim ma(3 to 5, -6 to 7) as Byte
Dim i as Integer

i = LBound(ba) ' the result is 1
i = LBound(ma) ' the result is 3
i = LBound(ma, 1) ' the result is 3
i = LBound(ma, 2) ' the result is -6

Compatibility

This function is not available in BasicX compatibility mode.

See Also UBound, Span

ZBasic System Library 171 ZBasic Microcontrollers

LCase

Type Function returning String

Invocation LCase(str)

Parameter Method Type Description
str ByVal String The string to be changed to lower case.

Discussion

This function returns a new string containing the same characters as the passed string except that all
upper case characters will be replaced with lower case characters.

Example

Dim s as String, s1 as String
s = "Hello, world!"
s2 = LCase(s) ' the result will be "hello, world!"

See Also UCase

ZBasic System Library 172 ZBasic Microcontrollers

Left

Type Function returning String

Invocation Left(str, length)

Parameter Method Type Description
Str ByVal String The string from which to extract characters.
length ByVal int8/16 The number of characters to extract from the string.

Discussion

This function returns a string consisting of the leftmost characters of the given string. The maximum
number of characters in the returned string is the smaller of 1) the number of characters in the string
passed as the first parameter and 2) the value of the second parameter. Internally, the length is
interpereted as a 16-bit signed value and negative values are treated as zero.

This function produces the same result as Mid(str, 1, length).

Example

Dim s as String, s2 as String

s = "Hello, world!"
s2 = Left(s, 5) ' the result will be "Hello"

See Also Mid, Right, Trim

ZBasic System Library 173 ZBasic Microcontrollers

Len

Type Function returning Integer

Invocation Len(str)

Parameter Method Type Description
str ByVal String The string of which the length is to be determined.

Discussion

This function returns the length of the given string, in bytes. Note that the length may be zero.

Example

Dim s as String
Dim i as Integer

s = "Hello, world!"
i = Len(s) ' the result will be 13

ZBasic System Library 174 ZBasic Microcontrollers

LoByte

Type Function returning Byte

Invocation LoByte(val)

Parameter Method Type Description
val ByVal numeric The value of which the low byte is desired.

Discussion

This function returns the least significant byte of the specified value.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, HiWord, LoWord, MidWord

ZBasic System Library 175 ZBasic Microcontrollers

LockTask

Type Subroutine

Invocation LockTask()

Discussion

This routine causes the running task to become locked so that no other task can run. The one exception
to this is a task that is awaiting an external interrupt or an interval interrupt. Note that a task may explicitly
unlock itself by calling UnlockTask(). A task will also become unlocked if it calls any of the sleep or

delay routines.

Note that multiple calls to LockTask() have the same effect as a single call to LockTask() assuming

that no other calls are made that implicitly unlock the task.

Compatibility

The BasicX documentation indicates that a locked task will yield to a task that is awaiting an interrupt
when the interrupt occurs. However, testing indicates that this is, in fact, not the case. This
implementation allows an interrupt task to have priority over a locked task.

See Also UnlockTask, Delay, Sleep, WaitForInterrupt, WaitForInterval

ZBasic System Library 176 ZBasic Microcontrollers

Log

Type Function returning Single

Invocation Log(arg)

Parameter Method Type Description
arg ByVal Single The value of which the natural log is to be computed.

Discussion

This function returns the Single value corresponding to natural logarithm (base e) of the value provided.
The transcendental value e, upon which the natural logarithm is based, is approximately 2.71828. This
function is the inverse of the Exp() function.

If the value of the argument provided is zero, the result is positive infinity. If the argument value is
negative, the result is NaN.

See Also Exp, Exp10, Log10

ZBasic System Library 177 ZBasic Microcontrollers

Log10

Type Function returning Single

Invocation Log10(arg)

Parameter Method Type Description
arg ByVal Single The value of which the common log is to be computed.

Discussion

This function returns the Single value corresponding to the common logarithm (base 10) of the value
provided. This function is the inverse of the Exp10() function.

If the value of the argument provided is zero, the result is positive infinity. If the argument value is
negative, the result is NaN.

See Also Exp, Exp10, Log

ZBasic System Library 178 ZBasic Microcontrollers

LongJmp

Type Subroutine

Invocation LongJmp(jmpbuf, val)

Parameter Method Type Description
jmpbuf ByRef Array of Byte A buffer holding the return context, see description below.
val ByVal int16 The value to be returned to the original SetJmp() caller.

Discussion

This subroutine, in conjunction with SetJmp(), provides a way to circumvent the normal call-return
structure and return directly to a distant caller. It is the equivalent of a non-local Goto function and can be
used, among other purposes, to handle exceptions in your programs. The first parameter specifies a
Byte array that has been previously initialized by a call to SetJmp(). The second parameter specifies a

value that will be seen by the original SetJmp() caller as the return value. This value, which should be
non-zero, can indicate the nature of the condition that led to the LongJmp() call. See the section on

Exception Handling in the ZBasic Reference Manual for more details.

Caution

Passing a jump buffer that has not been prepared by a call to SetJmp(), one that has been modified

after the SetJmp()call, or one that was prepared by a subroutine/ function that is no longer active will
have unpredictable and almost certainly undesirable effects.

Compatibility

This routine is not available in BasicX compatibility mode. Also, this routine should not be used in
applications that use ZBasic objects because it bypasses the execution of destructors that are necessary
for proper object management.

See Also SetJmp

ZBasic System Library 179 ZBasic Microcontrollers

LoWord

Type Function returning UnsignedInteger

Invocation LoWord(val)

Parameter Method Type Description
val ByVal numeric The value of which the low word is desired.

Discussion

This function returns the least significant word of the specified value. If the specified value is a Byte the
return value will have zero in the high byte.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, HiWord, LoByte, MidWord

ZBasic System Library 180 ZBasic Microcontrollers

MakeDword

Type Function returning UnsignedLong

Invocation MakeDword(loWord, hiWord)

Parameter Method Type Description
loWord ByVal int16 The value for the low word of the double word value.
hiWord ByVal int16 The value for the high word of the double word value.

Discussion

This function returns a value composed of the two word values.

Example

Dim w1 as UnsignedInteger, w2 as UnsignedInteger
Dim ul as UnsignedLong

ul = MakeDword(w1, w2)

Compatibility

This function is not available in BasicX compatibility mode.

See Also MakeWord

ZBasic System Library 181 ZBasic Microcontrollers

MakeString

Type Function returning String

Invocation MakeString(address, length)

Parameter Method Type Description
address ByVal integral The address of bytes with which to populate the string.
length ByVal int8/16 The number of characters to place in the string.

Discussion

This function populates a string with an arbitrary byte stream. It is most useful for composing or modifying
strings but may have other uses as well.

Example

Dim ba(1 to 10) as Byte
Dim i as Integer
Dim s as String

For i = LBound(ba) to UBound(ba)
 ba(i) = &H60 + CByte(i)
Next i
s = MakeString(MemAddress(ba), SizeOf(ba))

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 182 ZBasic Microcontrollers

MakeWord

Type Function returning UnsignedInteger

Invocation MakeWord(loByte, hiByte)

Parameter Method Type Description
loByte ByVal Byte The value for the low byte of the word value.
hiByte ByVal Byte The value for the high byte of the word value.

Discussion

This function returns a value composed of the two byte values.

Example

Dim b1 as Byte, b2 as Byte
Dim u as UnsignedInteger

u = MakeWord(b1, b2)

Compatibility

This function is not available in BasicX compatibility mode.

See Also MakeDword

ZBasic System Library 183 ZBasic Microcontrollers

Max

Type Function (see discussion for the return type)

Invocation Max(val1, val2)

Parameter Method Type Description
val1 ByVal numeric One of two values of which the largest is desired.
val2 ByVal numeric One of two values of which the largest is desired.

Discussion

This function returns the larger of the two supplied values, both of which must be of the same type. If the
supplied values are signed, the determination of which is largest takes the sign of the values into account.
The return value is the same type as the parameters.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Min

ZBasic System Library 184 ZBasic Microcontrollers

MemAddress

Type Function returning Integer

Invocation MemAddress(var)

Parameter Method Type Description
var ByRef any variable The variable of which the address is desired.

Discussion

This function returns the Integer representation of the RAM address of the specified variable. Note that
for arrays, you may also specify subscript expressions for all of the array dimensions to yield the address
of an individual array element. Without the subscript expressions, the resulting value will be the address
of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. BitCopy(), RamPeek(), RamPoke(), etc.

The address of any variable can also be obtained using the DataAddress property. For RAM-based
variables, the DataAddress property is of type UnsignedInteger.

Example

Dim addr as Integer
Dim ba(1 to 20) as Byte
Dim fval as Single

addr = MemAddress(fval)
addr = MemAddress(ba)
addr = MemAddress(ba(2))
addr = fval.DataAddress
addr = ba.DataAddress
addr = ba.DataAddress(2)

Compatibility

BasicX only supports the DataAddress property for Program Memory data items.

See Also MemAddressU, VarPtr

ZBasic System Library 185 ZBasic Microcontrollers

MemAddressU

Type Function returning UnsignedInteger

Invocation MemAddressU(var)

Parameter Method Type Description
var ByRef any variable The variable of which the address is desired.

Discussion

This function returns the UnsignedInteger representation of the RAM address of the specified
variable. Note that for arrays, you may also specify subscript expressions for all of the array dimensions
to yield the address of an individual array element. Without the subscript expressions, the resulting value
will be the address of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. BitCopy(), RamPeek(), RamPoke(), etc.

The DataAddress property may also be used to determine the address of a variable (except in BasicX
compatibility mode). The type of the resulting value is UnsignedInteger. See the examples below.

Examples

Dim addr as UnsignedInteger
Dim ba(1 to 20) as Byte
Dim fval as Single

addr = MemAddressU(fval)
addr = MemAddressU(ba)
addr = MemAddressU(ba(2))
addr = ba.DataAddress
addr = ba.DataAddress(2)

See Also MemAddress, VarPtr

ZBasic System Library 186 ZBasic Microcontrollers

MemCmp

Type Function returning Integer

Invocation MemCmp(addr1, addr2, count)

Parameter Method Type Description
addr1 ByVal integral The address of the first block of memory to be compared.
addr2 ByVal integral The address of the second block of memory to be compared.

count ByVal integral The number of bytes to compare.

Discussion

This function can be used to compare two arbitrary sequences of data in RAM. If all of the bytes in the
two blocks are the same (over the given number of bytes to compare) the value zero is returned.
Otherwise, the return value will be greater than zero if at the position of the first mismatch the byte in the
first block is greater than the corresponding byte in the second block. If the converse is true, the return
value will be less than zero.

All three parameters are converted internally to UnsignedInteger.

Example

Dim a1(1 to 10) as Byte
Dim a2(1 to 10) as Byte
Dim ival as Integer

ival = MemCmp(a1.DataAddress, a2.DataAddress, SizeOf(a1))

Compatibility

This function is not available in BasicX compatibility mode.

See Also MemCopy, MemSet

ZBasic System Library 187 ZBasic Microcontrollers

MemCopy

Type Subroutine

Invocation MemCopy(destination, source, count)

Parameter Method Type Description
destination ByVal integral The address to which to begin copying.
source ByVal integral The address from which to begin copying.

count ByVal integral The number of bytes to copy.

Discussion

This subroutine can be used to copy a block of data from one location in RAM to another location. An
overlapping copy (when the destination is in the midst of the data being copied) is handled correctly so
that the data to be copied is not overwritten.

All three parameters are converted internally to UnsignedInteger. Note that MemCopy() has the
same functionality as BlockMove() but has a different parameter order; one that you may be

accustomed to.

Caution

This subroutine should be used with care because it is possible to overwrite important data on the stack
or other areas of memory which may cause your program to malfunction.

Example

Dim ba(1 to 10) as Byte
Dim ival as Integer

ba(3) = &H48
ba(4) = &H55
Call MemCopy(ival.DataAddress, ba(3).DataAddress, SizeOf(ival))

After execution, ival will have the value &H5548. Note the use of the SizeOf() function. This is a

better programming practice than using a specific value because it makes the code easier to maintain.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also BitCopy, MemCmp, MemSet

ZBasic System Library 188 ZBasic Microcontrollers

MemFind

Type Function returning UnsignedInteger

Invocation MemFind(dataAddr, dataLen, val)

 MemFind(dataAddr, dataLen, val, ignoreCase)

Parameter Method Type Description
dataAddr ByVal integral The address in RAM of the block to search.

dataLen ByVal integral The length of the block to search.
val ByVal Byte The byte value for which to search.
ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.

Discussion

This function attempts to find the first occurrence of the byte specified by the val parameter in a block of
RAM beginning at the specified address. If it is found, the return value gives the 1-based index where the
sought byte was found within the block. If the sought byte is not found, zero is returned. If the optional
ignoreCase parameter is not given, the search is performed observing alphabetic case differences,

otherwise alphabetic case differences are significant or not depending on the value specified for
ignoreCase. For the purposes of this parameter only the characters A-Z and a-z (&H41 to &H5a and
&H61 to &H7a) are considered to be alphabetic.

Example

Dim buf(1 to 40) as Byte
Dim idx as UnsignedInteger

' search for a carriage return
idx = MemFind(buf.DataAddress, Ubound(buf), &H0d)

Compatibility

This function is not available in BasicX compatibility mode.

See Also ProgMemFind, StrFind

ZBasic System Library 189 ZBasic Microcontrollers

MemSet

Type Subroutine

Invocation MemSet(addr, count, val)

Parameter Method Type Description
addr ByVal integral The address of a block to initialize.
count ByVal int8/16 The number of bytes to initialize.

val ByVal Byte The initialization value.

Discussion

This routine is useful for initializing arrays, buffers, etc. that reside in RAM.

Example

Dim ba(1 to 20) as Byte

Call MemSet(MemAddress(ba), Sizeof(ba), &H55)
Call MemSet(ba.DataAddress, Sizeof(ba), 0)

Caution

Using this routine to initialize data other than your own program variables may have detrimental effects.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also MemCmp, MemCopy

ZBasic System Library 190 ZBasic Microcontrollers

Mid

Type Function returning String

Invocation Mid(str, pos, length) or

 Mid(str, pos)

Parameter Method Type Description
str ByVal* String The string from which to extract or modify a substring.

pos ByVal int8/16 The position of the first character of the substring.
length ByVal int8/16 The length of the substring to extract or modify.

* When used on the left hand side of an assignment, this parameter is passed ByRef.

Discussion

This function can be used to extract a portion of a string or to modify a portion of a string, depending on
how it is used. When it appears in the context of a function call, it returns a new string extracted from the
string provided. The first character of the extracted substring will be the character at the position given by
pos (where the first character of the string is position 1). The length of the returned string will be the
number of characters in the source string beginning at the starting index through the end of the string or
the specified length (i f present), whichever is less. If the starting position is beyond the end of the string
or if the specified length is less than or equal to zero, the returned string will be of zero length.

When used on the left hand side of an assignment operator, the Mid() function replaces a sequence of
characters in a string with characters from the string value on the right hand side of the assignment
operator.

Dim s as String
s = "abcdef"
Mid(str, 3) = "##" ' result is "ab##ef"

Note that when used in this way the first parameter is passed by reference so it cannot be a literal string
or any other entity than cannot be passed by reference. Also, the length of the target string will never be
changed. The number of characters overwritten in the destination string will be the lesser of a) the
number of characters in the string on the right hand side of the assignment, b) the number of characters
specified in the third parameter (i f present), and c) the number of characters in the target string beginning
at the position specified by the second parameter through the end of the string.

Compatibility

In BasicX, the first parameter is pass-by-reference. This disallows any use of a string literal for the first
parameter. Also, in BasicX the third parameter must always be provided.

The BasicX documentation suggests that using Mid() on the left hand side of an assignment might result

in a change in the string length. Tests indicate that this is not the case. Moreover, execution of the code
fragment below actually results in a garbage character being placed in the third character position.

Dim s as String
s = "abc"
Mid(s, 2, 2) = "!" ' result is "a!@" (@ is an indeterminate character)

See Also Left, Right, Trim

ZBasic System Library 191 ZBasic Microcontrollers

MidWord

Type Function returning UnsignedInteger

Invocation MidWord(val)

Parameter Method Type Description
val ByVal numeric The value of which the middle word is desired.

Discussion

This function returns the middle two bytes of a 4-byte value. If the specified value is a Byte the return
value will be zero. If the specified value is contained in two bytes, the return value will have zero in the
high byte.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, HiWord, LoByte, LoWord

ZBasic System Library 192 ZBasic Microcontrollers

Min

Type Function (see discussion for the return type)

Invocation Min(val1, val2)

Parameter Method Type Description
val1 ByVal numeric One of two values of which the smallest is desired.
val2 ByVal numeric One of two values of which the smallest is desired.

Discussion

This function returns the smaller of the two supplied values, both of which must be of the same type. If
the supplied values are signed, the determination of which is smallest takes the sign of the values into
account. The return value is the same type as the parameters.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Max

ZBasic System Library 193 ZBasic Microcontrollers

NoOp

Type Subroutine

Invocation NoOp()

Discussion

This subroutine implements a delay of one CPU cycle, typically about 68nS.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

ZBasic System Library 194 ZBasic Microcontrollers

OpenCom

Type Subroutine

Invocation OpenCom(channel, baud, inQueue, outQueue)

Parameter Method Type Description
channel ByVal Byte The serial channel to open.
baud ByVal Long The desired baud rate.

inQueue ByRef array of Byte The queue for incoming characters.
outQueue ByRef array of Byte The queue for outgoing characters.

Discussion

This subroutine prepares a serial channel for use. If the specified channel number is invalid, the call has
no effect. Serial channels are either implemented in hardware (using an onboard UART) or in software.
Depending on the device one, two or four hardware-based serial channels are supported, denoted by the
channel numbers 1, 2, 7, 8, etc. (Com1, Com2, Com7, Com8, etc., respectively). All ZBasic devices can
support as many as four software-based serial channels, denoted by the channel numbers 3-6 (Com3,
Com4, Com5 and Com6). Note, however, that you must have previously called ComChannels() in

order to use channels 4-6.

The supported baud rates for the hardware-based channels are the standard rates from 300 to 460,800.
Tthe supported baud rates for software-based channels are listed in the table below. However, if
ComChannels() has been invoked, the maximum rate for channels 3-6 will be limited to that specified in

the description of ComChannels(). Moreover, for channels 3-6 the baud rate for any given channel
must be an integral divisor of the maximum rate. Also, for ZX devices running at 7.37MHz, the maximum
software-based channel baud rate is 9600. For generic target devices, the set of desired software-based
channel baud rates must be explicitly specified as part of the device configuration and will be a subset of
the rates in the table below; the baud rates that are attainable with a specified accuracy are dependent on
the operating frequency.

Supported Baud Rates for Channels 3-6
300 600 1200 2400 4800 9600 19200

The transmit and receive queues specified for the channel each must have been previously initialized by
calling OpenQueue(). If you set up a transmit-only or receive-only serial channel you may use the value

0 for the unused queue. If you provide the value 0 for both queues, the channel will not be opened.

After opening the channel, flow control may be configured for either the transmit side, the receive side or
both. See the description of the ControlCom() subroutine for more information.

Example

Dim outQueue(1 to 40) as Byte

Call OpenQueue(outQueue, SizeOf(outQueue))
Call ComChannels(2, 9600)
Call DefineCom(4, 0, 12, &H08)
Call OpenCom(4, 9600, 0, outQueue)

The code above prepares Com4 as a transmit-only serial channel. If you wanted reception as well, you
would have to declare and initialize a second queue and define the receive pin.

ZBasic System Library 195 ZBasic Microcontrollers

Resource Usage

See the resource usage sub-section UARTs for information on which UART is assigned to each available
serial channel, the transmit and receive pins, and the ISRs utilized for native mode devices.

The software-based serial channels are implemented using the Serial Timer. See the resource usage
sub-section Timers for information on which timer is used for a particular target device

Compatibility

In BasicX, the supported channel numbers are 1 to 3, depending on the particular target chip. Also,
BasicX doesn’t support the use of zero to indicate that no queue is being supplied.

See Also ComChannels, CloseCom, ControlCom, DefineCom, StatusCom

ZBasic System Library 196 ZBasic Microcontrollers

OpenDAC

Type Subroutine

Invocation OpenDAC(channel, mode)

 OpenDAC(channel, mode, stat)

Parameter Method Type Description
channel ByVal Byte The channel to use for DAC generation.

mode ByVal integral The desired DAC mode (see discussion below).
stat ByRef Boolean The variable to receive the status code.

Discussion

This subroutine prepares a DAC channel for generating an analog voltage level. The pins on which an
analog level may be generated depends on the target device. See the Resource Usage sub-section
Digital-to-Analog Converters for details on the available analog output pins.

DAC Mode Constituent Values

Function Hex Value Bit Mask

Dual Output &H8000 1x xx xx xx xx xx xx xx
Single Output &H0000 0x xx xx xx xx xx xx xx
Automatic Refresh &H4000 x1 xx xx xx xx xx xx xx

Manual Refresh &H0000 x0 xx xx xx xx xx xx xx
Internal 1-volt Reference &H0000 xx xx xx xx xx xx xx 00
AVcc Reference &H0001 xx xx xx xx xx xx xx 01
PortA Aref Reference &H0002 xx xx xx xx xx xx xx 10

PortB Aref Reference &H0003 xx xx xx xx xx xx xx 11

It is important to note that the mode parameter value is only used for the first OpenDAC() call for each

channel pair. That is to say, if one channel of a pair is already open when OpenDAC() is called, the mode

parameter is ignored.

The shaded portion of the table above applies only to non-USB xmega devices. For these devices, to
used dual output mode, the DAC values must be updated at least every 30uS. This will be done
automatically if the Automatic Refresh bit is set in the mode parameter. Otherwise, your application will
need to ensure that the DAC values are updated frequently enough to prevent drooping of the DAC
output.

The analog value output by the DAC will be approximately equal to the 12-bit digital value set for each
channel (see the DAC() subroutine) divided by 4095 and multiplied by the reference voltage. The choice
of four reference voltages available is made by the least significant two bits of the mode parameter value.

For the PortA and PortB Aref Reference, the table below indicates the pin to which the desired reference
voltage should be applied.

DAC Reference Voltage Pins

ZBasic Target Aref A Aref B
ZX-24x, ZX-24u 20, A.0 7, B.0

ZX-32a4 40, A.0 4. B.0
ZX-128a1 95, A.0 5, B.0
ZX-24xu 36, A.0 28, B.0

xmegaA1, xmegaA1U 95, A.0 5, B.0
xmegaA3, xmegaA3U, xmegaA3B, xmegaA3BU,
xmegaD3

62, A.0 6. B.0

xmegaA4, xmegaA4U 40, A.0 4. B.0
xmegaD4 40, A.0 -

ZBasic System Library 197 ZBasic Microcontrollers

The status parameter, if supplied, receives a value to indicate success or failure of the call.

Example

Call OpenDAC(1, &H01) ' prepare for DAC output using AVcc reference
Call DAC(1, 300) ' set the DAC level to 300/4095*AVcc

Compatibility

This subroutine is only available for xmega target devices and is not available in BasicX compatibility
mode.

See Also CloseDAC, DAC

ZBasic System Library 198 ZBasic Microcontrollers

OpenI2C

Type Subroutine

Invocation OpenI2C(channel, sdaPin, sclPin) or
 OpenI2C(channel, sdaPin, sclPin, bitRate)

Parameter Method Type Description
channel ByVal Byte The I2C channel to open (0-4).

sdaPin ByVal Byte The pin for the I2C data (SDA) signal.
sclPin ByVal Byte The pin for the I2C clock (SCL) signal.
bitRate ByVal integral The optional clock speed designation, see discussion.

Discussion

This subroutine prepares an I2C channel for use. Five channels are supported, numbered 0 through 4.
Channel zero uses the onboard hardware I2C controller (if available) while channels 1 through 4 are
generally implemented in software. However, on devices with multiple I2C controllers (e.g. xmega-based
devices) channels 1 to 4 can be used for the additional hardware I2C controllers by specifying the SCL
and SDA pins as zero. The I2C implementation does not support multi-master arbitration when operating
in Master mode. Slave clock stretching is supported on both hardware and software channels.

For channel 0, the sdaPin and sclPin parameters are ignored since the hardware uses specific pins for

the SDA and SCL signals (e.g. Port C, bits 1 and 0, respectively). For channels 1-4 in software mode, the
sdaPin and sclPin parameters specify the pins to use for the data and clock signals, respectively. In

both cases, the clock and data pins are automatically configured for I2C operation. The I2C protocol
requires pullup resistors on both of the lines, the value of which depends on characteristics of your
system. A typical value is in the range of 1.5K to 4.7K.

The optional bitRate parameter allows you to control the speed of the data interchange. If the
parameter is not given, the default speed is 100KHz. Each I2C device has a maximum clock rate at
which it will operate reliably; check the datasheet of your selected device to determine the maximum rate.

The interpretation of the value of the bitRate parameter differs for channel 0 and channels 1-4. The

tables below specify the values to use for several common clock speeds.

I2C Hardware Channel Clock Speeds

bitRate
Value

Approximate
Clock Speed

Notes

140 50KHz
66 100KHz Standard Low Speed, default speed
29 200KHz

11 388KHz Closest to Standard High Speed (400KHz)
10 410KHz Highest supported speed

I2C Software Channel Clock Speeds

1

bitRate
Value

Approximate
Clock Speed

Notes

295 50KHz
148 100KHz Standard Low Speed, default speed
74 200KHz

59 250KHz Highest supported speed
1
 The values given assume the default setting of Register.TimerSpeed1.

For hardware channels, the bitRate parameter controls the hardware bit rate. For ATmega-based
devices, the parameter is a composite of two values: the value in the lower 8 bits is known as BR and is

ZBasic System Library 199 ZBasic Microcontrollers

written to the TWBR register of the I2C controller. The low two bits of the high byte select a clock divisor
according to the table below. The clock speed of the hardware channel is given by the formula F_CPU /
(16 + 2 * BR * Divisor) where F_CPU is the device’s operating frequency. If the bitRate parameter is
omitted or is zero the value of 66 is used by default.

Channel 0 Prescaler Selector Value

Value Divisor

0 1
1 4
2 16
3 64

For ATxmega-based devices, the I2C bit rate is given by the formula F_CPU / 2 / (5 + rateVal)

where rateVal is the low 8 bits of the bitRate parameter. Rearranging this formula gives an equation
for the bitRate parameter: bitRate = (F_CPU / 2 / F_I2C) – 5 where F_I2C is the desired

I2C clock frequency.

For software channels the bitRate parameter is interpreted as the number of I/O Timer ticks per bit.

For I2C operations, the I/O Timer uses the prescaler specified by Register.TimerSpeed1. With the
default prescaler of 1, each I/O Timer tick represents approximately 68nS with a main clock frequency of
14.7MHz. If the bitRate parameter is omitted or is zero the value of 74 is used by default. Due to
processing overhead, the minimum attainable bit time is approximately 60 CPU cycles (4µ S at 14.7MHz).

See the Resource Usage subsection "I2C Controllers" for information on the available I2C hardware
channels and the corresponding clock and data pins.

Examples

Call OpenI2C(0, 0, 0) ' open the hardware channel at 100KHz
Call OpenI2C(2, 19, 20) ' open channel 2 using pins 19, 20
Call OpenI2C(1, C.3, A.1, 74) ' open channel 1 at 200KHz

Resource Usage

The I2C routines utilize the I/O Timer to regulate the bit timing for the software channels. While sending
or receiving I2C data, the corresponding timer busy flag will be True indicating that the I/O Timer is in use.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also CloseI2C, I2CGetByte, I2CPutByte, I2CStart, I2CStop, I2CCmd, OpenI2CSlave

ZBasic System Library 200 ZBasic Microcontrollers

OpenI2CSlave

Type Subroutine

Invocation OpenI2CSlave(slaveAddr)

OpenI2CSlave(slaveAddr, channel)

Parameter Method Type Description
slaveAddr ByVal Byte The I2C slave address to which to respond.

channel ByVal Byte The I2C channel to open (0-4).

Discussion

This subroutine immediately activates the I2C controller in slave mode. If the optional channel

parameter is not given, channel 0 is assumed. Note that use of channels 1-4 are supported only on
devices that have multiple I2C controllers (e.g. ATxmega devices). See the description of OpenI2C for

more details about the correspondence between channel numbers and hardware controllers.

If you activate slave mode, you must also provide an interrupt handler for the TWI vector (aka the I2C

vector). While slave mode is active, calls to CmdI2C() and the low level I2C commands are ineffective for
the I2C channel in use. Slave mode can be canceled by calling CloseI2C(), specifying the channel

number specified or implied in the call to OpenI2Cslave().

While slave mode is active, the device will respond to reads and writes on the I2C bus referring to its
slave address which is the value of the slaveAddr parameter with the least significant bit set to zero. If
the least significant bit of the slaveAddr parameter is set, the slave can respond also to “general call”

traffic on the bus.

See the Resource Usage subsection I2C Controllers for information on the available I2C hardware
channels and the corresponding clock and data pins.

Example

Call OpenI2CSlave(&H50) ' activate I2C slave mode with address &H50

Resource Usage

The I2C hardware channel in use cannot be opened by OpenI2C() while slave mode is active. On the
ZX-24n, ZX-24s, and ZX-24t, I2C slave mode cannot be used while Com2 is open since pin 11 is shared
by the SDA signal and TxD for Com2.

Compatibility

This subroutine is only available for native mode devices.

See Also CloseI2C, OpenI2C

ZBasic System Library 201 ZBasic Microcontrollers

OpenPWM

Type Subroutine

Invocation OpenPWM(channel, frequency, mode)

 OpenPWM(channel, frequency, mode, stat)

Parameter Method Type Description
channel ByVal Byte The channel to use for PWM generation.

frequency ByVal Single The desired PWM frequency.
mode ByVal Byte The desired PWM mode (see discussion below).
stat ByRef Boolean The variable to receive the status code.

Discussion

This subroutine prepares a PWM channel for generating a pulse width modulated (PWM) signal. PWM
generation is performed using one of the CPU’s 16-bit timers, the number of which varies depending on
the ZBasic device. See the Resource Usage sub-section 16-Bit PWM Timers for details of the available
channels and the corresponding timer and output pin used. See the description of PWM() for additional
details on the PWM channels.

The frequency parameter specifies the PWM base frequency in Hertz. Since the same frequency and
generation mode will be used for all PWM channels based on the same timer, it is only necessary to call
OpenPWM() once to prepare the timer for all of the PWM channels that are based on a given timer.

The mode parameter specifies the PWM generation mode. Two modes are supported: Fast PWM mode
and Phase/Frequency Correct mode. The constants zxFastPWM and zxCorrectPWM, having the values

0 and 1 respectively, may be used to specify the mode. The Fast PWM mode has a maximum frequency
of one-half of the CPU clock frequency and is intended for fixed-frequency applications. The
Phase/Frequency Correct PWM mode has a maximum frequency of one-quarter of the CPU clock
frequency and may be used when the PWM frequency will be changed in the midst of PWM signal
generation. Frequency changes are effected by making additional calls to OpenPWM() and the change is
synchronized so that it takes effect at the beginning of a cycle.

The status parameter, if supplied, receives a value to indicate success or failure of the call.

A side effect of calling OpenPWM() is that the timer busy flag for the underlying timer (e.g.
Register.Timer1Busy) will be set to True irrespective of its prior state. It is recommended that the

initial call to OpenPWM() be preceded by a call to acquire the semaphore for the timer. This will ensure
that an existing timer operation will not be disturbed.

It is important to note that the call to OpenPWM() doesn't affect the configuration the PWM output pin.
When a call is eventually made to PWM(), the PWM pin will be made an output and be actively driven. If
your application needs to have the PWM pin in a particular state prior to PWM beginning you must
configure the pin in your code.

Example

Call OpenPWM(1, 50.0, zxFastPWM) 'prepare for 50Hz Fast PWM using channel 1

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also ClosePWM, PWM

ZBasic System Library 202 ZBasic Microcontrollers

OpenPWM8

Type Subroutine

Invocation OpenPWM8(channel, frequency, mode)

 OpenPWM8(channel, frequency, mode, stat)

Parameter Method Type Description
channel ByVal Byte The channel to use for PWM generation.

frequency ByVal Single The desired PWM frequency.
mode ByVal Byte The desired PWM mode (see discussion below).
stat ByRef Boolean The variable to receive the status code.

Discussion

This subroutine prepares a PWM channel for generating a pulse width modulated (PWM) signal using
one of the CPU’s 8-bit timers. The table below indicates the available channels and the corresponding
timer used. See the Resource Usage sub-section 8-Bit PWM Timers for details of the available channels
and the corresponding timer and output pin used. See the description of PWM8() for additional details on
the PWM channels. Note that ZBasic devices based on ATxmega processors don’t have any 8-bit timers
so 8-bit PWM is not supported on those devices.

It is important to note that the timer used for 8-bit PWM generation is the same one used for generating
the timing for the software UARTs (Com3-Com6). Consequently, these two features cannot be used at
the same time.

The frequency parameter specifies the desired PWM base frequency in Hertz. Since the same

frequency and generation mode will be used for all PWM channels based on the same timer, it is only
necessary to call OpenPWM8() once to prepare the timer for all of the PWM channels that are based on a

that timer.

The mode parameter specifies the PWM generation mode. Two modes are supported: Fast PWM mode
and Phase/Frequency Correct mode. The constants zxFastPWM and zxCorrectPWM, having the values

0 and 1 respectively, may be used to specify the mode

The status parameter, if supplied, receives a value to indicate success or failure of the call.

A side effect of calling OpenPWM8() is that the timer busy flag for the underlying timer (e.g.

Register.Timer2Busy) will be set to True irrespective of its prior state. It is recommended that the
initial call to OpenPWM() be preceded by a call to acquire the semaphore for the timer. This will ensure

that an existing timer operation will not be disturbed.

It is important to note that the call to OpenPWM8() doesn't affect the configuration the PWM output pin.
When a call is eventually made to PWM8(), the PWM pin will be made an output and be actively driven. If
your application needs to have the PWM pin in a particular state prior to PWM beginning you must
configure the pin in your code.

The actual PWM frequency used will be the closest of the available frequencies as shown in the table
below for ZBasic devices operating at 14.7MHz. For ZBasic devices operating at a different frequency,
the available PWM frequencies will be proportionally higher or lower and can be computed by the
formulae given in the table headings

ZBasic System Library 203 ZBasic Microcontrollers

Available 8-bit PWM Frequencies at 14.7MHz

Prescaler

Divisor

Fast PWM
Frequency

F_CPU / Div / 256

Phase Correct PWM
Frequency

F_CPU / Div / 510
1 57,600.0 28,912.9

2 28,800.0 14,156.8
4 1.440 7,228.2
8 7,200.0 3,614.1

16 3.600.0 1,807.1
32 1,800.0 903.5
64 900.0 451.8

128 450.0 225.9
256 225.0 112.9

1024 56.3 28.2

In the table above, the frequencies in the shaded rows are not available on some ZBasic devices due to
the set of available prescaler divisors on the 8-bit PWM timer. The table below gives the set of prescaler
divisors for each target device.

Available Prescaler Divisors for the 8-bit PWM Timer

Target Devices Prescaler Divisors
tiny48, tiny88, tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441,
tiny841

1, 8, 64, 256, 1024

tiny87, tiny167, tiny1634 1, 8, 32, 64, 128, 256, 1024
tiny2313, tiny2313A, tiny4313, tiny828 1, 8, 64, 256, 1024
mega48, mega48A, mega48P, mega48PA, mega48PB, mega88,
mega88A, mega88P, mega88PA, mega88PB, mega168, mega168A,
mega168P, mega168PA, mega168PB, mega328, mega328P,
mega328PB

1, 8, 32, 64, 128, 256, 1024

mega16, mega16A, mega32, mega32A , mega644, mega644A,
mega164A, mega164P, mega164PA, mega324P, mega324PA,
mega644P, mega644PA, mega1284P

1, 8, 32, 64, 128, 256, 1024

mega8515, mega64, mega64A, mega128, mega128A, AT90CAN32,
AT90CAN64, AT90CAN128

1, 8, 64, 256, 1024

mega1281, mega2561, mega640, mega1280, mega2560 1, 8, 64, 256, 1024

mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162,
AT90USB646, AT90USB647, AT90USB1286, AT90USB1287

1, 8, 64, 256, 1024

mega16U4, mega32U4 1, 2, 4, 8, 16, 32, 64, 128, 256, 1024

mega8535, mega161, mega162, mega163, mega323 1, 8, 32, 64, 128, 256, 1024
mega165, mega165A, mega165P, mega165PA, mega325, mega325P,
mega645, mega645A, mega645P, mega169, mega169A, mega169P,
mega169PA, mega329, mega329P, mega329PA, mega649,
mega649A, mega649P

1, 8, 32, 64, 128, 256, 1024

mega3250, mega3250P, mega6450, mega6450A, mega6450P,
mega3290, mega3290P, mega6490, mega6490A, mega6490P

1, 8, 32, 64, 128, 256, 1024

all xmega n/a

Example

Call OpenPWM8(1, 50.0, zxFastPWM) 'prepare for 50Hz Fast PWM using channel 1

Compatibility

This subroutine is not available in BasicX compatibility mode nor is it available on ATxmega-based
ZBasic devices.

ZBasic System Library 204 ZBasic Microcontrollers

See Also ClosePWM8, PWM8

ZBasic System Library 205 ZBasic Microcontrollers

OpenQueue

Type Subroutine

Invocation OpenQueue(queue, size)

 OpenQueue(queue)

Parameter Method Type Description
queue ByRef array of Byte The queue to be initialized.

size ByVal int16 The size of the array, in bytes.

Discussion

This routine prepares a queue for use by initializing the management information contained in the queue
data structure. The number of bytes of space available for data in a queue is the specified size less the
queue management overhead (9 bytes). It may be convenient to use the built-in constant
System.MinQueueSize in the definition of an array intended to hold a queue.

If the compiler can deduce the size of the array element, e.g. an explicitly dimensioned Byte array is
specified, the second parameter may be omitted. In this case, the compiler utilizes the size of the array
as the size parameter. Otherwise, the compiler will issue an error message indicating that the size must
be explicitly specified.

Caution

If you specify a size parameter that is larger than the actual size of the array, data following the array may
be overwritten, usually with undesirable consequences. For this reason, it is recommended that you use
the SizeOf() function to specify the queue size so that it will automatically track any changes that you

make to the actual queue size. See the example below.

OpenQueue() should only be called for a queue that is not in use. Invoking it for a queue that is in use

has undefined results.

Example

Dim inQueue(1 to System.MinQueueSize + 20) as Byte

Call OpenQueue(inQueue, SizeOf(inQueue))

After the call to OpenQueue() the queue will ready to be used.

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte. The second parameter must always be supplied in BasicX mode.

ZBasic System Library 206 ZBasic Microcontrollers

OpenSPI

Type Subroutine

Invocation OpenSPI(channel, flags, csPin)
 OpenSPI(channel, flags, csPin, rxDelay)

Parameter Method Type Description
channel ByVal Byte The SPI channel to open (1-4).

flags ByVal integral Flags controlling the SPI communication.
csPin ByVal Byte The pin for the chip select signal to the device.
rxDelay ByVal Byte The delay time prior to each received byte.

Discussion

This subroutine prepares an SPI channel for use as a master. By default, the hardware SPI controller is
used to implement the SPI protocol but on some devices, a bit-bang implementation can be enabled (see
DefineSPI).

Four channels are supported, numbered 1 through 4. It does not matter i f the particular channel has
been previously opened. The flags parameter specifies the characteristics of the SPI communication
as shown in the table below. They must be set to be compatible with the device with which you want to
communicate. See the table below for details. The csPin parameter specifies the pin number that you

wish to control the device’s chip select input. The pin will be made an output and set to the inactive state
(as specified by bit 6 of the flags parameter). Any general purpose I/O pin of the device may be used

as the slave select pin. Note, however, that if the pin dedicated SS pin is not used to select remote
slaves, it must be configured as an output or remain at the logic high state for the duration of an SPI
operation. Also, for ZX devices that use an external SPI EEPROM for program storage (e.g. ZX-24, ZX-
24a), the SS pin is used to select the SPI EEPROM and therefore cannot be used for any other purpose.

The table below describes the function of the bits of the flags parameter. The shaded entries do not
apply to the software SPI implementation.

SPI Channel Control Bits

Function Hex Value Binary Value
Bit Rate f/4 &H00 xx xx xx 00
Bit Rate f/16 &H01 xx xx xx 01

Bit Rate f/64 &H02 xx xx xx 10
Bit Rate f/128 &H03 xx xx xx 11
Clock Phase False &H00 xx xx x0 xx

Clock Phase True &H04 xx xx x1 xx
Clock Low at Idle &H00 xx xx 0x xx
Clock High at Idle &H08 xx xx 1x xx

Use Hardware SPI &H00 xx x0 xx xx
Use Software SPI &H10 xx x1 xx xx
Bit Order – MSB first &H00 xx 0x xx xx

Bit Order – LSB first &H20 xx 1x xx xx
Active Low Chip Select &H00 x0 xx xx xx
Active High Chip Select &H40 x1 xx xx xx

Double Speed &H80 1x xx xx xx

The remaining bits are currently undefined but they may be employed in the future. Because of this
possibility, the undefined flag bits should be zero. Bits 3 and 2 taken together specify the SPI mode 0-3,
e.g. xx xx 00 xx specifies mode 0. When using the hardware SPI controller, if the Double Speed bit is set,
the SPI channel will run at twice the frequency specified by the two low order flag bits. The value of f for

ZBasic System Library 207 ZBasic Microcontrollers

the bit rate selector is the CPU frequency (F_CPU, typically 14.7456MHz for ZX devices). For the
software SPI implementation, the number of cycles per bit is a minimum of about 50 so the
implementation runs at full speed with either the f/4 or f/16 speed settings.

For devices that have multiple SPI controllers (e.g. xmega-based devices), the most significant byte of the
flags parameter specifies the index of the SPI controller to use (0=PortD, 1=PortC, 2=PortE, 3=PortF).
See the Resource Usage sub-section SPI Controllers for information about the available hardware SPI
controllers for the various ZBasic devices and the control and data pins for each.

The rxDelay parameter, which defaults to zero if not present, specifies the amount of time to delay

before beginning the SPI cycle for each byte received, if any, during the second half of the SPICmd()
process. See the description of SPICmd() for more details.

Caution

For ZX devices that use an external SPI EEPROM for user program storage, you must avoid doing
anything that will interfere with the SPI commands to that device. SPI communication by direct
manipulation of the processor SPI control registers is not supported and may cause your program to
malfunction.

Compatibility

BasicX does not support the double speed option, the active high chip select, the optional rxDelay
parameter, or the bit -bang mode. The same is true for ZX devices based on the ATmega32 processor.

See Also CloseSPI, DefineSPI, OpenSPISlave, SPICmd, SPIGetByte, SPIPutByte,
 SPIGetData, SPIPutData, SPIStart, SPIStop

ZBasic System Library 208 ZBasic Microcontrollers

OpenSPISlave

Type Subroutine

Invocation OpenSPISlave(flags)

Parameter Method Type Description
flags ByVal integral Flags controlling the SPI communication.

Discussion

This subroutine, available only for native mode devices, immediately activates the hardware SPI
controller in slave mode. The flags parameter specifies the characteristics of the SPI communication.
They must be set to be compatible with the SPI master with which you want to communicate. See the
table below for details.

SPI Slave Mode Configuration Bits

Function Hex Value Bit Mask
Clock Phase False &H00 xx xx x0 xx
Clock Phase True &H04 xx xx x1 xx

Clock Low at Idle &H00 xx xx 0x xx
Clock High at Idle &H08 xx xx 1x xx
Bit Order – MSB first &H00 xx 0x xx xx

Bit Order – LSB first &H20 xx 1x xx xx

For devices that have multiple SPI controllers (e.g. xmega-based devices), the most significant byte of the
flags parameter specifies the index of the SPI controller to use (0=PortD, 1=PortC, 2=PortE, 3=PortF).
See the tables below for information about which pins of each port are used for the SPI control/data pins.

The chip select pin for an SPI slave is a dedicated pin. See the Resource Usage sub-section SPI
Controllers for information about the available hardware SPI controllers for the various ZBasic devices
and the chip select, control and data pins for each. If you activate slave mode, you must also provide an
interrupt handler for the corresponding interrupt vector. While slave mode is active, SPICmd() calls are
ineffective for that channel. Slave mode can be canceled by calling CloseSPI().

See OpenSPI() for information about which pins are used for the data and control signals for each SPI
controller.

Note that the SPI master sets the SPI clock speed. The highest SPI clock speed that can be used
reliably is one quarter of the CPU clock speed of a ZX slave device. Depending on how much
computation the slave must perform to prepare data for sending back to the master, a substantially slower
SPI clock may need to be used. If a ZBasic device is being used as the master, it may be useful to set
the rxDelay parameter on calls to OpenSPI() on the master to allow additional processing time.

Compatibility

This subroutine is only supported for native mode devices.

See Also CloseSPI, OpenSPI

ZBasic System Library 209 ZBasic Microcontrollers

OpenWatchDog

Type Subroutine

Invocation OpenWatchDog(timeout)

Parameter Method Type Description
timeout ByVal Byte Specifies a timeout value (see discussion).

Discussion

This subroutine prepares the watchdog timer for use. Once it is opened, the WatchDog() routine must
be called from time to time. If the period between WatchDog() calls exceeds the timeout value, the

system will be reset.

The approximate timeout value is T times 2 to the power N where T is the Timeout Base value and N is
the value of the timeout parameter limited to the range shown in the table below. Note that the timeout
value varies with processor voltage, being slightly longer at a lower operating voltage. Consult the Atmel
documentation for more specific information.

WatchDog Timeout Parameter Range For ZX Devices

ZX Devices

Timeout
Base

Value
Range

Max.
Time

ZX-24, ZX-40, ZX-44 16mS 0-7 2 sec
ZX-24a, ZX-40a, ZX-44a, ZX-24p, ZX-40p, ZX-44p,
ZX-24n, ZX-40n, ZX-44n, ZX-24r, ZX-40r, ZX-44r,
ZX-24s, ZX-24t, ZX-40s, ZX-44s, ZX-40t, ZX-44t

16mS 0-9 8 sec

ZX-24x, ZX-24u, ZX-32a4, ZX-128a1, ZX-24xu 8mS 0-10 8 sec

ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 16mS 0-9 8 sec
ZX-24e, ZX-128e, ZX-128ne 16mS 0-7 2 sec
ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu,
ZX-24ru, ZX-24su, ZX-1281e, ZX-1281ne, ZX-328nu

16mS 0-9 8 sec

WatchDog Timeout Parameter Range For Generic Devices

Target Device

Timeout
Base

Value
Range

Max.
Time

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441, tiny841, tiny48, tiny88,
tiny87, tiny167, tiny2313, tiny2313A, tiny4313, tiny828, tiny1634

16mS 0-9 8 sec

mega48, mega48A, mega48P, mega48PA, mega48PB, mega88, mega88A,
mega88P, mega88PA, mega88PB, mega168, mega168A, mega168P,
mega168PA, mega168PB, mega328, mega328P, mega328PB, mega164A,
mega164P, mega164PA, mega324P, mega324PA, mega644, mega644A,
mega644P, mega644PA, mega1284P

16mS 0-9 8 sec

mega8, mega8A, mega16, mega16A, mega32, mega32A, mega8515,
mega8535, mega162

16mS 0-7 2 sec

mega64, mega64A, mega128, mega128A 14mS 0-7 2 sec

ZBasic System Library 210 ZBasic Microcontrollers

mega161, mega163, mega323, mega165, mega165A, mega165P, mega165PA 15mS 0-7 2 sec
mega325, mega325P, mega645, mega645A, mega645P, mega169, mega169A,
mega169P, mega169PA, mega329, mega329P, mega329PA, mega649,
mega649A, mega649P, mega3250, mega3250P, mega6450, mega6450A,
mega6450P, mega3290, mega3290P, mega6490, mega6490A, mega6490P

16mS 0-7 2 sec

mega1281, mega2561, mega640, mega1280, mega2560 16mS 0-9 8 sec
mega8U2, mega16U2, mega32U2, AT90USB82, AT90USB162 32mS 0-9 16 sec
mega16U4, mega32U4, AT90CAN32, AT90CAN64, AT90CAN128,
AT90USB646, AT90USB647, AT90USB1286, AT90USB1287

16mS 0-7 2 sec

all xmega 8mS 0-10 8 sec

When the processor is reset, the register value Register.ResetFlags contains bit flags indicating the

source of the reset. It is important to note that the occurrence of a system fault (e.g. a stack overflow) will
also cause a WatchDog reset as will calling ResetProcessor(). See the section on Run Time Stack

Checking in the ZBasic Reference Manual for more information on stack overflow detection.

The watchdog timer can be turned off using CloseWatchDog.

Compatibility

BasicX doesn’t support Register.ResetFlags or CloseWatchDog.

See Also WatchDog, CloseWatchDog, ResetProcessor

ZBasic System Library 211 ZBasic Microcontrollers

OpenX10

Type Subroutine

Invocation OpenX10(channel, inQueue, outQueue)

Parameter Method Type Description
channel ByVal Byte The X-10 communication channel to open.
inQueue ByRef array of Byte The queue for incoming X-10 data.

outQueue ByRef array of Byte The queue for outgoing X-10 data.

Discussion

This subroutine prepares an X-10 communication channel for use. After the channel is opened you can
send arbitrary X-10 command bit streams, which you must create in low-level form, by simply adding the
constitutent bytes to the outgoing queue. Similarly, the incoming queue will receive raw X-10 data which
you must decode. Each X-10 command begins with the bit sequence 1110 which is followed by
additional bit pairs. The bit pair 01 represents a logic zero while the bit pair 10 represents a logic one.
The bit pair 11 is invalid and the bit pair 00 signifies the end of a command bit stream and also represents
the idle condition. Additional information on X-10 commands may be found in various places on the
Internet.

If the specified channel is already open or i f the channel number is invalid, the call has no effect. The
supported channel numbers are 1-2. The channel must have been previously configured by a call to
DefineX10(). Also, the queues specified for the receive and transmit channels each must have been
previously initialized by calling OpenQueue(). If you set up a transmit-only or receive-only serial channel

you may use the value 0 for the unused queue. If you provide the value 0 for both queues, the channel
will not be opened.

For three phase mode, additional queues may be specified for the transmit and receive operations on
phases 2 and 3 using SetQueueX10().

Example

Dim outQueue(1 to 40) as Byte

Call OpenQueue(outQueue, SizeOf(outQueue))
Call DefineX10(1, 0, 12, &H08)
Call OpenX10(1, 0, outQueue)

The code above prepares channel 1 for transmit-only operation. If you wanted reception as well, you
would have to declare and initialize a second queue and define the receive pin.

Resource Usage

X-10 communication requires the use of a zero-crossing signal input to the ZX as noted in the table
below. When one or more of the X-10 channels are open the zero-crossing input pin may not be used for
any other purpose. When all X-10 channels are closed, zero-crossing input pin will again be available for
other uses. Note, however, that the ability to await an external interrupt (e.g. INT0) on the zero-crossing
pin is unavailable when the low-level X-10 functionality is included in an application, even if the X-10
channel is closed.

For devices based on the ATtiny and ATmega chips, the default zero-crossing interrupt is INT0. If
desired, an alternate interrupt may be specified using the Option X10Interrupt directive described in the
ZBasic Language Reference Manual.

ZBasic System Library 212 ZBasic Microcontrollers

For native mode devices, the ISRs noted in the table below are automatically included. The notation
INT# in that table indicates the default or specified zero-crossing interrupt input, e.g. INT0, INT1, etc.

The timing for the X-10 signaling is derived from the RTC timer using a second output compare register
(OCRnB). Target devices that do not have a second compare register consequently do not support the
low-level X-10 functionality. Further, an application must include the RTC functionality (present by default
in ZX devices, not so in generic target devices) in order to support the low-level X-10 functionality.

Resources Required for Low-level X-10 Functionality

Target Device

Zero-Crossing
Input

ISRs Included

tiny87, tiny167 n/a n/a

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441,
tiny841, tiny48, tiny88, tiny2313, tiny2313A, tiny4313, tiny828,
tiny1634

INT# Timer0_CompB, INT#

mega8, mega8A, mega16, mega16A, mega32, mega32A,
mega64, mega64A, mega128, mega128A, mega8515,
mega8535, mega161, mega162, mega163, mega323,
mega165, mega165, mega165A, mega165P, mega165PA,
mega325, mega325P, mega645, mega645A, mega645P,
mega169, mega169A, mega169P, mega169PA, mega329,
mega329P, mega329PA, mega649, mega649A, mega649P,
mega3250, mega3250P, mega6450, mega6450A,
mega6450P, mega3290, mega3290P, mega6490,
mega6490A, mega6490P, AT90CAN32, AT90CAN64,
AT90CAN128

n/a n/a

mega48, mega48A, mega48P, mega48PA, mega48PB,
mega88, mega88A, mega88P, mega88PA, mega88PB,
mega168, mega168A, mega168P, mega168PA, mega168PB,
mega328, mega328P, mega328PB

INT# Timer0_CompB, INT#

mega164A, mega164P, mega164PA, mega324P,
mega324PA, mega644, mega644A, mega644P, mega644PA,
mega1284P

INT# Timer0_CompB, INT#

mega640, mega1280, mega2560, mega1281, mega2561 INT# Timer2_CompB, INT#

mega8U2, mega16U2, mega32U2, AT90USB82,
AT90USB162

INT# Timer0_CompB, INT#

AT90USB162, AT90USB646, AT90USB647, AT90USB1286,
AT90USB1287

INT# Timer2_CompB, INT#

all xmega A.5 TCC1_CCB, ACA_AC0

Compatibility

If the RTC is not enabled in your application or i f the target device does not have a second output
compare register on the RTC timer, this routine will not be available. Moreover, it is not available in
BasicX compatibility mode.

See Also CloseX10, DefineX10, SetQueueX10, StatusX10

ZBasic System Library 213 ZBasic Microcontrollers

OutputCapture

Type Subroutine

Invocation OutputCapture(intevals, count, flags)

Parameter Method Type Description
intervals ByRef array of int16 The lengths of successive segments of the output waveform.
count ByVal int16 The number of entries in the value array.

flags ByVal Byte Configuration bits controlling the generation process.

Discussion

This subroutine produces a series of precisely timed logic levels on the OutputCapture pin (see table
below) allowing you to produce an arbitrary waveform. Each entry in the intervals array specifies a
time interval, in units of the I/O Timer period (i.e. 1/F_CPU, about 67.8ns for devices running at

14.7MHz), for each segment of the waveform. When called, the OutputCapture pin will be made an
output and will be set to its initial state (the complement of the least significant bit of the flags
parameter).

When waveform generation is begun, the OutputCapture pin will be changed to the opposite state for the
interval specified by the first intervals element, changed to the opposite state again for the interval

specified by the second intervals element, etc. for as many elements as specified. The final state of
OutputCapture pin depends on whether the count parameter is odd or even. If it is odd the final state

will be the complement of the least significant bit of the flags parameter; if it is even the final state will
be the same as the least significant bit of the flags parameter.

The calling task will be suspended during the waveform generation process. If another task disables
interrupts the accuracy of the generated waveform may suffer.

Due to processing overhead, the smallest pulse width that can be accommodated is about 90 CPU cycles
(6µ S at 14.7MHz). This corresponds to a value of about 88 in the data array at the default timer speed. If
the system has a heavy interrupt load (e.g. serial channels 3-6 are open) the minimum pulse width for
reliable operation may be significantly larger. The maximum pulse width using the default timer speed is
about 4.4mS at 14.7MHz. If you need to generate longer pulse widths, you may set the value of
Register.TimerSpeed1 so that a slower clock rate is used.

To avoid unwanted logic transitions on the OutputCapture pin during preparation for waveform
generation, the OutputCapture pin should be configured as an input prior to the call. You’ll probably need
to employ a pullup or pulldown resistor on the pin to guarantee the desired logic state prior to the
commencement of waveform generation.

Resource Usage

See the Resource Usage sub-section Output Capture Timers for information about the output pin and, for
native mode devices, the ISRs that will be included in the application.

Compatibility

For ZX devices running at 14.7MHz, since the CPU runs at twice the rate as the BasicX CPU, the units of
the pulse width are half as long. If you need to generate longer pulse widths, you may set the value of
Register.TimerSpeed1 so that a slower timer clock rate is used. Also, the BasicX documentation

indicates that if the I/O Timer is already in use, that use will be terminated and the waveform generation
will be performed.

See Also OutputCaptureEx

ZBasic System Library 214 ZBasic Microcontrollers

OutputCaptureEx

Type Subroutine

Invocation OutputCaptureEx(pin, intervals, count, flags)
 OutputCaptureEx(pin, intervals, count, flags, repeatCount)

Parameter Method Type Description
pin ByVal Byte Specifies the waveform output pin.

intervals ByRef array of int16 The lengths of successive segments of the output waveform.
count ByVal any int The number of entries in the intervals array (1-65535).

flags ByVal Byte Configuration bits controlling the generation process.

repeatCount ByVal any int The number of times to repeat the pattern (1-65535).

Discussion

This subroutine produces a series of precisely timed logic levels on the specified pin allowing you to
produce an arbitrary waveform. Each entry in the intervals array specifies a time interval, in units of
the I/O Timer clock period using the TimerSpeed 1 prescaler setting (i.e. 1/F_TS1, by default about

67.8ns for devices running at 14.7MHz), for each segment of the waveform. When called, the specified
pin will be made an output and will be set to its initial state (the complement of the least significant bit of
the flags parameter).

When waveform generation is begun, the specified pin will be changed to the opposite state for the
interval specified by the first intervals element, changed to the opposite state again for the interval
specified by the second intervals element, etc. for as many elements as specified. The final state of

the output pin depends on whether the count parameter is odd or even. If it is odd the final state will be
the complement of the least significant bit of the flags parameter; if it is even the final state will be the

same as the least significant bit of the flags parameter.

If the optional repeatCount parameter is not given a repeat count of 1 is assumed. If the repeat count

is 1 the intervals array should generally have an odd number of values. This allows the output to end
in the same state as it started. If the repeat count is greater than one the intervals array should

generally have an even number of values. This allows the output waveform to repeat at the same logic
levels. Also, when the waveform is repeated the last interval of the last cycle is omitted so that the output
ends up in the same state as it started.

The calling task will be suspended during the waveform generation process. If another task disables
interrupts, the accuracy of the generated waveform will suffer.

Due to processing overhead, the smallest pulse width that can be accommodated is equivalent to about
100 CPU cycles (6.8µ S at 14.7MHz). This corresponds to a value of about 100 in the data array at the
default timer speed. If the system has a heavy interrupt load (e.g. serial channels 3-6 are open) the
minimum pulse width for reliable operation may be significantly larger. The maximum pulse width using
the default timer speed is about 4.4mS. If you need to generate longer pulse widths, you may set the
value of Register.TimerSpeed1 so that a slower clock rate is used.

To avoid unwanted logic transitions on the output pin during preparation for waveform generation, the
output pin should either be configured as an input or as an output in the desired starting state prior to the
call. If you configure it as an input you’ll probably need to employ a pullup or pulldown resistor on the pin
to guarantee the desired logic state prior to the commencement of waveform generation.

Although this subroutine can be invoked specifying a specific hardware OutputCapture pin (see the tables
in the Resource Usage sub-section Output Capture Timers) or a general I/O pin, the behavior when using
a general I/O pin may be slightly different than when using the specific hardware OutputCapture pin. The
hardware OutputCapture pin uses features of the hardware to toggle the I/O pin while for general I/O pins

ZBasic System Library 215 ZBasic Microcontrollers

the pin is toggled in software by directly setting the corresponding PORTx bit. During periods of high
interrupt load the hardware toggling will be more accurate.

Some ZBasic target devices support ability to use the output capture waveform to modulate a carrier
waveform produced by the Serial Timer; such devices are listed in the table below and also in the
Resource Usage sub-section Output Capture Timers where a second output capture pin for Timer1 is
shown.

Output Capture Modulation Carrier Timer and Output Pin

Target Device

Serial Timer
Compare Output

Output
Pin

ZX-1281, ZX-1281n OC0A 17, B.7
ZX-1280, ZX-1280n OC0A 26, B.7
ZX-128e, ZX-128ne OC2 21, B.7

ZX-1281e, ZX-1281ne OC0A 21, B.7
mega640, mega1280, mega2560 OC0A 26, B.7
mega64, mega64A, mega128, mega128A OC2 17, B.7

mega1281, mega2561, AT90CAN32, AT90CAN64, AT90CAN128,
AT90USB646, AT90USB647, AT90USB1286, AT90USB1287

OC0A 17, B.7

To implement Output Capture modulation, the Serial Timer must be set up to generate the desired carrier
frequency and duty cycle prior to calling OutputCaptureEx. Note, however, that the actual output from the
serial timer should not be enabled – this will be done automatically when OutputCaptureEx is called.
Further, the TimerBusy flag for the Serial Timer must be set to indicate that it is active. Finally, when
calling OutputCaptureEx, the value &H02 should be added to the flags parameter to request output
capture modulation.

Resource Usage

See the Resource Usage sub-section Output Capture Timers for information about the timers, output pins
and (for native mode devices) the ISRs that will be included in the application. If the timer is already in
use the routine will return immediately without performing the waveform generation. Note that when
performing an output capture on a general I/O pin, any available 16-bit timer may be used to generate the
required timing.

Compatibility

This routine is not available in BasicX compatibility mode.

ZBasic System Library 216 ZBasic Microcontrollers

ParityCheck

Type Function returning Boolean

Invocation ParityCheck(data, oddParity)

Parameter Method Type Description
data ByVal Byte The data value for which to check the parity.
oddParity ByVal Boolean The desired parity: True -> odd parity, False -> even parity

Discussion

This function computes the parity over the eight bits of the provided data value and compares that result
to the desired result indicated by the oddParity parameter. The return value is a pass/fail indicator

where True means that the parity matched the desired parity.

The data value has even parity if the number of one bits in the value is even.

Example

Dim b as Byte

If Not ParityCheck(b, False) Then
 Debug.Print "Even parity check failed"
End If

Compatibility

This routine is not available in BasicX compatibility mode.

ZBasic System Library 217 ZBasic Microcontrollers

Pause

Type Subroutine

Invocation Pause(time)

Parameter Method Type Description
time ByVal Single or int16 The amount of time to pause, in seconds

(Single) or ticks (int16)

Discussion

This routine suspends execution of the current task for approximately the period of time specified. When
provided with an Int16 parameter, the units will be will be the period of the rate of change RTC timer
(1/F_RTC_TIMER or 4.34µ S for most ZX devices) i f the RTC is included in the application. If the RTC is
not included the units are 1uS intervals. The maximum pause duration is 65535 units

No other task is allowed to run during the pause period. Note that the accuracy of the pause may be
affected by the time required for the processor to service interrupts (RTC, serial channel, etc.). Also note
that the resolution of the pause is similar to the minimum execution time for user instructions. This means
that timing using Pause() calls of less than 20 to 50 units or so will be affected significantly by the
succeeding instructions.

This routine should be used instead of Sleep() or Delay() when higher resolution timing is required or
you don’t want a task switch to occur. If you need longer pauses than can be produced by this routine,
you can implement them using Register.RTCStopWatch.

Example

Do
 Call PutPin(12, 0)
 Call Pause(0.010) ' a 10 millisecond delay
 Call PutPin(12, 1)
 Call Pause(2304) ' a 10 millisecond delay
Loop

This loop produces a square wave signal on pin 12 at approximately 50Hz (with some jitter due to
handling interrupts).

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Delay, DelayUntilClockTick, Sleep, WaitForInterval

ZBasic System Library 218 ZBasic Microcontrollers

PeekQueue

Type Subroutine

Invocation PeekQueue(queue, var, count)

Parameter Method Type Description
queue ByRef array of Byte The queue from which to ret rieve data.
var ByRef any type The variable to receive the retrieved data.

count ByVal int16 The number of bytes to retrieve.

Discussion

This routine will copy the specified number of bytes from the queue to the indicated variable but it does
not remove them from the queue. The routine will not return until it can copy the entire number of bytes
specified. Because of this, you should usually check the number of bytes available in the queue using
GetQueueCount() before calling PeekQueue().

Note that i f the calling task is locked and the queue contains insufficient data when this routine is called,
the task will be unlocked to allow other tasks to run.

Caution

If the requested number of bytes is larger than the queue capacity, the routine will never return. Likewise,
if not enough data is placed in the queue, the routine will never return. Also, if the variable to receive the
data is smaller than the number of bytes indicated, adjacent memory will be overwritten, usually with
undesirable results.

Example

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

ZBasic System Library 219 ZBasic Microcontrollers

PersistentPeek

Type Function returning Byte

Invocation PersistentPeek(address)

Parameter Method Type Description
address ByVal int16 The persistent memory address from which to read.

Discussion

This function will return the content of the specified persistent memory address.

The address of any persistent variable can also be obtained using the DataAddress property. For

persistent variables, the DataAddress property is of type UnsignedInteger.

Example

Dim pi as PersistentInteger
Dim b as Byte
b = PersistentPeek(1000)
b = PersistentPeek(pi.DataAddress + 1)

The second use of PersistentPeek() demonstrates how you can use the DataAddress property to

read a byte value from any part of a persistent variable of any type.

Compatibility

BasicX does not support the use of the DataAddress property for persistent items.

The BasicX system has only 512 bytes of persistent memory. In ZBasic, the amount of persistent
memory available depends on the particular target device; the first 32 bytes of persistent memory are
reserved for system use.

See Also PersistentPoke

ZBasic System Library 220 ZBasic Microcontrollers

PersistentPoke

Type Subroutine

Invocation PersistentPoke(value, address)

Parameter Method Type Description
value ByVal Byte The to write to persistent memory.
address ByVal int16 The persistent memory address to which to write.

Discussion

This routine will write the given value to the specified persistent memory address.

The address of any persistent variable can also be obtained using the DataAddress property. For
persistent variables, the DataAddress property is of type UnsignedInteger.

Caution

The first 32 bytes of persistent memory are reserved for the system. Modifying any of them may produce
unpredictable results.

The persistent memory (on-board EEPROM) has a limit specified by the manufacturer of a million write
cycles. When this limit is exceeded the memory may become unreliable.

Example

Dim pi as PersistentInteger
Call PersistentPoke(&H55, 1000)
Call PersistentPoke(&H55, pi.DataAddress + 1)

The second use of PersistentPoke() demonstrates how you can use the DataAddress property to

write a byte value to any part of a persistent variable of any type.

Compatibility

BasicX does not support the use of the DataAddress property for persistent items.

The BasicX system has only 512 bytes of persistent memory. In ZBasic, the amount of persistent
memory available depends on the particular target device; the first 32 bytes of persistent memory are
reserved for system use.

See Also PersistentPeek

ZBasic System Library 221 ZBasic Microcontrollers

PinHigh

Type Subroutine

Invocation PinHigh(pin)

Parameter Method Type Description

pin ByVal integral A pin number (value must be known at compile time).

Discussion

This subroutine sets an output pin to the high state. If the value of the pin parameter is not known at
compile time (e.g. a constant) a compile error will result. If the pin has not been previously configured to
be an output, the effect of invoking PinHigh on that pin is undefined (varies by target device).

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not
available in BasicX compatibility mode.

See Also PinLow, PinOutput, PinToggle, PutPin

ZBasic System Library 222 ZBasic Microcontrollers

PinInput

Type Subroutine

Invocation PinInput(pin, flags)
 PinInput(pin)

Parameter Method Type Description
pin ByVal integral A pin number (must be known at compile time).
flags ByVal integral Flag bits giving additional configuration information.

Discussion

This subroutine configures a pin as an input. If the value of the pin parameter is not known at compile

time (e.g. a constant) a compile error will result. The second form of invocation is equivalent to the first
form with flags set to zero. The flags parameter gives additional configuration information as shown

in the table below.

Flags Bits Description
xxxx xxx0 Pullup disabled.
xxxx xxx1 Pullup enabled.

All other bits are reserved for future use and should be set to zero for compatibility with such changes.

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not
available in BasicX compatibility mode.

See Also PinOutput, PutPin

ZBasic System Library 223 ZBasic Microcontrollers

PinLow

Type Subroutine

Invocation PinLow(pin)

Parameter Method Type Description

pin ByVal integral A pin number (value must be known at compile time).

Discussion

This subroutine sets an output pin to the low state. If the value of the pin parameter is not known at
compile time (e.g. a constant) a compile error will result. If the pin has not been previously configured to
be an output, the effect of invoking PinLow on that pin is undefined (varies by target device).

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not
available in BasicX compatibility mode.

See Also PinHigh, PinOutput, PinToggle, PutPin

ZBasic System Library 224 ZBasic Microcontrollers

PinOutput

Type Subroutine

Invocation PinOutput(pin, flags)
 PinOutput(pin)

Parameter Method Type Description
pin ByVal integral A pin number (value must be known at compile time).
flags ByVal integral Flag bits giving additional configuration information.

Discussion

This subroutine configures a pin as an output. If the value of the pin parameter is not known at compile

time (e.g. a constant) a compile error will result. The second form of invocation is equivalent to the first
form with flags set to zero. The flags parameter gives additional configuration information as shown

in the table below.

Flags Bits Description
xxxx xxx0 Initial state is low.
xxxx xxx1 Initial state is high.

All other bits are reserved for future use and should be set to zero for compatibility with such changes.

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not
available in BasicX compatibility mode.

See Also PinHigh, PinInput, PinLow, PinToggle, PutPin

ZBasic System Library 225 ZBasic Microcontrollers

PinRead

Type Function returning Byte

Invocation PinRead(pin)

Parameter Method Type Description

pin ByVal integral A pin number (value must be known at compile time).

Discussion

This function returns an indicator of the logic level present on the specified pin. A return value of zero
indicates a logic low and a non-zero return value indicates a logic high. If the value of the pin parameter

is not known at compile time (e.g. a constant) a compile error will result. Note that the specified pin may
have previously been configured as either an input or an ouput.

The advantage of using this function instead of using GetPin() to achieve the same result is that the call
to this function results in much smaller/ faster code and that this function does not reconfigure the pin to
be an input. The disadvantage is that the pin number must be known at compile time.

Compatibility

This function is only available for native mode devices (ZX or generic target devices) and is not available
in BasicX compatibility mode.

See Also GetPin

ZBasic System Library 226 ZBasic Microcontrollers

PinToggle

Type Subroutine

Invocation PinToggle(pin)

Parameter Method Type Description

pin ByVal integral A pin number (value must be known at compile time).

Discussion

This subroutine changes the state of an output pin to the opposite of its current state. If the value of the
pin parameter is not known at compile time (e.g. a constant) a compile error will result. If the pin has not

been previously configured to be an output, the effect of invoking PinToggle on that pin is undefined
(varies by target device).

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not
available in BasicX compatibility mode.

See Also PinHigh, PinLow, PinOutput, PutPin

ZBasic System Library 227 ZBasic Microcontrollers

PlaySound

Type Subroutine

Invocation PlaySound(pin, address, length, rate, repeat)

Parameter Method Type Description
pin ByVal Byte The output pin.
address ByVal int16 The Program Memory address of the sound data.

length ByVal int16 The number of bytes of sound data.
rate ByVal int16 The sample rate for the sound data.
repeat ByVal int16 The number of times to repeat the sound.

Discussion

This routine uses a pseudo-PWM technique to create an approximation to a sine wave on the specified
output pin. The frequency of the sine wave is given by successive bytes in Program Memory beginning at
the specified address and continuing for the given length. The rate parameter specifies the rate at
which the data elements will be utilized. It is equivalent to the sampling rate at which an original analog
sound might have been digitized. Lastly, the repeat parameter tells how many times to repeat the
production of the output using the supplied data. If zero is specified, the sound will be repeated 65,536
times.

The minimum supported sample rate is 250Hz. If a smaller value is specified, 250Hz will be used instead.

The actual output will be a pulse stream that has an average value that approximates the target analog
signal. Because of the high frequency nature of the pulse train used to synthesize the waveform some
filtering is required. The example circuit below may be used to couple the output to a high impedance
speaker (> 40Ω) or an amplifier. Note, however, that the signal is too large to be fed to the microphone
input of an amplifier. Instead, the Auxiliary or Line input should be used.

Resource Usage

This routine uses the I/O Timer and disables interrupts during the generation process. In particular, this
means that serial input that arrives during the generation will likely be missed and serial output on
channels 3-6 will be disrupted.

Task switching is suspended and other interrupts are disabled while the sound is being produced.
However, RTC ticks are accumulated during the process and the RTC is updated when the process has
completed so that the RTC does not lose time.

ZBasic System Library 228 ZBasic Microcontrollers

Example

Dim music as ByteVectorData("sound.txt")

Call PlaySound(12, LoWord(music.DataAddress), UBound(music), 11025, 1)

This example assumes that you have prepared the file “sound.txt” to contain the digitized music, sampled
at 11025Hz.

Compatibility

The BasicX documentation for PlaySound() does not explicitly indicate that a zero repeat count will

result in 65,536 iterations. However, experimental evidence indicates that it does.

In the BasicX implementation the RTC will lose time if the duration is too long. It is not known if the
BasicX implementation has a minimum sample rate.

ZBasic System Library 229 ZBasic Microcontrollers

PortBit

Type Function returning Byte

Invocation PortBit(portIdx, bitIdx)
 PortBit(pin)

Parameter Method Type Description
port Idx ByVal integral The I/O port designator (A=0, B=1, etc.)
bitIdx ByVal integral The bit designator (0-7)

pin ByVal integral A pin number

Discussion

This function returns a composite value that describes a specific bit in a specific I/O port. The fields of the
Byte value are as shown in the table below.

Bit(s) Description
7 Always 1
6-3 The I/O port designator (A=0, B=1, etc.)

2-0 The bit designator (0-7)

When invoked in the first form with the parameter values 2 and 6 (representing Port C, bit 6) the return
value will have the bit pattern &B10010110.

The second form of invocation converts a physical pin number to the composite value representing the
port and bit corresponding to that pin. When passed an invalid pin, the return value is zero.

Values returned by the PortBit() function may be used anywhere that a pin number may be used, e.g. as
the first parameter to PutPin(). The primary advantage to using the composite port/bit designator is that
the same value may be used unchanged on any ZBasic device having the referenced pin.

Note that the special port/bit designators like C.2 are converted by the compiler to the same type of
composite port/bit designator described here if the compiler directive Option PortPinEncoding On is

specified.

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 230 ZBasic Microcontrollers

PortMask

Type Function returning Byte

Invocation PortMask(pin)

Parameter Method Type Description

pin ByVal integral A pin number

Discussion

This function returns a bit mask for the port with which the specified pin is associated. The resulting bit
mask will have at most one bit set if the pin is valid and will be zero for an invalid pin. The bit mask can
be used for directly manipulating the I/O registers associated with a pin.

Note that the value of this function is a compile-time constant if the compiler can determine the value of
the pin parameter at compile-time.

For further information about how to use this function, see the discussion of Register.Port() in the

ZBasic Reference Manual.

Example

Dim mask as Byte

mask = PortMask(C.2) ' the result will be &H04

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 231 ZBasic Microcontrollers

Pow

Type Function returning Single

Invocation Pow(mantissa, exponent)

Parameter Method Type Description

mantissa ByVal Single The value to be raised to the power given by the exponent.
exponent ByVal Single The exponent value.

Discussion

This function returns the value of the first parameter raised to the power given by the second parameter.
This is the same functionality as provided by the exponentiation operator ^.

Certain special cases are detected as shown in the table below.

Mantissa Exponent Result
any value 0.0 1.0

negative non-integral value NaN
0.0 Negative +Infinity

Example

Dim r as Single, f as Single

f = 10.0
r = Pow(f, 2.0) ' result is 100.0

See Also Exp, Exp10

ZBasic System Library 232 ZBasic Microcontrollers

ProgMemFind

Type Function returning UnsignedInteger

Invocation ProgMemFind(dataAddr, dataLen, val)

 ProgMemFind(dataAddr, dataLen, val, ignoreCase)

Parameter Method Type Description
dataAddr ByVal Long The address in Program Memory of the block to search.

dataLen ByVal integral The length of the block to search.
val ByVal Byte The byte value for which to search.
ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.

Discussion

This function attempts to find the first occurrence of the byte specified by the val parameter in a block of
data in Program Memory beginning at the specified address. If it is found, the return value gives the 1-
based index where the sought byte was found within the block. If the sought byte is not found, zero is
returned. If the optional ignoreCase parameter is not given, the search is performed observing

alphabetic case differences, otherwise alphabetic case differences are significant or not depending on the
value specified for ignoreCase. For the purposes of this parameter only the characters A-Z and a-z
(&H41 to &H5a and &H61 to &H7a) are considered to be alphabetic.

Example

Dim charSet as ByteVectorData ({ ".$%'-_@~`!(){}^#&" })
Dim inCharSet as Boolean

If (ProgMemFind(charSet.DataAddress, SizeOf(charSet), c) <> 0) Then
 inCharSet = True
End If

Compatibility

This function is not available in BasicX compatibility mode.

See Also MemFind, StrFind

ZBasic System Library 233 ZBasic Microcontrollers

PulseIn (subroutine form)

Type Subroutine

Invocation PulseIn(pin, level, var)

Parameter Method Type Description
pin ByVal Byte The pin on which a pulse width will be measured.
level ByVal Byte The expected pulse logic value (high = 1).

var ByRef Single The variable to receive the pulse width value.

Discussion

This routine waits for the input pin to be in the idle state (the opposite of that specified by the level

parameter), waits for it to change to the specified logic level and then measures the time that it stays at
that level. The pulse width is stored in the specified variable and has units of seconds with a default
resolution as shown in the table below.

PulseIn Resolution

Target I/O Scaling Resolution

ZX devices running at 14.7456MHz True
False

1.085 µ S
0.542 µ S

all other targets n/a 1/F_TS2

The pin is made an input if it is not already so. If the awaited logic transition never occurs or if the pulse
width exceeds the maximum representable width the stored result will be zero.

The timing resolution may be adjusted using Register.TimerSpeed2. However, if this is done, the

resulting pulse width value will need to be scaled proportionally.

Resource Usage

This routine uses the I/O Timer and interrupts are disabled during the pulse measurement. However,
RTC ticks will be accumulated during the pulse measurement and the RTC will be updated when the
process is complete.

Example

Dim width as Single

Call PulseIn(12, 1,width) ' measure a positive-going pulse

Compatibility

The BasicX implementation does not support adjustable timing resolution.

ZBasic System Library 234 ZBasic Microcontrollers

PulseIn (function form)

Type Function returning Integer

Invocation PulseIn(pin, level)

Parameter Method Type Description
pin ByVal Byte The pin on which a pulse width will be measured.
level ByVal Byte The expected pulse logic value (high = 1).

Discussion

This routine waits for the input pin to be in the idle state (the opposite of that specified by the level
parameter), waits for it to change to the specified logic level and then measures the time that it stays at
that level. The width of the pulse is returned by the function, the units of which are shown in the table
below.

PulseIn Units

Target I/O Scaling Resolution
ZX devices running at 14.7456MHz True

False
1.085 µ S
0.542 µ S

all other targets n/a 1/F_TS2

The pin is made an input if it is not already so. If the awaited logic transition never occurs or if the pulse
width exceeds the maximum representable width the returned value will be zero.

The timing resolution may be adjusted using Register.TimerSpeed2.

Resource Usage

This routine uses the I/O Timer and interrupts are disabled during the pulse measurement. However,
RTC ticks will be accumulated during the pulse measurement and the RTC will be updated when the
process is complete.

Example

Dim width as Integer

i = PulseIn(12, 1) ' measure a positive pulse

Compatibility

The BasicX implementation does not support adjustable timing resolution.

ZBasic System Library 235 ZBasic Microcontrollers

PulseOut

Type Subroutine

Invocation PulseOut(pin, duration, level)

Parameter Method Type Description
pin ByVal Byte The pin on which a pulse width will be generated.
duration ByVal int16 or Single The width of the generated pulse.

level ByVal Byte The desired pulse logic value (low = 0, high = 1).

Discussion

This routine first makes the specified pin an output. (However, for practical purposes, you should
generally make the pin an output and set it to the desired state before calling this routine.) Then it sets
the pin to the active state (as indicated by the level parameter), waits the specified time and then sets
the pin back to the inactive state. The pin will be left configured as an output.

The pulse width may be specified by a Single value with units of seconds and a resolution as shown in
the table below. Note, however, that due to processing overhead, the shortest pulse that can be
generated is approximately 200 CPU cycles (13us at 14.7MHz). Alternately, the pulse width may be
specified by an Integer or UnsignedInteger value with units as shown in the table below. Note, however,
that Register.TimerSpeed2 may be modified to adjust the I/O Timer tick rate. If this is done, the Single
value will have to be scaled proportionally.

PulseOut Resolution

Target I/O Scaling Resolution
ZX devices running at 14.7456MHz True

False
1.085 µ S
0.542 µ S

all other targets n/a 1/F_TS2

If the output pin is specified as zero, this routine does not generate a pulse but will delay for
approximately the specified period of time. This may be useful for generating a delay with better
precision than can be obtained by using Delay() or Sleep(). Moreover, generating a delay in this

manner does not cause the task to lose control.

Resource Usage

This routine uses the I/O Timer and interrupts are disabled during the pulse generation. However, RTC
ticks will be accumulated during the pulse generation and the RTC will be updated when the process is
complete. If the pulse is too long characters being sent or received on serial channels 3-6 may be
garbled.

Example

Dim width as Integer

Call PutPin(12, zxOutputLow)
Call PulseOut(12, 2, 1) ' generate a positive pulse about 2µS long
Call PulseOut(0, 1e-5, 0) ' generate a delay of about 10µS

Compatibility

In the BasicX implementation, the RTC will lose time if the pulse is too long. Also, the BasicX
implementation does not support adjustable timing resolution.

ZBasic System Library 236 ZBasic Microcontrollers

Put1Wire

Type Subroutine

Invocation Put1Wire(pin, value)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.
value ByVal Byte The bit value to write.

Discussion

This routine sends the LSB of the given value using the 1-Wire protocol. To perform a 1-Wire operation,
this function along with related 1-Wire routines must be used in the proper sequence. See the
specifications of your 1-Wire device for more information.

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100µ S.

Example

Call Put1Wire(12, 1)

See Also Get1Wire, Get1WireByte, Get1WireData,

Put1WireByte, Put1WireData, Reset1Wire

ZBasic System Library 237 ZBasic Microcontrollers

Put1WireByte

Type Subroutine

Invocation Put1WireByte(pin, value)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.
value ByVal Byte The value to write.

Discussion

This routine sends a byte (LSB first) using the 1-Wire protocol. To perform a 1-Wire operation, this
function along with related 1-Wire routines must be used in the proper sequence. See the specifications
of your 1-Wire device for more information.

Example

Call Put1WireByte(12, &H55)

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100µ S for each bit sent.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Get1Wire, Get1WireByte, Get1WireData,

Put1Wire, Put1WireData, Reset1Wire

ZBasic System Library 238 ZBasic Microcontrollers

Put1WireData

Type Subroutine

Invocation Put1WireData(pin, data, count)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.
data ByRef any type A variable holding the bytes to write.

count ByVal Byte The number of bytes to write.

Discussion

This routine sends 1 or more bytes of data (each LSB first) using the 1-Wire protocol. To perform a 1-
Wire operation, this function along with related 1-Wire routines must be used in the proper sequence.
See the specifications of your 1-Wire device for more information.

Example

Dim d(1 to 10) As Byte

Call Put1WireData(12, d, 5)

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100µ S for each bit sent.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Get1Wire, Get1WireByte, Get1WireData,

Put1Wire, Put1WireByte, Reset1Wire

ZBasic System Library 239 ZBasic Microcontrollers

PutBit

Type Subroutine

Invocation PutBit(var, bitNumber, val)

Parameter Method Type Description
var ByRef any type The variable to which the bit will be written.
bitNumber ByVal int8/16 The bit number to write.

val ByVal Byte The bit value.

Discussion

This routine writes a single bit to memory beginning at the location of the specified variable. Bit numbers
0-7 are written to the byte at the specified location, bit numbers 8-15 are written to the subsequent byte,
etc. In each case, the lower bit number corresponds to the least significant bit of the byte while the
highest bit number corresponds to the most significant bit of a byte.

Only the least significant bit of the val parameter is used; the remaining bits are ignored.

Caution

If you specify a bit number beyond the number of bits in the specified variable, a byte in memory following
the variable will be modified, perhaps with undesirable results.

Compatibility

In BasicX compatibility mode, the bitNumber parameter may only be specified using a Byte value.

See Also GetBit

ZBasic System Library 240 ZBasic Microcontrollers

PutDAC

Type Subroutine

Invocation PutDAC(pin, dacValue, dacAccumulator)

PutDAC(pin, dacValue, dacAccumulator, cycles)

Parameter Method Type Description
pin ByVal Byte The output pin.

dacValue ByVal numeric The desired output value. See discussion below.
dacAccumulator ByRef Byte A value used in the DAC process. See the

discussion below.

cycles ByVal Byte The number of PWM cycles to perform.

Discussion

This routine creates a digital approximation of an analog signal on the specified pin using a pseudo-PWM
technique. When called, the specified pin is made an output, a pulse train is generated having an
average value equal to the dacValue parameter and then, after a fixed number of iterations, the pin is
placed in the high impedance input state. If the output is filtered with a low pass filter, the voltage will,
immediately after the process is completed, be at a level between zero and the processor voltage (usually
+5 volts). However, the voltage will begin to decay at a rate dependent on the load presented to the filter.
The voltage can be refreshed from time to time by calling PutDAC() again.

The dacValue parameter may be specified by a Single value or an integral value. If a Single value is

supplied, it should be in the range 0.0 to 1.0 corresponding to the output range of 0 to the processor
voltage (usually +5 volts). If an integral value is supplied, it should be in the range of 0 to 255
corresponding to the same output voltage range as above.

The dacAccumulator parameter is required to ensure continuity between successive calls to

PutDAC(). The value of the parameter after the call should not be modified and the same parameter
should be supplied on the next call. The initial value of the parameter is of no consequence. If your
application uses PutDAC() to create an analog voltage on more than one pin at a time, a separate

accumulator value must be used for each one.

If the cycles parameter is not specified, a single PWM cycle is performed. Each cycle will generate a
burst of pulses for about 3000 CPU cycles (200µ S at 14.7MHz) during which time interrupts will be
disabled. At the end of each cycle, the pin is put in high impedance mode and interrupts are re-enabled.
The process is then repeated if the cycle count is greater than one. A cycle count of zero causes no
cycles to be performed.

The selection of components for the required filter depends on several factors. A larger capacitor will
allow the voltage to hold longer but also takes longer to bring up to the proper voltage. As a rule of
thumb, the product of the resistance (in ohms) and the capacitance (in farads) should be on the order of
the number of cycles times one-fourth of the cycle time specified above. For example, with a 100Ω
resistor and a 1µ F capacitor, the cycle count should probably be 2 in order to bring the capacitor up to the
desired voltage level.

For best results, you should probably follow the filter with a high impedance buffer such as a unity gain op
amp circuit, an example of which is shown below. The op amp chosen is not particularly critical, nearly
any will do the job.

For ZBasic devices based on the ATxmega, a hardware DAC is available. In most applications requiring
a DAC, using the hardware DAC will produce much better results.

ZBasic System Library 241 ZBasic Microcontrollers

Examples

Dim acc as Byte

Call PutDAC(12, 0.5, acc)

Call PutDAC(12, 128, acc, 5)

Compatibility

In BasicX compatibility mode, the dacValue parameter may only be specified using a Single value.
Also, the fourth parameter is not supported.

Resource Usage

This routine disables interrupts for about 3000 CPU cycles (200µ S at 14.7MHz) during the generation
process. Interrupts are reenabled between each successive cycle.

See Also DAC, DACPin, OpenDAC

ZBasic System Library 242 ZBasic Microcontrollers

PutDate

Type Subroutine

Invocation PutDate(year, month, day)

Parameter Method Type Description
year ByVal int16 The year value (1999-2177).
month ByVal Byte The month value (1-12).

day ByVal Byte The day value (1-31).

Discussion

This routine composes a new value for Register.RTCDay using the provided parameters. The month

value of 1 corresponds to January while 12 corresponds to December. If the year or month is invalid or if
the day number is invalid for the specified month and year, Register.RTCDay will be set to zero.

Note that Register.RTCDay is initialized to zero on power-up or reset. This corresponds to January 1,
1999.

Compatibility

This subroutine is not available if the RTC is not enabled in your application.

See Also GetDate

ZBasic System Library 243 ZBasic Microcontrollers

PutEEPROM

Type Subroutine

Invocation PutEEPROM(addr, var, count)

Parameter Method Type Description
addr ByVal Long The Program Memory address at which to begin writing.
var ByRef any type The variable from which the data to be written will be taken.

count ByVal int16 The number of bytes to write.

Discussion

This routine is provided for compatibility with BasicX. The more aptly named PutProgMem() should be
used by new applications.

See Also GetProgMem, PutProgMem

ZBasic System Library 244 ZBasic Microcontrollers

PutNibble

Type Subroutine

Invocation PutNibble(var, nibbleNumber, val)

Parameter Method Type Description
var ByRef any type The variable to which the nibble will be written.
nibbleNumber ByVal int8/16 The nibble number to write.

val ByVal Byte The nibble value.

Discussion

This routine writes a single nibble (four bits) to memory beginning at the location of the specified variable.
Nibble numbers 0-1 are written to the byte at the specified location, nibble numbers 2-3 are written to the
subsequent byte, etc. In each case, the lower nibble number corresponds to the least significant four bits
of the byte while the higher nibble number corresponds to the most significant four bits of the byte.

Only the least significant four bits of the val parameter is used; the remaining bits are ignored.

Caution

If you specify a nibble number beyond the number of nibbles in the specified variable, a byte in memory
following the variable will be modified, perhaps with undesirable results.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetNibble

ZBasic System Library 245 ZBasic Microcontrollers

PutPersistent

Type Subroutine

Invocation PutPersistent(addr, var, count)

Parameter Method Type Description
addr ByVal int16 The Persistent Memory address to which to write.
var ByRef any type The variable from which data will be taken.

count ByVal int8/16 The number of bytes to write.

Discussion

This routine reads one or more bytes from RAM and writes them to Persistent Memory beginning at the
address given.

Caution

Persistent Memory has a write cycle limit of approximately a million writes. Writing to a particular address
in excess of this limit may cause the memory to become unreliable.

A block of Persistent Memory starting at address zero is reserved for system use. When the compiler
assigns addresses to persistent variables defined in your program, the lowest address used is the first
address above this reserved block. The .map file generated by the compiler contains a section indicating
the addresses assigned to persistent variables defined in your program. The built-in values
Register.PersistentStart, Register.PersistentSize and Register.PersistentUsed

may be useful for determining the allocated an unallocated portions of Persistent Memory.

This routine will write to any address in Persistent Memory. Generally, you should avoid writing to the
reserved area of Persistent Memory.

Example

Dim pvar(1 to 10) as PersistentByte
Dim var(1 to 10) as Byte

Call PutPersistent(pvar.DataAddress, var, SizeOf(pvar))

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetPersistent

ZBasic System Library 246 ZBasic Microcontrollers

PutPin

Type Subroutine

Invocation PutPin(pin, mode)

Parameter Method Type Description
pin ByVal Byte The pin to configure.
mode ByVal Byte The configuration mode (see below).

Discussion

This routine is used to configure a pin to be an input or an output or to effect a change in the output logic
level. If the pin is configured as an input, it may be configured to be in “tri-state” mode or “pull-up” mode.
If the pin is configured to be an output, the output level may be set to zero or 1. The table below gives the
values for each of the possible modes. If an invalid mode is specified or an invalid pin is specified, the
routine has no effect.

Values for the mode Parameter

Value Built-in Constant Description

0 zxOutputLow The pin is an output at logic zero.
1 zxOutputHigh The pin is an output at logic one.
2 zxInputTriState The pin is an input with the pull-up/pull-down resistors disabled.

3 zxInputPullUp The pin is an input with the pull-up resistor enabled.
4 zxOutputToggle Change the logic level of the output.
5 zxOutputPulse Pulse the output.

6 zxInputPullDown The pin is an input with the pull-down resistor enabled.
7 zxInvertIO Input and output levels are inverted.
8 zxNormalIO Input and output levels are normal (non-inverted).

Note that for modes 4 and 5 to be useful, the pin must have been previously set to be an output. Mode 4
(zxOutputToggle) will change the output to the opposite logic level. Mode 5 (zxOutputPulse) will

change the output to the opposite level for a short period of time and then change it back to the original
level. The duration of the pulse will be about 8 CPU cycles (approximately 0.5uS at 14.7456MHz).

Modes 6, 7 and 8 are only supported on xmega targets. Modes 7 and 8 are to be used in conjunction
with the other modes (in separate calls, of course) to achieve the desired configuration.

Example

Call PutPin(12, zxOutputLow) ' pin 12 will be at logic zero

Compatibility

In BasicX compatibility mode, mode values higher than 3 are not supported.

See Also GetPin, PinHigh, PinInput, PinLow, PinOutput, PinToggle, PutPin

ZBasic System Library 247 ZBasic Microcontrollers

PutProgMem

Type Subroutine

Invocation PutProgMem(addr, var, count)

Parameter Method Type Description
addr ByVal Long The Program Memory address to which to begin writing.
var ByRef any type The variable from which the data to be written will be taken.

count ByVal int16 The number of bytes to write.

Discussion

This routine writes one or more bytes to Program Memory (where the user program is stored) taking the
data from RAM beginning at the location of the specified variable. Note that i f a number of bytes is
specified that is larger than the given variable, adjacent memory will be read.

Caution

Program Memory has a write cycle limit specified by the manufacturer of a million cycles. Writing to a
particular address in excess of this limit may result in unreliable operation.

See Also GetProgMem

ZBasic System Library 248 ZBasic Microcontrollers

PutQueue

Type Subroutine

Invocation PutQueue(queue, var, count)

Parameter Method Type Description
queue ByRef array of Byte The queue to which to write data.
var ByRef any type The variable from which to read data to be written to

the queue.
count ByVal int16 The number of bytes to write to the queue.

Discussion

This routine reads data from the variable and writes it to the specified queue. If there is insufficient space
in the queue, the calling task will suspend until space becomes available. Note, particularly, that no data
will be written until there is room for all the data to be written. This has two important ramifications.
Firstly, if the number of bytes to be written is larger than the data capacity of the queue, the write will
never complete. Secondly, if data is never taken out of the queue thus making room for the additional
data, the write will also never complete.

Note that the number of bytes to write may be larger than the named variable. If this is the case, data will
be taken from subsequent memory locations until the write count is satisfied. This may or may not be
what you intended to occur.

Note, also, that before any queue operations are performed, the queue data structure must be initialized.
See the discussion of OpenQueue() for more details. Also, attempting to put data in a queue that has

been assigned to a Com port as the receive queue will produce undefined results.

Example

Dim outQueue(1 to 40) as Byte
Dim lval as Long

Call OpenQueue(outQueue, SizeOf(outQueue))
lval = &H55aa
Call PutQueue(outQueue, lval, SizeOf(lval))

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

See Also PutQueueByte, PutQueueStr

ZBasic System Library 249 ZBasic Microcontrollers

PutQueueByte

Type Subroutine

Invocation PutQueueByte(queue, val)

Parameter Method Type Description
queue ByRef array of Byte The queue to which to write data.
val ByVal Byte The byte value to be written to the queue.

Discussion

This routine writes the given byte value to the specified queue. If there is insufficient space in the queue,
the calling task will suspend until space becomes available. This means that if data is never taken out of
the queue thus making room for additional data, the process will never complete.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to put data in a queue that has been
assigned to a Com port as the receive queue will produce undefined results.

Example

Dim outQueue(1 to 40) as Byte

Call OpenQueue(outQueue, SizeOf(outQueue))
Call PutQueueByte(outQueue, &H55)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also OpenQueue, PutQueue, PutQueueStr

ZBasic System Library 250 ZBasic Microcontrollers

PutQueueStr

Type Subroutine

Invocation PutQueueStr(queue, str)

Parameter Method Type Description
queue ByRef array of Byte The queue to which to write data.
str ByVal String The string to be written to the queue.

Discussion

This routine writes the characters from the string to the specified queue. If there is insufficient space in
the queue, the calling task will suspend until space becomes available. Note, particularly, that no data
will be written until there is room for all the data to be written. This has two important ramifications.
Firstly, if the number of bytes to be written is larger than the data capacity of the queue, the write will
never complete. Secondly, if data is never taken out of the queue thus making room for the additional
data, the write will also never complete.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to put data in a queue that has been
assigned to a Com port as the receive queue will produce undefined results.

Example

Dim outQueue(1 to 40) as Byte

Call OpenQueue(outQueue, SizeOf(outQueue))
Call PutQueueStr(outQueue, "Hello, world!")

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

See Also PutQueueByte, PutQueue, OpenQueue

ZBasic System Library 251 ZBasic Microcontrollers

PutTime

Type Subroutine

Invocation PutTime(hour, minute, seconds)

Parameter Method Type Description
hour ByVal Byte The hour value (0-23).
minute ByVal Byte The minutes value (0-59).

seconds ByVal Single The seconds value (0.0 to 59.999)

Discussion

This routine combines the given values into the corresponding RTC tick count and stores the result in
Register.RTCTick. Each parameter that is outside its corresponding legal range is considered to be
zero.

Note that Register.RTCTick is initialized to zero on power-up or reset. This corresponds to 0:00:00.

See Also GetTime

ZBasic System Library 252 ZBasic Microcontrollers

PutTimeStamp

Type Subroutine

Invocation PutTimeStamp(year, month, day, hour, minute, seconds)

Parameter Method Type Description
year ByVal int16 The year value (1999-2177).
month ByVal Byte The month value (1-12).

day ByVal Byte The day value (1-31).
hour ByVal Byte The hour value (0-23).
minute ByVal Byte The minutes value (0-59).

seconds ByVal Single The seconds value.

Discussion

This routine combines the given date values into the corresponding Register.RTCDay value and

combines the given time values into the corresponding RTC tick count and stores the result in
Register.RTCTick. The effect is the same as if PutDate() and PutTime() had been called with

their respective parameters.

Note that Register.RTCDay and Register.RTCTick are initialized to zero on power-up or reset.

ZBasic System Library 253 ZBasic Microcontrollers

PWM

Type Subroutine

Invocation PWM(channel, dutyCycle)
 PWM(channel, dutyCycle, status)

Parameter Method Type Description
channel ByVal Byte The channel to use for PWM generation.

dutyCycle ByVal Single or integral The desired duty cycle.
status ByRef Boolean The variable to receive the status value.

Discussion

This subroutine begins or modifies the generation of a 16-bit PWM signal on the specified channel. The
channel must have been previously prepared for PWM generation by calling OpenPWM(). PWM
generation is performed using one of the CPU’s 16-bit timers, the number of which varies depending on
the ZBasic device. See the Resource Usage sub-section 16-Bit PWM Timers for details of the available
channels and the corresponding timer and output pin used.

The dutyCycle parameter specifies the desired duty cycle of the generated signal, expressing the
percentage of time that the PWM signal will be at the logic 1 state. If the supplied parameter is of type
Single, the value is in percent with a resolution of 0.01%. If the supplied parameter is integral, the units
are percent, i.e., the value 100 means 100%. Specifying a Single value that is negative or any value

greater than 100 will have an undefined effect.

The status parameter, if supplied, receives a value to indicate success or failure of the call.

If this subroutine is called without a preceding call to OpenPWM() to prepare the timer, the call will have

no effect. This subroutine may be called multiple times to effect changes to the PWM signal’s duty cycle
while the signal is being generated. The change in duty cycle is synchronized so that it takes effect at the
beginning of the next PWM pulse.

Example

Call OpenPWM(2, 50.0, zxFastPWM)' prepare for 50Hz Fast PWM using channel 2
Call PWM(2, 7.5) ' generate PWM with 7.5% duty cycle (1.5mS)
Call Delay(1.0)
Call PWM(2, 6.25) ' generate PWM with 6.25% duty cycle (1.25mS)

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also ClosePWM, OpenPWM

ZBasic System Library 254 ZBasic Microcontrollers

PWM8

Type Subroutine

Invocation PWM8(channel, dutyCycle)

 PWM8(channel, dutyCycle, status)

Parameter Method Type Description
channel ByVal Byte The channel to use for 8-bit PWM generation.

dutyCycle ByVal Single or integral The desired duty cycle.
status ByRef Boolean The variable to receive the status value.

Discussion

This subroutine begins or modifies the generation of an 8-bit PWM signal on the specified channel. The
channel must have been previously prepared for PWM generation by calling OpenPWM8(). Eight-bit
PWM generation is performed using one of the CPU’s 8-bit timers, the number of which varies depending
on the ZBasic device. See the Resource Usage sub-section 8-Bit PWM Timers for details of the available
channels and the corresponding timer and output pin used. Note that ZBasic devices based on ATxmega
processors don’t have any 8-bit timers so 8-bit PWM is not supported on those devices. The table below
indicates the output pin for each PWM supported channel.

The dutyCycle parameter specifies the desired duty cycle of the generated signal, expressing the

percentage of time that the PWM signal will be at the logic 1 state. If the supplied parameter is of type
Single, the value is in percent with a resolution of 0.01%. If the supplied parameter is integral, the units

are percent, i.e., the value 100 means 100%. Specifying a Single value that is negative or any value
greater than 100 will have an undefined effect.

The status parameter, if supplied, receives a value to indicate success or failure of the call.

If this subroutine is called without a preceding call to OpenPWM8() to prepare the timer, the call will have
no effect. This subroutine may be called multiple times to effect changes to the PWM signal’s duty cycle
while the signal is being generated. The change in duty cycle is synchronized so that it takes effect at the
beginning of the next PWM pulse.
Example

Call OpenPWM8(1, 50.0, zxFastPWM) ' prepare for 50Hz Fast PWM
Call PWM8(1, 50.0) ' generate PWM with 50% duty cycle

Compatibility

This subroutine is not available in BasicX compatibility mode nor is it available on ATxmega-based
ZBasic devices.

See Also ClosePWM8, OpenPWM8

ZBasic System Library 255 ZBasic Microcontrollers

RadToDeg

Type Function returning Single

Invocation RadToDeg(angle)

Parameter Method Type Description
angle ByVal Single The angle, in radians, to convert to degrees.

Discussion

The trigonometric functions in the System Library all use radian angle measure. Depending on the
programming task, it is sometimes more convenient to think of angles in terms of degrees. This function
and its inverst DegToRad() facilitate the conversion between the two systems.

Depending on optimization settings, if the parameter supplied to this function is known to be constant at
compile time, the compiler will convert the value at compile time. Otherwise, code is generated to
perform the conversion (multiplication by a conversion factor) at run time.

Example

Dim f as Single
Dim theta as Single ' the angle in degrees

theta = RadToDeg(Asin(f))

Compatibility

This function is not available in BasicX compatibility mode.

See Also DegToRad

ZBasic System Library 256 ZBasic Microcontrollers

RamPeek

Type Function returning Byte

Invocation RamPeek(address)

Parameter Method Type Description
address ByVal integral The RAM address from which to read.

Discussion

This function will return the content of the specified RAM address.

Example

Dim b as Byte
Dim i as Integer

b = RamPeek(MemAddress(i))
b = RamPeek(i.DataAddress)

See Also RamPeekDword, RamPeekWord

ZBasic System Library 257 ZBasic Microcontrollers

RamPeekDword

Type Function returning UnsignedLong

Invocation RamPeekDword(address)

Parameter Method Type Description
address ByVal integral The RAM address from which to read.

Discussion

This function will return the 4-byte value at the specified RAM address. The first byte will be the low order
byte and the last will be the high order byte.

Example

Dim ul as UnsignedLong

ul = RamPeekDWord(200)

Compatibility

This function is not available in BasicX compatibility mode.

See Also RamPeek, RamPeekWord

ZBasic System Library 258 ZBasic Microcontrollers

RamPeekWord

Type Function returning UnsignedInteger

Invocation RamPeekWord(address)

Parameter Method Type Description
address ByVal integral The RAM address from which to read.

Discussion

This function will return the 2-byte value at the specified RAM address. The first byte will be the low order
byte and the following will be the high order byte.

Example

Dim u as UnsignedInteger

u = RamPeekWord(200)

Compatibility

This function is not available in BasicX compatibility mode.

See Also RamPeek, RamPeekDword

ZBasic System Library 259 ZBasic Microcontrollers

RamPoke

Type Subroutine

Invocation RamPoke(value, address)

Parameter Method Type Description
value ByVal Byte The value to write to RAM.
address ByVal integral The RAM address to which to write.

Discussion

This routine will write the given value to the specified RAM address.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM
used by the system may cause your program to malfunction.

Examples

Dim b as Byte

Call RamPoke(&H55, MemAddress(b))
Call RamPoke(&H55, b.DataAddress)

See Also RamPokeDword, RamPokeWord

ZBasic System Library 260 ZBasic Microcontrollers

RamPokeDword

Type Subroutine

Invocation RamPokeDword(value, address)

Parameter Method Type Description
value ByVal any 32-bit The value to write to RAM.
address ByVal integral The RAM address to which to write.

Discussion

This routine will write the given value to the four bytes at the specified RAM address, least significant byte
first.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM
used by the system may cause your program to malfunction.

Example

Dim ul as UnsignedLong

Call RamPokeDword(&H117355aa, MemAddress(ul))
Call RamPokeDword(&H117355aa, ul.DataAddress)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also RamPoke, RamPokeWord

ZBasic System Library 261 ZBasic Microcontrollers

RamPokeWord

Type Subroutine

Invocation RamPokeWord(value, address)

Parameter Method Type Description
value ByVal int16 The value to write to RAM.
address ByVal integral The RAM address to which to write.

Discussion

This routine will write the given value to the two bytes at the specified RAM address, least significant byte
first.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM
used by the system may cause your program to malfunction.

Example

Dim u as UnsignedInteger

Call RamPokeWord(&H55aa, MemAddress(u))

Compatibility

This routine is not available in BasicX compatibility mode.

See Also RamPoke, RamPokeDword

ZBasic System Library 262 ZBasic Microcontrollers

Randomize

Type Subroutine

Invocation Randomize()

Discussion

This routine seeds the random number generator with the value of Register.RTCTick. This is can be
used to introduce some randomness into the sequence of values returned by Rnd() especially if the time
that Randomize() gets called has some uncertainty due to external events, e.g. the time that a user takes
to press a key.

See Also Rnd

ZBasic System Library 263 ZBasic Microcontrollers

RCTime (subroutine form)

Type Subroutine

Invocation RCTime(pin, level, interval)

Parameter Method Type Description
pin ByVal Byte The pin to use.
level ByVal Byte The expected initial logic level of the pin.

interval ByRef Single The variable in which to return the charge/discharge interval.

Discussion

This routine measures how long the specified pin stays at the given logic level after it is made a tri-state
input. The return value is expressed in seconds with a default resolution as shown in the table below this
can be changed using Register.TimerSpeed2. If the maximum time elapses (32,767 units times the
resolution) and the pin has not changed logic levels, the return value will be zero. If the pin is not at the
specified level when called, the routine returns immediately with a value of approximately one unit of
resolution. The pin will be left in the input tri-state mode.

RCTime Resolution

Target I/O Scaling Resolution
ZX devices running at 14.7456MHz True

False
1.085 µ S
0.542 µ S

all other targets n/a 1/F_TS2

This function can be used with an external resistor-capacitor circuit to measure the value of one element
when the other one is known. The charge/discharge time depends on the values of R and C as well as
the initial and final voltages. Before calling this routine, you should make the specified pin an output and
set it to the level specified.

Resource Usage

This routine uses the I/O Timer. If the timer is already in use when this routine is called, it will return
immediately with a zero value. The same is true if the specified pin is invalid.

Task switching is suspended and interrupts are disabled while the charge/discharge time is being
measured. However, RTC ticks are accumulated during the process and the RTC is updated when the
process has completed so that the RTC does not lose time.

Example

See the function form of this routine for more information.

Compatibility

In BasicX, the ability to change the resolution using Register.TimerSpeed2 is not supported.

The BasicX documentation indicates that the maximum value that can be returned is about 71ms. In this
implementation, the maximum value that can be returned is about 32,767 units of resolution.

The BasicX implementation will miss RTC ticks if the charge/discharge time is too long.

ZBasic System Library 264 ZBasic Microcontrollers

RCTime (function form)

Type Function returning Integer

Invocation RCTime(pin, level)

Parameter Method Type Description
pin ByVal Byte The pin to use.
level ByVal Byte The expected initial logic level of the pin.

Discussion

This function measures how long the specified pin stays at the given logic level after it is made a tri-state
input. The return value has units as shown in the table below by default but this can be changed using
Register.TimerSpeed2. If the maximum time elapses (32,767 units) and the pin has not changed
logic levels, the return value will be zero. If the pin is not at the specified level when called, the routine
returns immediately with a value of 1. The pin will be left in the input tri-state mode.

RCTime Units

Target I/O Scaling Resolution

ZX devices running at 14.7456MHz True
False

1.085 µ S
0.542 µ S

all other targets n/a 1/F_TS2

As an example, this function can be used with an external resistor-capacitor circuit to measure the value
of one element when the other one is known. The charge/discharge time depends on the values of R and
C as well as the initial and final voltages. Before calling this routine, you should make the specified pin an
output and set it to the level specified.

Example

Const pin as Byte = 12

Call PutPin(pin, 1) ' make the pin an output high to start charging
Call Delay(1.4e-4) ' delay a bit to allow nearly full charging
i = RCTime(pin, 1) ' measure the time to reach logic zero level

Resource Usage

This routine uses the I/O Timer. If the timer is already in use when this routine is called, it will return
immediately with a zero value. The same is true if the specified pin is invalid.

Task switching is suspended and interrupts are disabled while the charge/discharge time is being
measured. However, RTC ticks are accumulated during the process and the RTC is updated when the
process has completed so that the RTC does not lose time.

Compatibility

In BasicX, the ability to change the resolution using Register.TimerSpeed2 is not supported.

The BasicX implementation will miss RTC ticks if the charge/discharge time is too long.

ZBasic System Library 265 ZBasic Microcontrollers

Reset1Wire

Type Function returning Byte

Invocation Reset1Wire(pin)

Parameter Method Type Description
pin ByVal Byte The pin to be used for 1-Wire I/O.

Discussion

This function generates a reset signal on the given pin using the 1-Wire protocol. The return value is the
“presence” bit sent by the attached 1-Wire device(s), if any. It will be zero if a 1-Wire device responded, 1
otherwise.

To perform a 1-Wire operation, this function along with related 1-Wire routines must be used in the proper
sequence. See the specifications of your 1-Wire device for more information.

Resource Usage

This routine uses the I/O Timer and disables interrupts for approximately 1mS.

Example

Dim b as Byte

b = Reset1Wire(12)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Get1Wire, Get1WireByte, Get1WireData,

Put1Wire, Put1WireByte, Put1WireData

ZBasic System Library 266 ZBasic Microcontrollers

ResetProcessor

Type Subroutine

Invocation ResetProcessor()

Discussion

Calling this routine will cause a WatchDog reset of the processor within approximately 40ms. When the
processor begins running again, the value of Register.ResetFlags will indicate that a WatchDog
reset has occurred. If you need to be able to distinguish between an actual WatchDog reset and a call to
ResetProcessor() it is recommended that you define a persistent variable and set its value to indicate
the source of the reset.

Compatibility

BasicX does not support Register.ResetFlags.

ZBasic System Library 267 ZBasic Microcontrollers

ResetX10

Type Subroutine

Invocation ResetX10(chan, mask)

Parameter Method Type Description
chan ByVal Byte The X-10 communication channel of interest.
mask ByVal Byte A mask value indicating which state flags to clear.

Discussion

Calling this routine will clear some of the flags that are returned by the StatusX10() function. The mask
parameter should contain a value with a 1 in the bit positions corresponding to the state flags that you
want to be cleared. Note that only a subset of the flags can be reset; asserted bits in the other bit
positions are ignored. See the description of StatusX10() for more information.

Compatibility

This subroutine is supported only for native mode devices and is not available in BasicX compatibility
mode.

See Also StatusX10

ZBasic System Library 268 ZBasic Microcontrollers

ResumeTask

Type Subroutine

Invocation ResumeTask(taskStack)

ResumeTask()

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This routine attempts to change the status of a task to a ready-to-run state. If no task stack is explicitly
given, the task stack for the Main() routine is assumed. The table below shows the effect for various

task states (as returned by StatusTask()).

Effect of Resuming a Task in Various States

Status State Effect
0 Ready to run. None, the task is already ready to run.

1 Sleeping. The task is awakened.
2 Awaiting InputCapture(). The task resumes as if the InputCapture() had completed.

3 Awaiting interrupt 0. The task resumes as if the interrupt had occurred.

4 Awaiting interrupt 1. The task resumes as if the interrupt had occurred.
5 Awaiting interrupt 2. The task resumes as if the interrupt had occurred.
6 Awaiting interval expiration. The task resumes as if the interval had expired.

7 Awaiting analog compare. The task resumes as if the comparison interrupt had occurred.
8 Awaiting pin change event 0. The task resumes as if the pin change had occurred.
9 Awaiting pin change event 1. The task resumes as if the pin change had occurred.

10 Awaiting pin change event 2. The task resumes as if the pin change had occurred.
11 Awaiting pin change event 3. The task resumes as if the pin change had occurred.
12 Awaiting OutputCapture(). The task resumes as if the OutputCapture() had completed.

13 Awaiting interrupt 3. The task resumes as if the interrupt had occurred.
14 Awaiting interrupt 4. The task resumes as if the interrupt had occurred.

15 Awaiting interrupt 5. The task resumes as if the interrupt had occurred.
16 Awaiting interrupt 6. The task resumes as if the interrupt had occurred.
17 Awaiting interrupt 7. The task resumes as if the interrupt had occurred.

18 Awaiting pin change event A0. The task resumes as if the pin change event had occurred.
19 Awaiting pin change event A1. The task resumes as if the pin change event had occurred.
20 Awaiting pin change event B0. The task resumes as if the pin change event had occurred.

21 Awaiting pin change event B1. The task resumes as if the pin change event had occurred.
22 Awaiting pin change event C0. The task resumes as if the pin change event had occurred.
23 Awaiting pin change event C1. The task resumes as if the pin change event had occurred.

24 Awaiting pin change event D0. The task resumes as if the pin change event had occurred.
25 Awaiting pin change event D1. The task resumes as if the pin change event had occurred.
26 Awaiting pin change event E0. The task resumes as if the pin change event had occurred.

27 Awaiting pin change event E1. The task resumes as if the pin change event had occurred.
28 Awaiting pin change event F0. The task resumes as if the pin change event had occurred.
29 Awaiting pin change event F1. The task resumes as if the pin change event had occurred.

30 Awaiting pin change event H0. The task resumes as if the pin change event had occurred.
31 Awaiting pin change event H1. The task resumes as if the pin change event had occurred.
32 Awaiting pin change event J0. The task resumes as if the pin change event had occurred.

33 Awaiting pin change event J1. The task resumes as if the pin change event had occurred.
34 Awaiting pin change event K0. The task resumes as if the pin change event had occurred.
35 Awaiting pin change event K1. The task resumes as if the pin change event had occurred.

36 Awaiting pin change event Q0. The task resumes as if the pin change event had occurred.

ZBasic System Library 269 ZBasic Microcontrollers

37 Awaiting pin change event Q1. The task resumes as if the pin change event had occurred.
38 Awaiting analog comp. A0. The task resumes as if the analog event had occurred.

39 Awaiting analog comp. A1. The task resumes as if the analog event had occurred.
40 Awaiting analog comp. AW. The task resumes as if the analog event had occurred.
41 Awaiting analog comp. B0. The task resumes as if the analog event had occurred.

42 Awaiting analog comp. B1. The task resumes as if the analog event had occurred.
43 Awaiting analog comp. BW. The task resumes as if the analog event had occurred.
254 Task exiting. None, exiting tasks can’t be resumed.

255 Terminated. None, halted tasks can’t be resumed.

If this routine is invoked using an array other than one that is or was being used for a task stack the result
is undefined. See the section on Task Management in the ZBasic Reference Manual for additional
information regarding task management.

Compatibility

This routine is not available in BasicX compatibility.

See Also ExitTask, RunTask, StatusTask, WaitForInterrupt

ZBasic System Library 270 ZBasic Microcontrollers

Right

Type Function returning String

Invocation Right(str, length)

Parameter Method Type Description
str ByVal String The string from which to extract characters.
length ByVal int8/16 The number of characters to extract from the string.

Discussion

This function returns a string consisting of the rightmost characters of the string passed as the first
parameter. The maximum number of characters in the returned string is the smaller of 1) the number of
characters in the passed string and 2) the value of the second parameter. Internally, the length is
interpereted as a 16-bit signed value and negative values are treated as zero.

This function produces the same result as Mid(str, Len(str) – length + 1 , length)
assuming that the passed string is at least length characters long.

Example

Dim s as String, s2 as String

s = "Hello, world!"
s2 = Right(s, 6) ' the result will be "world!"

See Also Left, Mid, Trim

ZBasic System Library 271 ZBasic Microcontrollers

Rnd

Type Function returning Single

Invocation Rnd()

Discussion

This function will return a pseudo-random value in the range of 0.0 to 1.0. The first time that Rnd() is
called after the processor starts up the pseudo-random number generator is initialized with a seed value.
The sequence of values returned will be repeatable when starting from the same seed.

You can alter the sequence of returned values in two ways. Firstly, you can set the value of
Register.SeedPRNG. The next call to Rnd() will initialize the pseudo-random number generator with

that seed value before returning the first random value. The second way to modify the sequence is to call
the Randomize() subroutine. Doing so will initialize the pseudo-random number generator with the

current value of Register.RTCTick. This provides a way to introduce some non-repeatability into the
sequence of values returned by Rnd(). It is especially effective if the time at which Randomize() is

called is controlled by some external, unpredictable event like a user pressing a key.

Example

Dim i as Integer

' print 10 random values
For i = 1 to 10
 Debug.Print CStr(Rnd())
Next

Compatibility

BasicX does not support Register.seedPRNG. Instead, it has a system global variable named

seedPRNG. This built-in variable is also supported in ZBasic for compatibility.

See Also Randomize

ZBasic System Library 272 ZBasic Microcontrollers

RunTask

Type Subroutine

Invocation RunTask(taskStack)

RunTask()

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

Calling this routine alters the normal task rotation regimen by immediately attempting to run the specified
task or, if no task stack is explicitly given, the Main() task. If the specified task cannot run (because it is

sleeping, waiting for InputCapture, etc.) the list of tasks is examined in order beginning with the task
immediately following the specified task and the first ready-to-run task that is found will be run.

Because this routine interferes with the normal task rotation it must be used carefully to avoid starving out
one or more tasks. If this routine is invoked using an array other than one that is or was being used for a
task stack the result is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information
regarding task management.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also ExitTask, ResumeTask, StatusTask

ZBasic System Library 273 ZBasic Microcontrollers

SearchQueue

Type Function returning UnsignedInteger

Invocation SearchQueue(queue, val)

 SearchQueue(queue, dataLen, data)

Parameter Method Type Description
queue ByRef array of Byte The queue of interest.

val ByVal Byte The byte value for which to search.
dataLen ByVal Integral The length of the byte sequence for which to search.
data ByRef Any type The byte sequence for which to search.

Discussion

This function searches the data in a queue looking for the specified byte value (first form) or a sequence
of bytes (second form). If the queue is empty or does not contain the byte value/byte sequence, zero is
returned. Otherwise, the return value indicates the number of bytes in the queue up to and including the
sought byte value/byte sequence.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Examples

Dim q(1 to 40) as Byte
Dim data(1 to 4) as Byte
Dim dataLen as UnsignedInteger

' search for a byte value (linefeed)
dataLen = SearchQueue(q, &H0a)

' search for a byte sequence (carriage return, linefeed)
data(1) = &H0d
data(2) = &H0a
dataLen = SearchQueue(q, 2, data)

Compatibility

This function is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-24).
Moreover, it is not available in BasicX compatibility mode.

See Also GetQueue, GetQueueStr, OpenQueue

ZBasic System Library 274 ZBasic Microcontrollers

Semaphore

Type Function returning Boolean

Invocation Semaphore(var)

Parameter Method Type Description
var ByRef Boolean A variable used as a semaphore.

Discussion

This function will test the provided variable and if it is already True, the function will return False.
Otherwise, if the semaphore variable is False, the call will set it to True and return True. This is referred
to in computer science as an “atomic test and set” operation.

A semaphore is a signaling and synchronization mechanism used in multi-tasking systems. The idea is
that if two or more tasks each want to use a particular resource they first request ownership of a
semaphore. The request mechanism ensures that even if multiple requests occur near the same time,
one and only one request will be satisfied. Therefore, the task that is granted the semaphore will have
exclusive access to the resource until it has completed its objective. Subsequently, other tasks can
request the semaphore and, if they receive it, they can perform their objective. Thus you can see that a
particular semaphore can control access to some set of resources that you define. Your system may
have multiple semaphores, each controlling access to a set of resources. Note, however, that i f multiple
semaphores are required to complete an operation the possibility of deadlock exists. This problem will
occur if one task obtains one semaphore, another task obtains another semaphore and then both tasks
wait for the other semaphore to be available.

In order for this mechanism to be effective, the same semaphore variable must be used by each task for
gaining access to a particular set of resources. For this reason, the semaphore variable passed to
Semaphore() will almost always be a global variable but it may be public or private as suits your

application. The semaphore variable must be initially False, otherwise no Semaphore() request on that

semaphore can ever succeed. Also, after a task has successfully gotten the semaphore and has finished
using the related resources, the semaphore must be set False again so that a future Semaphore() call
will succeed.

Example

Dim serSem as Boolean

serSem = False

' wait until we get the semaphore
Do While (Not Semaphore(serSem))
 Call Delay(0.5)
Loop

' now we can use the controlled resources
[add code here]

' finished with the resources, release the semaphore
serSem = False

ZBasic System Library 275 ZBasic Microcontrollers

SerialGetByte

Type Function returning Byte

Invocation SerialGetByte(inAddr, mask, loopCnt, flags, delayCnt)
 SerialGetByte(inAddr, mask, loopCnt, flags)
 SerialGetByte(inAddr, mask, loopCnt)

Parameter Method Type Description

inAddr ByVal integral The address of the input register of a port.
bitMask ByVal Byte A bit mask for the input pin of the port.
loopCnt ByVal integral The loop count to effect the baud rate.

flags ByVal Byte Flag bits controlling the reception process.
delayCnt ByVal integral The delay count to effect the start of sampling.

Discussion

This function reads a byte, transmitted in 8-N-1 serial form (8 data bits, no parity, 1 stop bit) via a pin. It is
intended to be called from a routine (e.g. an ISR) that has detected the presence of the start bit.

The pin, assumed to be configured as an input, is specified by giving the address of the input register of
the port containing the pin (inAddr) and a bit mask containing a single 1 bit corresponding to the bit
position in the port (bitMask). The loopCnt parameter controls the timing of the bit window sampling,

specifying a number of 4-cycle loops to delay for each iteration. Note that, in addition to the delay loop,
there is an 11-cycle loop overhead that must be taken into account. Consequently, the total number of
cycles between each sample is 11 + loopCnt * 4.

The flags parameter allows control of some aspects of the reception process. The table below

describes the meaning of the fields. If the flags parameter is omitted, zero is assumed.

Flag Parameter Values

Function Hex Value Bit Mask
Non-inverted Logic &H00 xxxx xxx0

Inverted Logic &H01 xxxx xxx1

The remaining bits are currently undefined but may be used in the future. For compatibility with new
functionality that may be added in the future, the unused bits should always be zero.

If the delayCnt parameter is specified, it gives the number of 4-cycle loops to execute before beginning
sampling; this allows for adjusting the beginning of the sampling cycle which should optimally begin in the
approximate middle of the start bit. The actual delay from entry to the first sample is approximately 16 +
delayCnt * 4. For diagnostic purposes, you may configure a pin to be an output and then specify that pin
as the read strobe pin using the compiler directive Option SerialReadStrobe. Immediately before taking
the first sample (the start bit) the pin's state will be toggled. Observing this signal transition and its
position relative to the center of the start bit can provide information to adjust the delayCnt parameter. It
should be noted that the toggling operation adds 3 more cycles before the first sample.

Compatibility

This function is not available in BasicX compatibility mode nor on VM-based devices.

See Also SerialIn, SerialOut

ZBasic System Library 276 ZBasic Microcontrollers

SerialIn

Type Function returning Byte

Invocation SerialIn(pin, baudRate)

Parameter Method Type Description
pin ByVal Byte The pin from which to read the data.
baudRate ByVal integral The baud rate for the serial input.

Discussion

This function reads a byte, transmitted in 8-N-1 serial form (8 data bits, no parity, 1 stop bit), via a pin.
The initial state of the pin (expected to be configured as an input) is used to infer logic mode (logic 1
means non-inverted, logic zero means inverted). The function waits for a start bit and then reads eight
data bits, sampling the input at the approximate midpoint of the bit window given the specified baud rate.
If no start bit is ever detected the function will never return.

While waiting for the start bit, interrupts are not disabled but when the start bit is detected interrupts are
disabled for the remainder of the character time, typically about 9.5 bit times. Note that the logic level of
the stop bit is not verified. Because relatively precise timing is required for reliable start bit detection and
synchronization, this function is best used when few interrupts (preferably none) will occur. In some
cases, it may be best to disable interrupts before invoking the function (using, for example, an Atomic
block). This strategy, however, has its own shortcomings particularly because it is not known beforehand
how long it will be before the start bit arrives.

The theoretical maximum baud rate varies by processor frequency and is expressed as (F_CPU / 19)
while the theoretical minimum baud rate is (F_CPU / 262159). Note, particularly, that if the RTC is
enabled and the character time (i.e. 10 / baudRate) is greater than approximately 1.5 times the RTC
interrupt interval, the RTC may lose time. At 14.7MHz with a 1024Hz RTC interrupt, the minimum
standard baud rate that avoids missing RTC interrupts would be 9600.

This function is useful primarily on devices that have no hardware UARTs and/or in cases where you do
not want to dedicate a timer for the software UART channels, leaving it free for other purposes.

Example

Const pin as Byte = A.0
Dim c as Byte

' configure the pin as an input
Call PutPin(pin, zxInputTriState)

' read a character at 38.4K baud
c = SerialIn(pin, 38400)

Compatibility

This function is not available in BasicX compatibility mode nor on VM-based devices.

See Also SerialGetByte, SerialOut

ZBasic System Library 277 ZBasic Microcontrollers

SerialNumber

Type Subroutine

Invocation SerialNumber(serNum)

Parameter Method Type Description
serNum ByRef array of Byte The array to which the serial number will be written.

Discussion

A call to this routine will copy six bytes of serial number information to the provided array. At present,
only three of the bytes are defined, representing the version number of the system firmware (for VM mode
devices) or the ZBasic library code (for native mode devices). The first byte is the major version number,
the second is the minor version number and the third byte is the variant number. The remaining bytes are
undefined.

Caution

If the array provided is less than 6 bytes long, subsequent memory will be overwritten, possibly with
detrimental results.

Compatibility

The serial number of this implementation may be different than that of BasicX.

ZBasic System Library 278 ZBasic Microcontrollers

SerialOut

Type Subroutine

Invocation SerialOut(data, pin, baudRate)

Parameter Method Type Description
data ByVal Byte or String The data to be output.
pin ByVal Byte The pin on which to output the data.

baudRate ByVal integral The baud rate for the serial output.

Discussion

This subroutine outputs the data byte, or the characters of the String, at the specified baud rate on the
specified pin. The pin must have been previously configured to be an output in either the high state (for
non-inverted data) or the low state (for inverted data). The initial state of the pin determines whether the
data will be sent in non-inverted or inverted mode.

The characters transmitted in 8-N-1 format, i.e. 8 data bits, no parity, 1 stop bit. The transmission of each
byte is performed with interrupts disabled, comprising an interval of approximately (10 / baudRate)
seconds, also known as the “character time”. Consequently, higher baud rates are preferable to lower
baud rates. The theoretical maximum baud rate varies by processor frequency and is expressed as
(F_CPU / 25) while the theoretical minimum baud rate is (F_CPU / 262165). Note, particularly, that if the
RTC is enabled and the character time is greater than approximately 1.5 times the RTC interrupt interval,
the RTC may lose time. At 14.7MHz with a 1024Hz RTC interrupt, the minimum standard baud rate that
avoids missing RTC interrupts would be 9600.

The serial output mechanism is the same as that used when Option Console is specified with a pin
designator (which pin is available via the compile-time constant Option.ConsolePin). See the

description of Option Console in the ZBasic Language Reference Manual for more Information.

This subroutine is useful primarily on devices that have no hardware UARTs and/or in cases where you
do not want to dedicate a timer for the software UART channels, leaving it free for other purposes.

Example

Const pin as Byte = A.0
Const str as String = "Hello, world!" & Chr(&H0d) & Chr(&H0a)

' configure the pin as an output, send a string
Call PutPin(pin, zxOutputHigh) ' non-inverted idle state
Call SerialOut(str, pin, 38400) ' send string chars at 38.4K baud

Compatibility

This subroutine is not available in BasicX compatibility mode or on VM-based devices.

See Also SerialGetByte, SerialIn

ZBasic System Library 279 ZBasic Microcontrollers

SetBits

Type Subroutine

Invocation SetBits(target, mask, value)

Parameter Method Type Description
target ByRef Byte The byte to be modified.
mask ByVal Byte The mask indicating which bits to modify.

value ByVal Byte The value of the bits to store.

Discussion

This subroutine allows you to set the value of one or more bits in a byte while leaving others unchanged.
Effectively, the result is the same as using the statement below.

target = (target And Not mask) Or (value And mask)

The mask parameter governs which bits will get updated. For each bit of the mask parameter that is a 1,
the corresponding bit of the target will be set to the state of the corresponding bit of the value

parameter. Bits of the target that correspond to zero bits of the mask parameter will remain
unchanged.

The advantage to using the SetBits() subroutine instead of the equivalent statement is twofold. Firstly,
it is more efficient, resulting in less code and faster execution time. Secondly, and perhaps more
importantly, it performs the action as an atomic operation, i.e. one that is guaranteed, once begun, to
complete without an intervening task switch. This characteristic makes SetBits() useful for modifying
I/O ports and other Byte values in a multi-tasking environment.

Example

' set the middle 4 bits of Port C to the binary value &B0110
Call SetBits(Register.PortC, &H3C, &H18)

Compatibility

This routine is not available in BasicX compatibility mode. Also, it is only supported by ZX firmware later
than v1.0.0.

See Also ToggleBits

ZBasic System Library 280 ZBasic Microcontrollers

SetInterval

Type Subroutine

Invocation SetInterval(interval)

Parameter Method Type Description
interval ByVal Single or int16 The interval counter period, in RTC ticks (if an integral

value is specified) or seconds (if a Single value is given).

Discussion

This routine sets the period of the built-in interval counter. On each RTC tick, the interval counter will be
decremented. When it gets to zero, it is reloaded with the specified value and it begins to count down
again. Furthermore, if a task is awaiting the interval expiration, it is immediately scheduled for execution
(unless a higher priority task requires service). If no task is awaiting the interval expiration, the fact that
the interval counter expired is recorded. Subsequently, a task may request a wait on the interval and,
depending on the nature of the request, the task may be immediately triggered or it may await the next
interval expiration.

Internally the interval period is stored as a 16-bit unsigned integer value. This limits the interval period to
a maximum of slightly less than 128 seconds. Of course, longer interval periods may be effectively
implemented by maintaining a counter and taking action after the expiration of a number interval periods.

Example

Call SetInterval(200) 'about 391 milliseconds
Call SetInterval(10.0) 'about 10 seconds

Compatibility

This routine is not available in BasicX compatibility mode.

See Also WaitForInterval

ZBasic System Library 281 ZBasic Microcontrollers

SetJmp

Type Function returning Integer

Invocation SetJmp(jmpbuf)

Parameter Method Type Description
jmpbuf ByRef array of Byte A buffer to hold the return context, see description below.

Discussion

This function, in conjunction with LongJmp(), provides a way to circumvent the normal call-return
structure and return directly to a distant caller. It is the equivalent of a non-local Goto function and can be
used, among other things, to handle exceptions in your programs. The parameter specifies a Byte array

that will be initialized with context information to allow a direct return from deeply nested calls. The array
must be a minimum size (either 6 bytes or 24 bytes for VM mode and native mode, respectively) to hold
the context information for unwinding the call stack. You can use the built-in constant
System.JumpBufSize to ensure that it is the proper size.

On the initial call to SetJmp() the return value will always be zero. When control is returned via a call to
LongJmp(), the return value will be the value supplied as the second parameter to the LongJmp() call.

Generally, you should choose this value to indicate the nature of the exception condition and in most
cases it should be non-zero.

The jump buffer needs to be accessible to the LongJmp() caller. Often, this is realized by making it a
global or module-level variable. If you want it to be a local variable, you’ll have to pass the buffer as a
parameter down the call chain. See the section on Exception Handling in the ZBasic Reference Manual
for more details.

Caution

If the provided array is less than minimum required size, adjacent memory locations will be modified
usually with undesirable results. Your application should not directly modify the contents of the array.
Doing so may cause unpredictable behavior.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also LongJmp

ZBasic System Library 282 ZBasic Microcontrollers

SetQueueX10

Type Subroutine

Invocation SetQueueX10(chan, forTransmit, phase, queue)

Parameter Method Type Description
chan ByVal Byte The X-10 communication channel of interest.
forTransmit ByVal Boolean True for specifying a transmit queue, false for receive.

phase ByVal Byte The phase to be associated with the queue.
queue ByRef array of Byte The queue of to assign.

Discussion

This subroutine assigns a queue for X-10 operation. In single phase mode, the queues are usually
assigned with the call to OpenX10(). In three phase mode, the queues for phase 1 are assigned with the
call to OpenX10() and the additional queues needed, if any, are assigned using subsequent calls to this
subroutine. If the forTransmit parameter is True, the queue will be used for the transmit operation of
the specified phase (1, 2 or 3). Otherwise, the queue will be used for the receive operation of the
specified phase.

Note that in three phase mode, i f a transmit queue is not specified for phase 2, any data sent on phase 1
will also be sent on phase 2. The same is true for phase 3. In contrast, if no receive queue is specified
for phase 2, any data received on phase 2 in three phase mode will be ignored; the same is true for
phase 3.

Compatibility

This function is only available on native mode devices it is not available in BasicX compatibility mode.

See Also CloseX10, DefineX10, OpenX10, ResetX10

ZBasic System Library 283 ZBasic Microcontrollers

ShiftIn

Type Function returning Byte

Invocation ShiftIn(dataPin, clkPin, bitCnt)

Parameter Method Type Description
dataPin ByVal Byte The pin used to input data.
clkPin ByVal Byte The pin used to output a clocking signal.

bitCnt ByVal Byte The number of bits to read in (1 to 8).

Discussion

This function can be used to input data from a synchronous serial device like a shift register. The pin
specified for input will be made an input but the pin specified for the clock signal must already be an
output and be at the desired initial logic level.

For each of the number of bits specified, then the clock line will be pulsed by changing its logic level
twice. The data line will be sampled approximately 2 CPU clock cycles after the leading edge of the clock
pulse. With a 14.7MHz CPU clock, this equates to about 135nS after the leading edge.

The returned value consists of the data bits read with the bit first read in the most significant bit position.
This is referred to as MSB first. If fewer than 8 bits are read, the low order bits will be zero.

Resource Usage

This subroutine uses the I/O Timer. If the I/O Timer is already in use, the function returns immediately
and the return value is zero. No other use of this resource should be attempted while the shifting is in
progress. Interrupts are disabled during the shifting process. However, RTC ticks are accumulated
during the shifting process so the RTC should not lose time.

Compatibility

For compatibility with I2C/TWI devices the clock rate is approximately 200kHz with
Register.TimerSpeed1 at its default value of 1. If the value of Register.TimerSpeed1 is changed,
the bit rate will be slower.

See Also ShiftInEx, ShiftOut, ShiftOutEx

ZBasic System Library 284 ZBasic Microcontrollers

ShiftInEx

Type Function returning UnsignedInteger

Invocation ShiftInEx(dataPin, clkPin, bitCnt, flags)

 ShiftInEx(dataPin, clkPin, bitCnt, flags, bitTime)

Parameter Method Type Description
dataPin ByVal Byte The pin used to input data.

clkPin ByVal Byte The pin used to output a clocking signal.
bitCnt ByVal Byte The number of bits to read in (1 to 16).
flags ByVal Byte Flag bits controlling the operation.

bitTime ByVal int16 The optional duration of each bit in ticks (see description).

Discussion

This function can be used to input data from a synchronous serial device like a shift register. The pin
specified for input will be made an input but the pin specified for the clock signal must already be an
output and be at the desired initial logic level. The flags parameter controls how the shifting process is
performed as described in the table below.

Control Flag Definitions

Function Hex Value Bit Mask

MSB first &H00 xx xx xx x0

LSB first &H01 xx xx xx x1

Sample the input after the active clock edge &H00 xx xx xx 0x

Sample the input before the active clock edge &H02 xx xx xx 1x

Fastest possible bit time &H00 xx xx x0 xx

Use the provided bitTime parameter &H04 xx xx x1 xx

The active clock edge is the leading clock edge &H00 xx xx 0x xx

The active clock edge is the trailing clock edge &H08 xx xx 1x xx

The remaining bits are currently undefined but may be employed in the future.

For each of the number of bits specified, either the state of the data pin will be read and saved first or the
clock line will be changed to the opposite state first depending on bit 1 of the flags parameter. Finally,
the clock line will be returned to the original state thus completing one bit cycle.

If the flags parameter so specifies, the bitTime parameter value will be used to control the bit rate of

the shifting process. The units of the bitTime parameter are, by default, 1 CPU cycle (67.8ns at
14.7MHz). However, Register.TimerSpeed1 may be changed to adjust the controlling clock speed.
If the bitTime parameter is not provided or if the value given is zero, the shifting will occur at the

maximum rate.

Due to processing overhead the minimum bit time in the controlled speed mode is approximately 60 CPU
cycles (4µ S at 14.7MHz). Attempting faster bit times in the controlled speed mode will produce undefined
results. Without speed control, the bit time is approximately 37 CPU cycles (2.5µ S at 14.7MHz). Note
that the duty cycle of the clock signal will be closer to 50% in the controlled speed mode. Without speed
control, the active clock phase can be as little as 20% of the period.

The returned value consists of the data bits read arranged in MSB or LSB order as specified by the
flags parameter. If MSB order is specified, the first bit read will be in the most significant bit position of
the result. If LSB order is specified, the first bit read will be in the least significant bit position. If fewer
than 16 bits are read, the remaining bits will be zero.

ZBasic System Library 285 ZBasic Microcontrollers

For reference purposes, the ShiftIn() function is roughly equivalent to ShiftInEx(dpin, cpin,

bitCnt, &H04, 74). However, the value read will be in the high order 8 bits of the returned value.

Resource Usage

This subroutine uses the I/O Timer if the flags parameter has bit 2 on. If the I/O Timer is already in use,

the function returns immediately and the return value is zero. No other use of this resource should be
attempted while the shifting is in progress. Interrupts are disabled during the shifting process. However,
RTC ticks are accumulated during the shifting process so the RTC should not lose time.

Timing

Bit 3 of the flags parameter specifies the active edge of the clock pulse, i.e. whether the data line will be

sampled relative to the leading edge or the trailing edge of the clock pulse. Bit 1 of the flags parameter
controls whether the sampling will be done before or after the active edge. When bit 1 of the flags

parameter is zero, the data line will be sampled approximately 2 CPU clock cycles after the active edge of
the clock pulse. When bit 1 of the flags parameter is one, the data line will be sampled approximately 5

CPU clock cycles before the active edge of the clock pulse. With a 14.7MHz CPU clock, these intervals
are approximately 135nS and 340nS, respectively.

Compatibility

This function is not available in BasicX compatibility mode.

See Also ShiftIn, ShiftOut, ShiftOutEx

ZBasic System Library 286 ZBasic Microcontrollers

ShiftOut

Type Subroutine

Invocation ShiftOut(dataPin, clkPin, bitCnt, val)

Parameter Method Type Description
dataPin ByVal Byte The pin used to output data.
clkPin ByVal Byte The pin used to output a clocking signal.

bitCnt ByVal Byte The number of bits to shift out (1 to 8).
val ByVal Byte The value to shift out.

Discussion

This function can be used to output data to a synchronous serial device like a shift register. The pin
specified for output will be made an output but the pin specified for the clock signal must already be an
output and be at the desired initial logic level.

For each of the number of bits specified, the data pin will be set to the state of the corresponding bit in the
val parameter beginning with the most significant bit first. Then the clock line will be pulsed by changing

its logic level twice.

Data is shifted out MSB first. If a data width of fewer than 8 data bits is specified, the data must be
positioned in the most significant bits of the value and the state of the remaining low order bits in the
value is of no consequence.

Resource Usage

This subroutine uses the I/O Timer. If the I/O Timer is already in use, the subroutine returns immediately.
No other use of this resource should be attempted while the shifting is in progress. Interrupts are
disabled during the shifting process. However, RTC ticks are accumulated during the shifting process so
the RTC should not lose time.

Compatibility

For compatibility with I2C/TWI devices the clock rate is approximately 200kHz with
Register.TimerSpeed1 at its default value of 1. If the value of Register.TimerSpeed1 is changed,
the bit rate will be slower.

See Also ShiftIn, ShiftInEx, ShiftOutEx

ZBasic System Library 287 ZBasic Microcontrollers

ShiftOutEx

Type Subroutine

Invocation ShiftOutEx(dataPin, clkPin, bitCnt, val, flags)

 ShiftOutEx(dataPin, clkPin, bitCnt, val, flags, bitTime)

Parameter Method Type Description
dataPin ByVal Byte The pin used to output data.

clkPin ByVal Byte The pin used to output a clocking signal.
bitCnt ByVal Byte The number of bits to shift out (1 to 16).
val ByVal int8/16 The value to shift out.

flags ByVal Byte Flag bits controlling the operation.
bitTime ByVal int16 The optional duration of each bit in ticks (see description).

Discussion

This function can be used to output data to a synchronous serial device like a shift register. The pin
specified for output will be made an output but the pin specified for the clock signal must already be an
output and be at the desired initial logic level. The flags parameter controls how the shifting process is

performed as described in the table below.

Control Flag Definitions

Function Hex Value Bit Mask
MSB first &H00 xx xx xx x0

LSB first &H01 xx xx xx x1

Fastest possible bit time &H00 xx xx x0 xx

Use the provided bitTime parameter &H04 xx xx x1 xx

Normal data pin output &H00 xx xx 0x xx

Open drain data pin output &H08 xx xx 1x xx

The remaining bits are currently undefined but may be employed in the future. For compatibility, the
undefined bits should always be zero.

For each of the number of bits specified, the data pin will be set to the state of the corresponding bit in the
val parameter beginning with the either the most significant bit first or the least significant bit first
depending on bit 0 of the flags parameter. Then the clock line will be pulsed by changing its logic level

twice.

Note that i f a data width of fewer than 16 data bits is specified, the bits to be shifted out must be properly
aligned in the value provided. If MSB order is specified, the data bits must be positioned in the most
significant bits of the value provided. If LSB order is specified, the data bits must be positioned in the
least significant bits of the value provided.

If the flags parameter so specifies, the bitTime parameter value will be used to control the bit rate of

the shifting process. The units of the bitTime parameter are, by default, 1 CPU cycle (67.8ns at
14.7MHz). However, Register.TimerSpeed1 may be changed to adjust the controlling clock speed.

If the bitTime parameter is not provided or if the value given is zero, the shifting will occur at the
maximum rate.

Due to processing overhead the minimum bit time in the controlled speed mode is approximately 60 CPU
cycles (4µ S at 14.7MHz). Attempting faster bit times in the controlled speed mode will produce undefined
results. Without speed control, the bit time is approximately 32 CPU cycles (2.2µ S at 14.7MHz). Note
that the duty cycle of the clock signal will be closer to 50% in the controlled speed mode. Without speed
control, the active clock phase can be as little as 20% of the period.

ZBasic System Library 288 ZBasic Microcontrollers

Normally, the data pin will be driven high or low according to the data bits being shifted out. For
compatibility with certain data bus interfaces, the flags parameter bit 3 can be used to specify that the

data pin should be put in high impedance input mode when outputting a one bit and actively pulled to
ground for a zero bit. In this mode, an external pullup resistor will need to be used to obtain a voltage
level corresponding to a logic one.

For reference purposes, the ShiftOut() routine is roughly equivalent to ShiftOutEx(dpin, cpin,

bitCnt, Shl(CInt(val), 8), &H04, 74).

Resource Usage

This subroutine uses the I/O Timer if the flags parameter has bit 2 on. If the I/O Timer is already in use,
the subroutine returns immediately. No other use of this resource should be attempted while the shifting
is in progress. Interrupts are disabled during the shifting process. However, RTC ticks are accumulated
during the shifting process so the RTC should not lose time.

Compatibility

This function is not available in BasicX compatibility mode.

See Also ShiftIn, Shift InEx, ShiftOut

ZBasic System Library 289 ZBasic Microcontrollers

Shl

Type Function returning the same type as the first parameter.

Invocation Shl(val, shiftCnt)

Parameter Method Type Description
val ByVal integral The value to be shifted.
shiftCnt ByVal int8/16 The number of bit positions to shift (0-16).

Discussion

This function returns the value provided as the first parameter but shifted left the number of bit positions
specified by the second parameter. If the shiftCnt is zero, the value is returned unchanged. If the
shiftCnt is greater than or equal to the number of bits in the value provided, the return value will be

zero. For signed types, the sign of the result will be the same as that of the provided value.

The type of the return value will be the same as the type of the first parameter.

Example

Dim i as Integer, j as Integer

i = 23
j = Shl(i, 5) ' result will be 736

Compatibility

This function is not available in BasicX compatibility mode.

See Also Shr

ZBasic System Library 290 ZBasic Microcontrollers

Shr

Type Function returning the same type as the first parameter.

Invocation Shr(val, shiftCnt)

Parameter Method Type Description
val ByVal integral The value to be shifted.
shiftCnt ByVal int8/16 The number of bit positions to shift (0-16).

Discussion

This function returns the value provided as the first parameter but shifted right the number of bit positions
specified by the second parameter. If the shiftCnt is zero, the value is returned unchanged. If the
shiftCnt is greater than or equal to the number of bits in the value provided, the return value will be

zero. For signed types, the sign of the result will be the same as that of the provided value.

The type of the return value will be the same as the type of the first parameter.

Example

Dim i as Integer, j as Integer

i = 23
j = Shr(i, 2) ' result will be 5

Compatibility

This function is not available in BasicX compatibility mode.

See Also Shl

ZBasic System Library 291 ZBasic Microcontrollers

Signum

Type Function returning the same type as the first parameter.

Invocation Signum(val)

Parameter Method Type Description

val ByVal signed The value to be tested for positive, zero, negative.

Discussion

This function returns +1, 0 or –1 depending on whether the value provided is positive, zero or negative.
The type of the return value will be the same as the type of the parameter value.

Example

Dim i as Integer, j as Integer

i = -23
j = Signum(i) ' result will be -1

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 292 ZBasic Microcontrollers

Sin

Type Function returning Single

Invocation Sin(arg)

Parameter Method Type Description
arg ByVal Single The angle, in radians, of which the sine will be computed.

Discussion

The return value will be the sine of the supplied value, in the range –1.0 to 1.0.

Example

Const pi as Single = 3.14159
Dim val as Single

val = Sin(pi / 2.0) ' result is approximately 1.0

See Also Asin, DegToRad, RadToDeg

ZBasic System Library 293 ZBasic Microcontrollers

SizeOf

Type Function returning an integral value

Invocation SizeOf(var)

Parameter Method Type Description
var ByRef any type The variable whose size, in bytes, is desired.

Discussion

This function returns the number of bytes constituting the supplied variable.

The primary purpose of this function is to allow writing code that is more easily maintained. For example,
instead of hard coding the size value to pass to the OpenQueue() subroutine, you can use
SizeOf(queue) instead. When you change the size of the queue there will be no need to update the

OpenQueue() calls.

When used with arrays, you may give the array name without any index parameters and SizeOf() will

return the total number of bytes occupied by the array. Alternately, you may specify constant expressions
for all of the array dimensions and SizeOf() will return the number of bytes occupied by a single

element of the array. This function is not particularly useful with sub-byte types (Bit and Nibble).

The SizeOf() function also allows the argument to name one of the fundamental data types (except
String). In this case it returns the number of bytes comprising the type. For example,
Sizeof(Integer) returns the value 2.

Example

Dim cnt as Integer
Dim val as Single
Dim ia(1 to 20) as Integer

cnt = SizeOf(val) ' result is 4
cnt = SizeOf(ia) ' result is 40

Compatibility

This function is not available in BasicX compatibility mode.

See Also SizeOfU

ZBasic System Library 294 ZBasic Microcontrollers

SizeOfU

Type Function returning UnsignedInteger

Invocation SizeOfU(var)

Parameter Method Type Description
var ByRef any type The variable whose size, in bytes, is desired.

Discussion

Note: SizeofU() is deprecated, in new code you should use SizeOf() instead which returns an
integral value compatible with all integral types.

This function returns the number of bytes constituting the supplied variable.

The primary purpose of this function is to allow writing code that is more easily maintained. For example,
instead of hard coding the size value to pass to the OpenQueue() subroutine, you can use
SizeOfU(queue) instead. When you change the size of the queue there will be no need to update the

OpenQueue() calls.

When used with arrays, you may give the array name without any index parameters and SizeOfU() will
return the total number of bytes occupied by the array. Alternately, you may specify constant expressions
for all of the array dimensions and SizeOfU() will return the number of bytes occupied by a single

element of the array. This function is not particularly useful with sub-byte types (Bit and Nibble).

The SizeOfU() function also allows the argument to name one of the fundamental data types (except
String). In this case it returns the number of bytes comprising the type. For example,
SizeofU(Integer) returns the value 2.

Example

Dim cnt as UnsignedInteger
Dim val as Single
Dim ia(1 to 20) as Integer

cnt = SizeOfU(val) ' result is 4
cnt = SizeOfU(ia) ' result is 40

Compatibility

This function is not available in BasicX compatibility mode.

See Also SizeOf

ZBasic System Library 295 ZBasic Microcontrollers

Sleep

Type Subroutine

Invocation Sleep(time)

Parameter Method Type Description
time ByVal Single or int16 The amount of time to delay, in seconds

(Single) or ticks (int16)

Discussion

This routine suspends the current task for a period of time up to as long as specified. If the RTC is not
enabled in your application, the resolution of the delay period is 1mS. If the RTC is enabled, the
resolution is the same as an RTC tick period, i.e. 1/F_RTC_TICK (typically 1.95mS for ZX devices). The
actual sleep time experienced by the calling task depends on what other tasks actually do that may run in
the interim. It is possible that the task will be suspended indefinitely depending on what another task
might do.

Note that i f the current task is locked, this call will unlock it.

There is a subtle difference between Delay() and Sleep() when the RTC is enabled and the arguments

are non-zero. For Delay() the specified time is the minimum amount of delay that the task will
experience assuming that no other task is ready to run and the actual delay could be up to 1 unit longer
than the specified delay. For Sleep(), the specified time is the maximum amount of delay that the task will
experience assuming that no other task is ready to run and the actual delay could be up to 1 unit less
than the specified delay.

It is important to note that internally, the sleep function utilizes an integral tick value. If the supplied
parameter is a Single value it is converted to the equivalent integral number of ticks (if the value is a
known constant at compile time, otherwise at run time). Consequently, if a Single value is specified that
is less than the equivalent of one tick the sleep time will be zero ticks.

Example

Do
 Call PutPin(Pin.RedLED, 0)
 Call Sleep(0.5) ' a half-second delay
 Call PutPin(Pin.RedLED, 1)
 Call Sleep(256) ' a half-second delay
Loop

This loop causes the red LED to turn on and off alternately for a half second each.

Compatibility

The BasicX documentation specifically indicates that Sleep() will unlock a locked task. However, tests
indicate that this only happens if the parameter to Sleep() is non-zero. This implementation unlocks a
task on any Sleep() call.

See Also Delay, DelayUntilClockTick, Pause, WaitForInterval, Register.RTCStopWatch

ZBasic System Library 296 ZBasic Microcontrollers

SngClass

Type Function returning Byte

Invocation SngClass(arg)

Parameter Method Type Description
arg ByVal Single The value of which to determine the floating point classification.

Discussion

The IEEE 754 standard floating point format used by ZBasic specifies a set of classifications for floating
point values. This function returns a numeric value indicating the class to which the passed Single
value belongs. The table below enumerates the return values and describes the meaning of each.

Floating Point Value Classes

Class Value Description

ClassNormal 1 Normalized - This class represents “normal” floating point values
such as 1.537 but does not include 0.0.

ClassZero 2 Zero - This class represents the zero value (positive and
negative).

ClassInfinity 3 Infinity - This class represents positive and negative infinity.
Dividing a positive value by zero results in positive infinity.

ClassDenormal 4 Denormalized - This class represents an internal form known as
denormalized values. Such values should never be generated
as a result of a floating point operation. However if you copy
some random bytes into a floating point variable the result may
be a denormalized value.

ClassNaN 5 NaN - This class represents values that are “Not A Number”.
Taking the square root of a negative value or the logarithm of
zero results in a NaN.

The names in the first column are available as built-in constants. Except for ClassNaN, the return value
may include the flag &H80 to indicate a negative value. For example, SngClass(-1.0) returns the

value &H81 to indicate a negative ClassNormal value. The built-in constant representing the negative
flag is ClassNegative. The built-in constant ClassMask may be used to remove the negative flag from the
return value, e.g. SngClass(fval) And ClassMask.

Examples

Dim class as Byte

class = SngClass(1.0) ' result is 1
class = SngClass(-1.0) ' result is &H81
class = SngClass(-1.0) And ClassMask ' result is 1
class = SngClass(Sqr(-1.0)) ' result is 5
class = SngClass(1.0 / 0.0) ' result is 3

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 297 ZBasic Microcontrollers

Span

Type Function returning an integral value

Invocation Span(array) or

 Span(array, dimension)

Parameter Method Type Description
array ByRef any array The array about which the dimension information is desired.

dimension ByVal int16 The dimension of interest. See the description for more
details.

Discussion

This function returns the number of elements in a dimension of the specified array. There are two forms.
The first requires only the array to be specified. In this case, the number of elements of the first
dimension of the array is returned. The second form specifies a dimension number (which must be a
constant value), the valid range of which is 1 to the number of dimensions of the array. The array may be
located in RAM, Program Memory or Persistent Memory.

Note that the use of this function instead of hard-coding values makes your code easier to maintain
because it automatically adapts if the definition of an array changes.

Example

Dim ba(1 to 20) as Byte
Dim ma(3 to 5, -6 to 7) as Byte
Dim i as Integer

i = Span(ba) ' the result is 20
i = Span(ma) ' the result is 3
i = Span(ma, 1) ' the result is 3
i = Span(ma, 2) ' the result is 14

Compatibility

This function is not available in BasicX compatibility mode.

See Also LBound, UBound

ZBasic System Library 298 ZBasic Microcontrollers

SPICmd

Type Subroutine

Invocation SPICmd(channel, writeCnt, writeData, readCnt, readData)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).
writeCnt ByVal integral The number of bytes to write (0 – 65535).

writeData ByRef any type The variable containing the data to write to the device.
readCnt ByVal integral The number of bytes to read (0 – 65535).
readData ByRef any type The variable in which to place the data read from the device.

Discussion

This routine allows you to send and/or receive data from a device using the SPI protocol. The specified
channel must have been previously opened with a call to OpenSPI(). If the channel has not been
opened, the results are undefined. If a hardware SPI controller is being used, the target device must be
connected to the controller’s SPI bus (on a 24-pin ZX device, the holes on the end of the device between
pins 1 and 24). Otherwise, the pins most recently set by DefineSPI are used for the SPI clock and data.

If both writeCnt and readCnt are zero the routine returns immediately without doing anything. You
may specify the value 0 for either writeData or readData if no data is being provided. If the value of

readCnt exceeds the size of the readData variable, the additional bytes will be written to subsequent
memory locations, possibly with undesirable results.

The execution of the SPI command occurs in four phases:

· The chip select is asserted by setting the previously specified pin to the active level. The active
level (typically logic zero) is specified by bit 6 in the flags parameter passed to OpenSPI().

· If the writeCnt parameter is non-zero, the data bytes at writeData are written sequentially to
the SPI interface. The data returned by the SPI device during this phase is discarded.

· If the readCnt parameter is non-zero, the existing data beginning at readData are written to the
SPI device and the returned bytes are stored sequentially in the specified variable. That is, the
byte at readData(1) is sent to the device and the byte that the device sends back is stored at
readData(1). The same occurs for readData(2), etc.

· Finally, the chip select is deasserted by setting the previously specified pin to the inactive level.

Whether you use writeData or readData or both depends on the particulars of the device you’re

using. In some cases, you’ll need to populate readData and in other cases not. Careful study of the
datasheet of the target device will be required to determine how SPICmd() can be used to communicate
with it.

For an SPI channel that is opened with an non-zero rxDelay parameter specified (see OpenSPI()), a

delay is implemented prior to each SPI cycle for which the data read is placed in the readData buffer,
i.e., the third phase described above. The delay value specified is interpreted as the number of cycles of
the SPI clock frequency (but ignoring the Double Speed configuration bit). Of course, during the delay
time the SPI clock signal (SCK) will be idle. This delay is useful when communicating with slave devices
that must compute data values to return, for example, a ZX-24n operating in SPI slave mode.

Example

Dim odata(1 to 2) as Byte, idata(1 to 10) as Byte
Call OpenSPI(1, 0, 12)
odata(1) = &H06
odata(2) = &H00
Call SPICmd(1, 2, odata, 10, idata)

ZBasic System Library 299 ZBasic Microcontrollers

In this example idata is not initialized before calling SPICmd(). If your SPI device needs specific data

written to it during the read phase, idata would need to be initialized before the call.

Compatibility

The use of a zero value to indicate that no data buffer is being supplied is not supported in BasicX
compatibility mode. Also, in BasicX compatibility mode, both writeCnt and readCnt are Byte values

and, thus, limited to a maximum of 255.

See Also CloseSPI, OpenSPI

ZBasic System Library 300 ZBasic Microcontrollers

SPIGetByte

Type Function returning Byte

Invocation SPIGetByte(channel, writeData) or
 SPIGetByte(channel)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).

writeData ByVal Byte The data value to send to the slave for each byte received.

Discussion

This function sends a byte of data to an SPI slave and returns the value sent back by the SPI slave. For
the second form, the data byte sent while receiving is zero. If the channel number is invalid or the
channel is not properly prepared, the return value is zero. Note that this is a low level function that must
be used in concert with other low level routines to effect an SPI bus transaction.

Example

Dim b as Byte
Call OpenSPI(1, 0, 12)
Call SPIStart(1, &H03)
b = SPIGetByte(1, &Hff)

Compatibility

This routine is not available in BasicX compatibility mode nor it is available for VM devices.

See Also CloseSPI, OpenSPI, SPIPutByte, SPIGetData, SPIPutData, SPIStart, SPIStop

ZBasic System Library 301 ZBasic Microcontrollers

SPIPutByte

Type Function returning Byte

Invocation SPIPutByte(channel, data)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).
data ByVal Byte The variable containing the data to write to the slave.

Discussion

This function sends a byte of data to an SPI slave and returns the value sent back by the SPI slave. If the
channel number is invalid or the channel is not properly prepared, the return value is zero. Note that this
is a low level function that must be used in concert with other low level routines to effect an SPI bus
transaction.

Example

Dim b as Byte
Call OpenSPI(1, 0, 12)
Call SPIStart(1, &H03)
b = SPIPutByte(1, &H23)

Compatibility

This routine is not available in BasicX compatibility mode nor it is available for VM devices.

See Also CloseSPI, OpenSPI, SPIGetByte, SPIGetData, SPIPutData, SPIStart, SPIStop

ZBasic System Library 302 ZBasic Microcontrollers

SPIGetData

Type Function returning UnsignedInteger

Invocation SPIGetData(channel, readCnt, readData, writeData)
 SPIGetData(channel, readCnt, readData)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).

readCnt ByVal integral The number of bytes to read (0 – 65535).
readData ByRef any type The variable in which to place the data read from the slave device.
writeData ByVal Byte The data value to send to the slave for each byte received.

Discussion

This function sends a data byte to an SPI slave the specified number of times and stores the byte
returned by the slave in response in successive bytes of the variable provided (typically a Byte array).
For the second form, the data byte sent while receiving is zero. The value returned is equal to the
number of bytes placed in the variable. If the channel number is invalid or the channel is not properly
prepared, the return value is zero. Note that this is a low level function that must be used in concert with
other low level routines to effect an SPI bus transaction.

Example

Dim idata(1 to 10) as Byte
Call OpenSPI(1, 0, 12)
Call SPIStart(1, &H03)
Call SPIGetData(1, 10, idata)

Compatibility

This routine is not available in BasicX compatibility mode nor it is available for VM devices.

See Also CloseSPI, OpenSPI, SPIGetByte, SPIPutByte, SPIPutData, SPIStart, SPIStop

ZBasic System Library 303 ZBasic Microcontrollers

SPIPutData

Type Function returning UnsignedInteger

Invocation SPIPutData(channel, writeCnt, writeData)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).
writeCnt ByVal integral The number of bytes to write (0 – 65535).

writeData ByRef any type The variable containing the data to write to the slave device.

Discussion

This function sends the specified number of bytes to an SPI slave from the variable provided (typically a
Byte array) discarding the data returned by the slave in response to each byte sent. The value returned
is equal to the number of bytes sent to the slave. If the channel number is invalid or the channel is not
properly prepared, the return value is zero. Note that this is a low level function that must be used in
concert with other low level routines to effect an SPI bus transaction.

Example

Dim odata(1 to 2) as Byte
Call OpenSPI(1, 0, 12)
Call SPIStart(1, &H03)
odata(1) = &H06
odata(2) = &H00
Call SPICmd(1, 2, odata)

Compatibility

This routine is not available in BasicX compatibility mode nor it is available for VM devices.

See Also CloseSPI, OpenSPI, SPIGetByte, SPIGetData, SPIPutByte, SPIStart, SPIStop

ZBasic System Library 304 ZBasic Microcontrollers

SPIStart

Type Subroutine

Invocation SPIStart(channel, flags)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).
flags ByVal Byte Flag bits indicating actions to take (see discussion).

Discussion

If the specified channel is valid and is open, this subroutine modifies the state of the SPI interface
according to the bits that are on in the flags parameter as described below. If multiple bits are on in the
flags parameter they are processed in order from least significant to most significant.

Flag Parameter Action Bits

Hex Value Binary Value Description
&H01 xx xx xx x1 Initialize the SPI controller associated with the channel (ignored for a

software channel).

&H02 xx xx xx 1x Deassert the chip select pin associated with the channel.
&H04 xx xx xx1 xx Assert the chip select pin associated with the channel.

For compatiblility with future enhancements the unused bits in the flags parameter should always be zero.
Note that this is a low level routine that must be used in concert with other low level routines to effect an
SPI bus transaction.

If this routine is called with bits 1 and 2 both on (i.e. &H06) when the chip select is already asserted, the
result will be that the chip select is deasserted for about 150 CPU cycles (~10uS at 14.7MHz) and then
reasserted. This idiom is useful for terminating one SPI cycle and immediately beginning another.

Example

Call OpenSPI(1, 0, 12)
Call SPIStart(1, &H05)

Compatibility

This routine is not available in BasicX compatibility mode nor it is available for VM devices.

See Also CloseSPI, OpenSPI, SPIGetByte, SPIPutByte, SPIGetData, SPIPutData, SPIStop

ZBasic System Library 305 ZBasic Microcontrollers

SPIStop

Type Subroutine

Invocation SPIStop(channel, flags)

Parameter Method Type Description
channel ByVal Byte The SPI channel number (1-4).
flags ByVal Byte The number of bytes to write (0 – 65535).

Discussion

If the specified channel is valid and is open, this subroutine modifies the state of the SPI interface
according to the bits that are on in the flags parameter as described below. If multiple bits are on in the
flags parameter they are processed in order from most significant to least significant.

Flag Parameter Action Bits

Hex Value Binary Value Description

&H01 xx xx xx x1 Deinitialize the SPI controller associated with the channel (ignored for
a software channel).

&H02 xx xx xx 1x Deassert the chip select pin associated with the channel.

For compatiblility with future enhancements the unused bits in the flags parameter should always be zero.
Note that this is a low level routine that must be used in concert with other low level routines to effect an
SPI bus transaction.

Example

Call OpenSPI(1, 0, 12)
Call SPIStop(1, &H03)

In this example idata is not initialized before calling SPICmd(). If your SPI device needs specific data
written to it during the read phase, idata would need to be initialized before the call.

Compatibility

This routine is not available in BasicX compatibility mode nor it is available for VM devices.

See Also CloseSPI, OpenSPI, SPIGetByte, SPIPutByte, SPIGetData, SPIPutData, SPIStart

ZBasic System Library 306 ZBasic Microcontrollers

Sqr

Type Function returning Single

Invocation Sqr(arg)

Parameter Method Type Description
arg ByVal Single The value of which the square root will be computed.

Discussion

The return value will be the square root of the supplied value. Note that the Sqr() function will return
NaN if the argument is negative.

Example

Dim val as Single

val = Sqr(2.0) ' result is approximately 1.414

ZBasic System Library 307 ZBasic Microcontrollers

StackCheck

Type Subroutine

Invocation StackCheck(enable)

Parameter Method Type Description
enable ByVal Boolean The enable/disable state desired.

Discussion

This subroutine enables or disables stack checking. See the section on Run Time Stack Checking in the
ZBasic Reference Manual for more information.

Example

Call StackCheck(true)

Compatibility

This routine is not available in BasicX compatibility mode nor is it available for native mode devices.

ZBasic System Library 308 ZBasic Microcontrollers

StatusCom

Type Function returning Byte

Invocation StatusCom(chan)

Parameter Method Type Description
chan ByVal Byte The serial channel of interest.

Discussion

This function returns a set of flag bits that indicate the status of the specified serial channel. The meaning
of each of the flag bits is shown in the table below.

Serial Channel Status Bit Values

Value Meaning
&H01 The channel number is valid but may or may not be open.

&H02 The channel is open.
&H04 The channel has data yet to be transmitted.
&H08 The channel is a software UART channel.

&H10 The channel’s receive flow control pin is in the inactive state.
&H20 The channel’s transmit flow control pin is in the inactive state.

The remaining bits are currently undefined but may convey additional information in the future. It is
strongly advised that you apply an AND mask to the returned value before comparing it to a fixed value.
Doing so will prevent the future addition of bits from affecting your existing code.

Note that the &H04 bit will be set if there are any unsent characters in the transmit queue associated with
the channel as well as if a character is currently being transmitted.

Example

' wait until all characters are transmitted
Do While CBool(StatusCom(chan) And &H04)
Loop

Compatibility

This function is not available in BasicX compatibility mode.

See Also CloseCom, ComChannels, ControlCom, DefineCom, OpenCom

ZBasic System Library 309 ZBasic Microcontrollers

StatusQueue

Type Function returning Boolean

Invocation StatusQueue(queue)

Parameter Method Type Description
queue ByRef array of Byte The queue of interest.

Discussion

This function returns True if there data bytes in the queue, otherwise False.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Compatibility

BasicX allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byte.

See Also GetQueueCount, OpenQueue

ZBasic System Library 310 ZBasic Microcontrollers

StatusTask

Type Function returning Byte

Invocation StatusTask(taskStack)

StatusTask()

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This function returns a value indicating the status of the task associated with the given task stack. If no
task stack is explicitly given, the task stack for the Main() routine is assumed. The return values and

their respective meanings are shown in the table below.

Task Status Values

Constant Value Meaning
TaskReady 0 The task is running or ready to run.
TaskSleeping 1 The task is sleeping.

TaskWaitInputCapture 2 The task is waiting for InputCapture() to complete.
TaskWaitInt0 3 The task is awaiting Interrupt 0.
TaskWaitInt1 4 The task is awaiting Interrupt 1.

TaskWaitInt2 5 The task is awaiting Interrupt 2.
TaskWaitInterval 6 The task is waiting for the interval counter to expire.
TaskWaitAnalogCompare 7 The task is waiting for an analog comparator event.

TaskWaitPinChange0 8 The task is waiting for a pin change event 0.
TaskWaitPinChange1 9 The task is waiting for a pin change event 1.
TaskWaitPinChange2 10 The task is waiting for a pin change event 2.

TaskWaitPinChange3 11 The task is waiting for a pin change event 3.
TaskWaitOutputCapture 12 The task is waiting for OutputCapture() to complete.
TaskWaitInt3 13 The task is awaiting Interrupt 3.

TaskWaitInt4 14 The task is awaiting Interrupt 4.
TaskWaitInt5 15 The task is awaiting Interrupt 5.
TaskWaitInt6 16 The task is awaiting Interrupt 6.

TaskWaitInt7 17 The task is awaiting Interrupt 7.
TaskWaitPinChangeA0 18 The task is waiting for a pin change event, port A.
TaskWaitPinChangeA1 19 The task is waiting for a pin change event, port A.

TaskWaitPinChangeB0 20 The task is waiting for a pin change event, port B.
TaskWaitPinChangeB1 21 The task is waiting for a pin change event, port B.
TaskWaitPinChangeC0 22 The task is waiting for a pin change event, port C.

TaskWaitPinChangeC1 23 The task is waiting for a pin change event, port C.
TaskWaitPinChangeD0 24 The task is waiting for a pin change event, port D.
TaskWaitPinChangeD1 25 The task is waiting for a pin change event, port D.

TaskWaitPinChangeE0 26 The task is waiting for a pin change event, port E.
TaskWaitPinChangeE1 27 The task is waiting for a pin change event, port E.
TaskWaitPinChangeF0 28 The task is waiting for a pin change event, port F.

TaskWaitPinChangeF1 29 The task is waiting for a pin change event, port F.
TaskWaitPinChangeH0 30 The task is waiting for a pin change event, port H.
TaskWaitPinChangeH1 31 The task is waiting for a pin change event, port H.

TaskWaitPinChangeJ0 32 The task is waiting for a pin change event, port J.
TaskWaitPinChangeJ1 33 The task is waiting for a pin change event, port J.
TaskWaitPinChangeK0 34 The task is waiting for a pin change event, port K.

TaskWaitPinChangeK1 35 The task is waiting for a pin change event, port K.
TaskWaitPinChangeQ0 36 The task is waiting for a pin change event, port Q.

ZBasic System Library 311 ZBasic Microcontrollers

TaskWaitPinChangeQ1 37 The task is waiting for a pin change event, port Q.
TaskWaitAnalogCompA0 38 The task is waiting for an analog comparator A event.

TaskWaitAnalogCompA1 39 The task is waiting for an analog comparator A event.
TaskWaitAnalogCompAW 40 The task is waiting for an analog comparator A window event.
TaskWaitAnalogCompB0 41 The task is waiting for an analog comparator B event.

TaskWaitAnalogCompB1 42 The task is waiting for an analog comparator B event.
TaskWaitAnalogCompBW 43 The task is waiting for an analog comparator B window event.
TaskHalting 254 The task is in the process of terminating.

TaskHalted 255 The task has terminated.

The shaded entries in the table above are specific to ZBasic devices based on ATTiny and ATmega
processors. The values 18-43 are specific to ZBasic devices based on ATxmega processors. See the
Resource Usage sub-section Pin Change Interrupts for information about the mapping of ports to pin
change interrupt events.

If this function is invoked using an array other than one that is or was being used for a task stack the
result is undefined. See the section on Task Management in the ZBasic Reference Manual for additional
information regarding task management.

See Also ExitTask, ResumeTask, RunTask, TaskIsValid, WaitForInterrupt

ZBasic System Library 312 ZBasic Microcontrollers

StatusX10

Type Function returning Byte

Invocation StatusX10(chan)

Parameter Method Type Description
chan ByVal Byte The X-10 communication channel of interest.

Discussion

This function returns a set of flag bits that indicate the status of the specified X-10 channel. The bits and
their meanings are shown in the table below. The return value may comprise zero or more of the status
bits.

X-10 Channel Status Bit Values

Value

Meaning

Cleared by
ResetX10

&H01 The channel number is valid but may or may not be open. No
&H02 The channel is open. No
&H04 The channel has data yet to be transmitted. No
&H10 An end-of-command condition was detected during reception (phase 3). Yes
&H20 An end-of-command condition was detected during reception (phase 2). Yes
&H40 An end-of-command condition was detected during reception (phase 1). Yes
&H80 A collision was detected during transmission. Yes

The remaining bits are currently undefined but may convey additional information in the future. Some of
the status bits represent state information for the channel that can be cleared by calling ResetX10(); see
the third column of the table above.

Compatibility

This function is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-24).
Moreover, it is not available in BasicX compatibility mode.

See Also CloseX10, DefineX10, OpenX10, ResetX10

ZBasic System Library 313 ZBasic Microcontrollers

StrAddress

Type Function returning UnsignedInteger

Invocation StrAddress(str)

Parameter Method Type Description
str ByVal String The string variable whose string address is desired.

Discussion

This function returns the memory address of the first character of a string stored in a string variable. Note
that for dynamically allocated strings, the string address will be zero if the string is empty. Note also that
the returned address may refer to RAM, Program Memory or Persistent memory. The function
StrType() can be used to determine which address space contains the string’s characters. For
statically allocated strings, the string address will always be non-zero even if the string is empty.

See the section on Strings in the ZBasic Reference Manual for more details about dynamically vs.
statically allocated strings.

Example

Dim str as String
Dim addr as UnsignedInteger
Dim b as Byte

str = "Hello, world!"
addr = StrAddress(str)
b = RamPeek(addr) ' result will be 72, the letter H

Compatibility

This function is not available in BasicX compatibility mode.

See Also StrType

ZBasic System Library 314 ZBasic Microcontrollers

StrCompare

Type Function returning Integer

Invocation StrCompare(str1, str2)
 StrCompare(str1, str2, ignoreCase)

Parameter Method Type Description
str1 ByVal String The first string to compare.

str2 ByVal String The second string to compare.
ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.

Discussion

This function returns a value indicating the “sort order” of the two strings. If the returned value is
negative, the first string precedes the second in sort order, i.e. the first string would appear before the
second in a list sorted alphabetically. If the returned value is zero, the strings have the same sort order
and if it is greater than zero, the second string has a higher sort order. If the optional ignoreCase
parameter is given, the comparison is done either observing or ignoring differences in alphabetic case
depending on the value of the parameter. For the purposes of this parameter only the characters A-Z and
a-z (&H41 to &H5a and &H61 to &H7a) are considered to be alphabetic. If the ignoreCase parameter is
omitted, the comparison is performed observing case differences.

Example

Dim str1 as String
Dim str2 as String

If (StrCompare(str1, str2, true) = 0) Then

Debug.Print "The strings match"
End If

Compatibility

This function is not available in BasicX compatibility mode.

See Also StrFind

ZBasic System Library 315 ZBasic Microcontrollers

StrFind

Type Function returning Byte

Invocation StrFind(inStr, findStr)
 StrFind(inStr, findStr, startIdx)
 StrFind(inStr, findStr, startIdx, ignoreCase)

Parameter Method Type Description

inStr ByVal String The string to be searched.
findStr ByVal String The string being sought.
startIdx ByVal integral The index of inStr at which to begin the search.

ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.

Discussion

This function attempts to find the first occurrence of the findStr string within the inStr string. If it is

found, the return value gives the 1-based index where the sought string was found within the searched
string. If the sought string is not found, zero is returned. If the optional startIdx parameter is not

given, the search begins at the first character of the searched string, equivalent to specifying 1 for
startIdx. If the optional ignoreCase parameter is not given, the search is performed observing
alphabetic case differences, otherwise alphabetic case differences are significant or not depending on the
value specified for ignoreCase. For the purposes of this parameter only the characters A-Z and a-z
(&H41 to &H5a and &H61 to &H7a) are considered to be alphabetic.

Searching for a zero length string will always be successful and the return value will be the specified or
implied starting index. Searching for a non-zero length string within a zero length string will always fail,
returning 0.

Examples

Dim idx as Byte

idx = StrFind("haystack", "needle") ' returns 0
idx = StrFind("haystack with needle", "needle") ' returns 15
idx = StrFind("foo bar foo", "foo", 2) ' returns 9
idx = StrFind("foo bar foo", "", 2) ' returns 2
idx = StrFind("foo bar FOO", "FOO") ' returns 9
idx = StrFind("foo bar FOO", "FOO", 1, true) ' returns 1

Compatibility

This function is not available in BasicX compatibility mode.

See Also MemFind, ProgMemFind, StrCompare

ZBasic System Library 316 ZBasic Microcontrollers

StrReplace

Type Function returning String

Invocation StrReplace(str, findStr, replStr)

 StrReplace(str, findStr, replStr, startIdx)
 StrReplace(str, findStr, replStr, startIdx, replCount)

 StrReplace(str, findStr, replStr, startIdx, replCount, ignoreCase)

Parameter Method Type Description
str ByVal String The subject string in which to perform replacement.
findStr ByVal String The sought string.

replStr ByVal String The replacement string.
startIdx ByVal integral The index of ’str’ at which to begin the replacement.
replCount ByVal integral The number of replacements to perform.

ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.

Discussion

This routine produces a new string by replacing occurrences of the sought string with the replacement
string in the subject string. If the optional startIdx parameter is not given, the search begins at the first
character of the subject string, equivalent to specifying 1 for startIdx. If the optional replCount

parameter is not given, all occurrences of the sought string will be replaced. If the optional ignoreCase
parameter is not given, the search is performed observing alphabetic case differences, otherwise
alphabetic case differences are significant or not depending on the value specified for ignoreCase. For

the purposes of this parameter, only the characters A-Z and a-z (&H41 to &H5a and &H61 to &H7a) are
considered to be alphabetic.

If the subject string contains no occurrences of the sought string, or if the sought string is zero length, or if
the replacement count is zero, the returned string will be identical to the subject string. The replacement
count and the start index are treated internally as signed 16-bit values. If the value of the start index is
less than 1, a starting index of 1 is assumed.

Compatibility

This function is not available in BasicX compatibility mode.

ZBasic System Library 317 ZBasic Microcontrollers

StrType

Type Function returning Byte

Invocation StrType(str)

Parameter Method Type Description
str ByVal String The string variable whose string type is desired.

Discussion

This function returns a value indicating the nature of a string variable. The values returned have the
meaning shown in the table below.

Type Meaning
&H00 The string is a standard statically allocated string or a bounded string. The value returned by

StrAddress() is a RAM address and can be read using RamPeek()or MemCopy().

&He0 The string is dynamically allocated. The value returned by StrAddress() is a RAM
address (which may be zero) and can be read using RamPeek() or MemCopy().

&He2 The string is in Program Memory. The value returned by StrAddress() is a Program
Memory address and can be read using GetProgMem().

&He3 The string is in Persistent Memory. The value returned by StrAddress() is a Persistent
Memory address and can be read using GetPersistent().

&He4 The string is in RAM. The value returned by StrAddress() is a RAM address (which may
be zero) and can be read using RamPeek() or MemCopy().

&He5 The string is in RAM and is limited to 1 or 2 characters. The value returned by
StrAddress()is a RAM address and can be read using RamPeek() or MemCopy().

&He6 The string is in RAM. The value returned by StrAddress()is a RAM address and can
be read using RamPeek() or MemCopy(). This special string type is used for native-mode

code to pass a bounded string or fixed-length string to a subroutine/ function ByVal.
&Hff The string is a statically allocated fixed-length string. The value returned by StrAddress()

is a RAM address and the data can be read using RamPeek() or MemCopy().

See the section on strings in the ZBasic Reference Manual for more details about dynamically vs.
statically allocated strings.

Compatibility

This function is not available in BasicX compatibility mode.

See Also StrAddress

ZBasic System Library 318 ZBasic Microcontrollers

System.Alloc

Type Function returning UnsignedInteger

Invocation System.Alloc(numBytes)

Parameter Method Type Description
numBytes ByVal integral The size of the requested allocation.

Discussion

This function allocates a block of memory from the heap of the specified size and returns the address of
the first byte of the block. If a block of the specified size cannot be allocated, zero is returned. The block
can be returned to the heap using the subroutine System.Free().

This function and the block of memory it returns must be used with great care. If your program fails to
deallocate the block using System.Free() when it is no longer needed, the heap may eventually be

exhausted. Since space for strings is also allocated from the heap, exhaustion may cause string
operations to fail. Moreover, if your program writes to memory outside of the bounds of the block, the
heap data structures may be corrupted. This may cause future heap allocation requests to fail.

For native mode devices (e.g. the ZX-24n) a heap allocation may fail if the heap size is set too small
compared to the needs of your application. To aid in determining a sufficient heap size the System
Library function System.HeapHeadRoom() may be used to discover the amount of space in the heap that
has not yet been used at the time of the call.

Example

Dim addr as UnsignedInteger
addr = System.Alloc(50)
[other code here that uses the allocated block]
Call System.Free(addr)
addr = 0

Compatibility

This function is not available in BasicX compatibility mode.

See Also System.Free

ZBasic System Library 319 ZBasic Microcontrollers

System.DeviceID

Type Subroutine

Invocation System.DeviceID(buffer)

Parameter Method Type Description
buffer ByRef array of Byte The array to which the identification characters will be written.

Discussion

A call to this routine will copy up to 10 bytes to the buffer provided. The data copied to the buffer
comprise characters of a string that identify the ZBasic device on which the progam is executing. The last
byte of the identification is followed by a zero byte that serves to mark the end of the identification
characters. The example below illustrates how the data can be used to create a string.

Although this subroutine is primarily intended for manufacturing test purposes, it may be useful for other
purposes as well.

Caution

If the array provided is less than 10 bytes long, subsequent memory may be overwritten, possibly with
detrimental results.

Example

Dim buf(1 to 10) as Byte
Dim idStr as String
Dim idx as Byte

Call System.DeviceID(buf)
idStr = MakeString(buf.DataAddress, SizeOf(buf))
idx = StrFind(idStr, Chr(0))
If (idx <> 0) Then
 idStr = Left(idStr, idx - 1)
End If
Debug.Print idStr ' Displays "ZX24" on a ZX-24

Compatibility

This routine is not available in BasicX compatibility mode and it is supported only on ZX devices.

ZBasic System Library 320 ZBasic Microcontrollers

System.Free

Type Subroutine

Invocation System.Free(addr)

Parameter Method Type Description
addr ByVal UnsignedInteger The address of the block to free.

Discussion

This subroutine returns a block of allocated memory to the heap so that it may be later re-used. The
addr parameter must be the value returned by an earlier call to System.Alloc() that has not yet been
freed. Invoking this subroutine with addr equal to 0 is a special case that is benign.

This function and its companion, System.Alloc(), must be used with great care. If System.Free()

is called with a non-zero value that is not one returned by System.Alloc() or a value that has already
been freed, the heap management data structures will almost certainly be corrupted and future
allocations will likely fail. It is a good practice to set an address to zero after it has been freed as
illustrated in the example below.

Example

Dim addr as UnsignedInteger
addr = System.Alloc(50)
[other code here that uses the allocated block]
Call System.Free(addr)
addr = 0

Compatibility

This routine is not available in BasicX compatibility mode.

See Also System.Alloc

ZBasic System Library 321 ZBasic Microcontrollers

System.HeapHeadRoom

Type Function returning UnsignedInteger

Invocation System.HeapHeadRoom()

Discussion

This function determines the amount of space in the string heap that has never been used irrespective of
the current end-of-heap position. The primary use for it is to determine the amount of heap space used
by an application in order to balance the requirements of the heap and the various task stacks.

Compatibility

For VM mode devices, this function will always return &HFFFF unless you have specified a heap limit
value, directly or indirectly. See the Option MainTaskStackSize, Option HeapSize, and Option

HeapLimit directives for more information.

See Also System.TaskHeadRoom

ZBasic System Library 322 ZBasic Microcontrollers

System.HeapSize

Type Function returning UnsignedInteger

Invocation System.HeapSize()

Discussion

This function determines the amount of space reserved for the string heap. This value may be of use in
special circumstances such as allocating extra buffers or dynamic task stacks.

See Also System.HeapHeadRoom

ZBasic System Library 323 ZBasic Microcontrollers

System.TaskHeadRoom

Type Function returning UnsignedInteger

Invocation System.TaskHeadRoom(taskStack)
 System.TaskHeadRoom()

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This function determines the amount of space in task stack of the specified task that has never been
used, irrespective of the current position of the task stack pointer. The primary use for it is to determine
the amount of task stack space used by a task in order to balance the requirements of the heap and the
various task stacks. If the supplied parameter does not refer to a valid task stack (i.e. a stack for a task
that is in the task list), the return value will be &Hffff.

For the second form, with no task stack specified, the stack of the calling task is examined. In either
case, if zero is returned it is nearly certain that the task stack has overflowed, possibly overwriting
adjacent data.

Compatibility

For VM mode devices, calling this function for the Main() task will always return &HFFFF unless you
have specified, directly or indirectly, a stack limit for Main(). See the Option MainTaskStackSize,

Option HeapLimit, and Option HeapSize directives for more information.

See Also System.HeapHeadRoom

ZBasic System Library 324 ZBasic Microcontrollers

Tan

Type Function returning Single

Invocation Tan(arg)

Parameter Method Type Description
arg ByVal Single The angle, in radians, of which the tangent will be computed.

Discussion

The return value will be the tangent of the supplied value. Note that the Tan() function may return
positive or negative infinity values.

Example

Const pi as Single = 3.14159
Dim val as Single

val = Tan(pi / 4.0) ' result is approximately 1.0

See Also Atn, Atn2, DegToRad, RadToDeg

ZBasic System Library 325 ZBasic Microcontrollers

TaskIsLocked

Type Function returning Boolean

Invocation TaskIsLocked()

Discussion

This function will return True i f the calling task is locked, False otherwise.

See Also LockTask, UnlockTask

ZBasic System Library 326 ZBasic Microcontrollers

TaskIsValid

Type Function returning Boolean

Invocation TaskIsValid(taskStack)

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This function will return True i f the specified task stack is currently in the task list, False otherwise. This
function can be used with allocated task stacks to determine when it is safe to deallocate the task stack
memory.

See Also StatusTask

ZBasic System Library 327 ZBasic Microcontrollers

Timer

Type Function returning Single

Invocation Timer()

Discussion

This function returns the current RTC time represented as the number of seconds since midnight with a
best-case resolution of 1/F_RTC_TICK. Note that Register.RTCTick gives you the equivalent
information albeit in the form of a 32-bit value representing the number of RTC ticks (increments of
1/F_RTC_TICK) since midnight. Depending on your needs, one or the other may be more efficient to
use.

Compatibility

This subroutine is not available if the RTC is not enabled in your application.

ZBasic System Library 328 ZBasic Microcontrollers

To<enum>

Type Function returning an Enum member

Invocation To<enum>(val)

Parameter Method Type Description
val ByVal integral The value to convert to an Enum member.

Discussion

This page describes a set of functions that convert the given value to a member of a specific
enumeration. For each enumeration that you define in your program the compiler automatically provides a
conversion function whose name is the name of the enumeration with the prefix To.

To use this conversion function, replace the <enum> portion of the function name as shown above with
the actual enumeration name for which value-to-member conversion is desired. See below for an
example of how this is done.

See the section on enumerations for more information.

Compatibility

This function is provided for backward compatibility. It is recommended to use CType() for new
applications.

Example

Enum Color
 Red
 Green
 Blue
End Enum

Dim c as Color

c = ToColor(1) ' c will have the value Green

See Also CType

ZBasic System Library 329 ZBasic Microcontrollers

ToggleBits

Type Subroutine

Invocation ToggleBits(target, mask)

Parameter Method Type Description
target ByRef Byte The byte to be modified.
mask ByVal Byte The mask indicating which bits to modify.

Discussion

This subroutine allows you to change the state of one or more bits in a byte while leaving others
unchanged. Effectively, the result is the same as using the statement below.

target = target Xor mask

The mask parameter governs which bits will get changed. For each bit of the mask parameter that is a 1,

the corresponding bit of the target will be set to the opposite of its current state. Bits of the target
that correspond to zero bits of the mask parameter will remain unchanged.

The advantage to using the ToggleBits() subroutine instead of the equivalent statement is twofold.

Firstly, it is more efficient, resulting in less code and faster execution time. Secondly, and perhaps more
importantly, it performs the action as an atomic operation, i.e. one that is guaranteed, once begun, to
complete without an intervening task switch. This characteristic makes ToggleBits() useful for

modifying I/O ports and other Byte values in a multi-tasking environment.

Example

' change the state of the two least significant bits of Port C
Call ToggleBits(Register.PortC, &H03)

Compatibility

This routine is not available in BasicX compatibility mode. Also, it is only supported by ZX VM firmware
later than v1.0.0.

See Also SetBits

ZBasic System Library 330 ZBasic Microcontrollers

Trim

Type Function returning String

Invocation Trim(str)

Parameter Method Type Description
str ByVal String The string from which blanks will be stripped.

Discussion

This function returns a new string containing the same characters as the passed string except that
leading and trailing spaces will be removed. If the string consists solely of spaces, the resulting string will
be zero length.

Example

Dim s as String, s1 as String
s = " Hello, world! "
s2 = Trim(s) ' the result will be "Hello, world!"

See Also Left, Mid, Right

ZBasic System Library 331 ZBasic Microcontrollers

UBound

Type Function returning an integral value

Invocation UBound(array) or

 UBound(array, dimension)

Parameter Method Type Description
array ByRef any array The array about which the bound information is desired.

dimension ByVal int16 The dimension of interest. See the discussion for more
details.

Discussion

This function returns the upper bound of a dimension of the specified array. There are two forms. The
first requires only the array to be specified. In this case, the upper bound of the first dimension of the
array is returned. The second form specifies a dimension number (which must be a constant value), the
valid range of which is 1 to the number of dimensions of the array. The array may be located in RAM,
Program Memory or Persistent Memory.

In contrast to LBound(), a parameter that is an array cannot be passed to UBound()since the return
value of UBound() is computed at compile-time and many different sized arrays may be passed as a

parameter.

Note that the use of this function instead of hard-coding values makes your code easier to maintain
because it automatically adapts if the definition of an array changes.

Example

Dim ba(1 to 20) as Byte
Dim ma(3 to 5, -6 to 7) as Byte
Dim i as Integer

i = UBound(ba) ' the result is 20
i = UBound(ma) ' the result is 5
i = UBound(ma, 1) ' the result is 5
i = UBound(ma, 2) ' the result is 7

Compatibility

This function is not available in BasicX compatibility mode.

See Also LBound, Span

ZBasic System Library 332 ZBasic Microcontrollers

UCase

Type Function returning String

Invocation UCase(str)

Parameter Method Type Description
str ByVal String The string to be changed to upper case.

Discussion

This function returns a new string containing the same characters as the passed string except that all
lower case characters will be replaced with upper case characters.

Example

Dim s as String, s1 as String
s = "Hello, world!"
s2 = UCase(s) ' the result will be "HELLO, WORLD!"

See Also LCase

ZBasic System Library 333 ZBasic Microcontrollers

UnlockTask

Type Subroutine

Invocation UnlockTask()

Discussion

This routine causes the running task to become unlocked so that other tasks can run. Calling
UnlockTask() when a task is not actually locked has no effect.

See Also LockTask

ZBasic System Library 334 ZBasic Microcontrollers

UpdateRTC

Type Subroutine

Invocation UpdateRTC(fastTicks)

Parameter Method Type Description
fastTicks ByVal int16 The number of fast ticks to add to the RTC.

Discussion

This subroutine can be used to update the RTC with the number of fast ticks missed during a long
operation performed with interrupts disabled. In order to determine the number of fast ticks that are
missed, your code must periodically check the interrupt flag of the RTC timer and, i f it is set, increment a
local counter value and then reset the interrupt flag.

Example

' This example is for ZX devices that use Timer0 for the RTC timer.
Atomic

Dim missedTicks as UnsignedInteger
Const TickFlag as Byte = &H02
missedTicks = 0
Do

' place code here that performs one iteration of a
' long process and eventually exits the loop

' check the RTC flag, reset it
If (CBool(Register.TIFR0 And TickFlag)) Then

missedTicks = missedTicks + 1
Register.TIFR0 = TickFlag

End If
Loop
Call UpdateRTC(missedTicks)
Call Yield()

End Atomic

Compatibility

This subroutine is not available if the RTC is not enabled in your application.

See Also Yield

ZBasic System Library 335 ZBasic Microcontrollers

ValueI

Type Subroutine

Invocation ValueI(str, val, flag)

Parameter Method Type Description
str ByVal String The string from which to extract an Integer value.

val ByRef int16 The variable to receive the value.

flag ByRef Boolean The variable to receive a success indicator.

Discussion

This routine converts a character representation of an integral number, contained in the str parameter,

to an Integer value returned in the val parameter. If the string is in an acceptable format, the flag
parameter is set to True. Otherwise, the flag parameter is set to False and the val parameter will be

0.

The string may contain any number of leading and/or trailing spaces. The value itself may consist of an
optional plus or minus sign, an optional radix indicator, and one or more digits. The supported radix
indicators are &H for hexadecimal, &O for octal and &B or &X for binary (all case insensitive). If no radix
indicator is present, decimal is assumed.

If the provided string has the proper format but represents a value that is too large or too small to be
represented as an Integer, the result will be invalid but no such indication will be given.

Examples of integral values accepted by ValueI() are:

103
+123
&H55
-&B01101

Compatibility

This function is not available in BasicX compatibility mode.

See Also ValueL, ValueS

ZBasic System Library 336 ZBasic Microcontrollers

ValueL

Type Subroutine

Invocation ValueL(str, val, flag)

Parameter Method Type Description
Str ByVal String The string from which to extract an Long value.

Val ByRef int32 The variable to receive the value.

Flag ByRef Boolean The variable to receive a success indicator.

Discussion

This routine converts a character representation of an integral number, contained in the str parameter,

to a Long value returned in the val parameter. If the string is in an acceptable format, the flag
parameter is set to True. Otherwise, the flag parameter is set to False and the val parameter will be

0.

The string may contain any number of leading and/or trailing spaces. The value itself may consist of an
optional plus or minus sign, an optional radix indicator, and one or more digits. The supported radix
indicators are &H for hexadecimal, &O for octal and &B or &X for binary (all case insensitive). If no radix
indicator is present, decimal is assumed.

If the provided string has the proper format but represents a value that is too large or too small to be
represented as a Long, the result will be invalid but no such indication will be given.

Examples of integral values accepted by ValueL() are:

103
+123
&H55
-&B01101

Compatibility

This function is not available in BasicX compatibility mode.

See Also Value, ValueS

ZBasic System Library 337 ZBasic Microcontrollers

ValueS

Type Subroutine

Invocation ValueS(str, val, flag)

Parameter Method Type Description
str ByVal String The string from which to extract a floating point value.
val ByRef Single The variable to receive the value.

flag ByRef Boolean The variable to receive a success indicator.

Discussion

This routine converts a character representation of a floating pointer number, contained in the str

parameter, to a Single value returned in the val parameter. If the string is in an acceptable format, the
flag parameter is set to True. Otherwise, the flag parameter is set to False and the val parameter

will be 0.0.

The string may contain any number of leading and/or trailing spaces. The value itself may consist solely
of decimal digits or may have a leading plus or minus sign. The value may include a decimal point, with
or without preceding digits. However, there must be a digit either preceding the decimal point or following
it, or both. Optionally, there may be a multiplier value consisting of the letter E (upper or lower case),
optionally followed by a plus or minus sign, followed by one or more digits. Note that the range of
acceptable input is wider than that for real values in ZBasic statements.

If the provided string has the proper format but represents a value that is too large or too small to be
represented as a Single, the result will be invalid but no such indication will be given.

Examples of floating point numbers accepted by ValueS() are:

.30103
3.14159
-200.
1e05
+6.02E+23
123

See Also Value, ValueL

ZBasic System Library 338 ZBasic Microcontrollers

VarPtr

Type Function returning UnsignedInteger

Invocation VarPtr(var)

Parameter Method Type Description
var ByRef any variable The variable of which the address is desired.

Discussion

This function returns the UnsignedInteger representation of the RAM address of the specified
variable. Note that for arrays, you may also specify subscript expressions for all of the array dimensions
to yield the address of an individual array element. Without the subscript expressions, the resulting value
will be the address of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. BitCopy(), RamPeek(), RamPoke(), etc.

This function is identical to MemAddressU() and is provided for BasicX compatibility.

See Also MemAddress, MemAddressU

ZBasic System Library 339 ZBasic Microcontrollers

WaitForInterrupt

Type Subroutine

Invocation WaitForInterrupt(mode)

WaitForInterrupt(mode, intNum)

Parameter Method Type Description
mode ByVal integral A value specifying what action will trigger the interrupt. See the

discussion below.
intNum ByVal Byte A designator for the interrupt to await (see discussion below).

Discussion

This routine allows a task to suspend itself and wait for an interrupt. The particular interrupt awaited is
controlled by the intNum designator in combination with the mode value. There are three general
sources of interrupts that can be awaited: external interrupts, pin change interrupts and analog
comparator interrupts.

External Interrupts 0-7 (ATtiny and ATmega targets)

A task may await an external interrupt by specifying the value 0 through 7 (corresponding to external
interrupt INT0 to INT7, respectively) for the intNum parameter. Not all target devices support the full
range of external interrupts. See the Resource Usage sub-section External Interrupts for information on
the available external interrupts for each target device along with the corresponding intNum value and
the interrupt input pin for each. The allowable values for the mode parameter and their respective

meanings are given in the table below.

Hardware Interrupt Mode Values

Value Built-in Constant Interrupt Trigger
&H10 zxPinLow A low level on the interrupt pin.
&H14 zxPinChange Any logic level change on the interrupt pin.
&H18 zxPinFallingEdge A high to low transition on the interrupt pin.
&H1C zxPinRisingEdge A low to high transition on the interrupt pin.

All other values are reserved for future use. For compatibility with BasicX, there are similarly named built-
in constants that begin with the prefix bx instead of zx except that there is no equivalent for
zxPinChange. Additionally, for all of the targets in the table below, Interrupt 2 is not capable of the first

two trigger modes; it can only be triggered on a rising edge or a falling edge.

Target Devices with Limited Functionality on INT2

mega16 mega16A mega32
mega32A mega161 mega162
mega323 mega8515 mega8535

The built-in constants WaitInt0 through WaitInt7 may be used to specify the intNum parameter. If

no intNum parameter is given, Interrupt 1 is assumed (for compatibility with BasicX). This is equivalent
to using WaitForInterrupt(mode, 1).

Pin Change Interrupts (ATtiny and ATmega targets)

For most ATtiny and ATmega target devices, a task may await a state change on one or more pins of one
or more I/O ports. This mode is selected by specifying a special value for the intNum parameter that

indicates the port(s) and the mode parameter contains a bit mask indicating the bits of interest. For

ZBasic System Library 340 ZBasic Microcontrollers

example, i f the mode value is &H21, a pin change interrupt will be generated if either bit 0 or bit 5 of the

specified port changes state. Clearly, a mode value of zero is useless since no pin change interrupt can
ever occur in that case. See the Resource Usage sub-section Pin Change Interrupts for information on
the available pin change interrupts for each target device.

Pin Change Interrupts (ATxmega targets)

For ATxmega target devices, a task may await a state change on one or more pins of an I/O port. Each
port has two separate channels of pin-change detection, e.g. WaitPinChangeA0 and

WaitPinChangeA1 both sensitive to pin changes on Port A. The port and channel are specified via the
intNum parameter and the mode parameter contains a bit mask indicating the bits of interest. For

example, i f the mode value is &H21, a pin change interrupt will be generated if either bit 0 or bit 5 of the
specified port changes state. Clearly, a mode value of zero is useless since no pin change interrupt can

ever occur in that case. See the Resource Usage sub-section Pin Change Interrupts for information on
the available pin change interrupts for each target device.

By default, each pin that is enabled for a pin change interrupt will trigger the interrupt on either edge. You
may configure the sensitivity for each individual pin to trigger an interrupt on either edge, rising edge only,
falling edge only or a low level. The setting for each pin change sensitivity is made in a “pin control”
register specific to that pin. For example, the pin control register for bit 3 of port C is named
PORTC_PIN3CTRL. Consult the applicable ATxmega datasheet for more information on these registers.

Analog Comparator Interrupt (ATtiny and ATmega targets)

A task may await an analog comparator interrupt by specifying the value waitAnalogComp (&H10) for
intNum. The corresponding built-in constant is waitAnalogComp. In this case, the mode parameter
specifies the comparator output transition that will cause the interrupt to occur.

Analog Comparator Interrupt Mode Values

Value Built-in Constant Interrupt Trigger
&H00 zxAnalogCompChange Comparator output rising edge or falling edge.
&H02 zxAnalogCompFalling Comparator output falling edge.
&H03 zxAnalogCompRising Comparator output rising edge.

With all of the mode values in the table above, the analog comparator’s positive input is AIN0 and the

comparator’s negative input is either AIN1 or, (on some target devices) i f the ACME bit is set in a CPU
register (see below), the analog input specified by the multiplexor select bits in Register.ADMUX.
Another option for the positive comparator input is to select the internal “band gap” voltage. This voltage
level (approximately 1.23 volts) is selected by adding the value &H40 to the mode values in the table
above. The built-in constant zxAnalogReference has this value.

See the Resource Usage sub-section Analog Comparator Interrupts for information on the location of the
AIN0 and AIN1 pins for each target device and which register contains the ACME bit (where available).
See the section in the Atmel microcontroller documentation describing the analog comparator for further
details.

Analog Comparator Interrupt (ATxmega targets)

On xmega devices, the analog comparator has two channels and a task may await an analog comparator
interrupt on one of the analog comparator channels by giving the appropriate value for intNum. See the

Resource Usage sub-section Analog Comparator Interrupts for information on the selector values and the
number of analog comparators supported for individual xmega devices.

In order to use any of the analog comparator interrupts, you must first configure positive and negative
inputs to the corresponding comparator(s) using the processor registers ACA_AC0MUXCTRL,
ACA_AC1MUXCTRL, ACB_AC0MUXCTRL and/or ACB_AC1MUXCTRL. Also, the high speed/low power
control bit and the hysteresis control bits in the ACA_AC0CTRL, ACA_AC1CTRL, ACB_AC0CTRL and

ZBasic System Library 341 ZBasic Microcontrollers

ACB_AC1CTRL registers may be configured as desired before invoking WaitForInterrupt(). Consult the
applicable ATxmega datasheet for more information on these registers.

The window mode of the analog comparator utilizes both channels of the comparator, with channel 0
representing the high limit of the window and channel 1 representing the low limit of the window. The
mode value to use when setting up an analog comparator interrupt differs depending on whether single
channel or window mode is being used, see the tables below.

Analog Comparator Interrupt Mode Values – Single Channel Mode

Value Built-in Constant Interrupt Trigger
&H00 zxAnalogCompChange Comparator output rising edge or falling edge.
&H02 zxAnalogCompFalling Comparator output falling edge.
&H03 zxAnalogCompRising Comparator output rising edge.

Analog Comparator Interrupt Mode Values – Window Mode

Value Interrupt Trigger
&H00 Input signal above the window.
&H01 Input signal inside the window.
&H02 Input signal below the window.
&H03 Input signal outside the window.

Operation

For all forms, when the trigger condition occurs an interrupt will be generated and the task awaiting the
interrupt will rise to the highest priority. This will cause an immediate task switch meaning that the next
instruction that executes will be the one following the WaitForInterrupt() invocation. Note that if
another task performs an action that causes interrupts to be disabled, response to the interrupt will be
delayed until interrupts are re-enabled. The fact that the current task is locked does not prevent the
interrupt task from executing next.

If two or more interrupts occur simultaneously, the task awaiting the highest priority interrupt is activated
first. For VM mode devices, the priorities of the various interrupts are given in the table below.

VM Mode Devices
Interrupt Priority (highest to lowest)

Interrupt 0

Interrupt 1
Interrupt 2

Analog Comparator Interrupt

Interrupt 3
Interrupt 4
Interrupt 5

Interrupt 6
Interrupt 7

Pin Change Interrupt, Port A

Pin Change Interrupt, Port B
Pin Change Interrupt, Port C
Pin Change Interrupt, Port D

Pin Change Interrupt, Port E
Pin Change Interrupt, Port J
Pin Change Interrupt, Port K

For native mode devices, the interrupt priority corresponds to the order of the entries in the processor’s
interrupt vector table: the lower the vector number the higher the priority. Consult the corresponding
ATtiny, ATmega or ATxmega processor datasheet for more information on this topic.

ZBasic System Library 342 ZBasic Microcontrollers

Note that a task awaiting an interrupt will exhibit some latency between the occurence of the interrupt and
when the waiting task begins execution. The latency depends on a number of factors including the
specific instruction being executed at the time of the interrupt and the number and frequency of system
interrupts that need to be handled. Instructions that may take a long time to execute such as
OutputCapture(), ShiftIn(), ShiftOut(), X10Cmd(), etc. will introduce more latency than simple instructions
like assigning a value to a variable.

Examples

Call WaitForInterrupt(zxPinChange)
Call WaitForInterrupt(zxPinRisingEdge, WaitInt2)
Call WaitForInterrupt(&H40, WaitPinChangeA) ' await a change on Port A, bit 6

Resource Usage

Only one task can be awaiting each interrupt at any particular time. If a task is already awaiting the
specified interrupt, another call to WaitForInterrupt() for that same interrupt will return immediately.

Also, on the ZX-24 the interrupt pins are common with I/O pins as shown in the table below. This means
that you should set the corresponding pin to be an input (either tri-state or pull-up) when you want to use
WaitForInterrupt(). Note, however, that if the pin is an output and a task is awaiting an interrupt, a
transition on the corresponding output can generate the interrupt for the waiting task. This may be of use
in special situations as a “software interrupt”.

Interrupt and I/O Pin Sharing for
ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t

Interrupt Port/Bit Pin
0 Port C, Bit 6 6
1 Port C, Bit 1 11
2 Port A, Bit 2 18

Compatibility

The second parameter is not supported in BasicX compatibility mode. The built-in constant
zxPinChange is not available in BasicX. It is not known if the capability is supported or not.

ZBasic System Library 343 ZBasic Microcontrollers

WaitForInterval

Type Subroutine

Invocation WaitForInterval(flags)

Parameter Method Type Description
flags ByVal Byte A set of flag bits that control the operation. See the

discussion below.

Discussion

This routine allows a task to suspend itself and wait for an interval timer to expire. The length of the
interval is set by the routine SetInterval. Note that there is only one interval timer that is shared by all

tasks. This means that at most one task may be awaiting the expiration of an interval at any one time. If
another task is already awaiting an interval, calls to WaitForInterval will return immediately.

The bit values for the flags parameter are described in the table below.

Interval Timer Flag Values

Value Description
&H01 Wait until the next interval expires.
&H02 Reset the interval counter to its original value.

The remaining bits are currently undefined but may be employed in the future.

After a call to SetInterval the interval counter is decremented on every RTC tick. When it reaches

zero, if a task is awaiting the expiration of the interval, that task will be scheduled to run immediately. If
no task is awaiting the expiration of the interval, the fact that the interval expired is recorded and the
interval counter is reset to the original value.

If the flags value is zero when a task calls WaitForInterval and an interval expiration has previously
been recorded (with no waiting task), the call will return immediately. Otherwise, the task will be
suspended until the interval expiration. If the flags value is &H01, the task will be suspended until the
next expiration of the interval. If the flags value is &H03, interval counter will be reloaded and then the
task will be suspended until the interval expires. The last mode of operation is similar to a task calling
Sleep. The difference is that when the interval expires, the task is immediately reactivated. With a
Sleep call, the task will execute again when its sequential turn comes up.

A task awaiting the expiration of an interval has lower priority than one awaiting an interrupt. Note that a
task awaiting the expiration of an interval will exhibit some latency between the expiration of the interval
and when the waiting task begins execution. The latency depends on a number of factors including the
specific instruction being executed at the time and the number and frequency of system interrupts that
need to be handled. Instructions that may take a long time to execute such as OutputCapture, ShiftIn,
ShiftOut, X10Cmd, etc. will introduce more latency than simple instructions like assigning a value to a
variable.

Example

Call SetInterval(1.0)
Do
 Call WaitForInterval(0)
 <other code here>
Loop

ZBasic System Library 344 ZBasic Microcontrollers

Resource Usage

The interval counter is driven off of the real time clock. If interrupts are disabled for long periods of time,
the timing won’t be accurate. I/O routines that disable interrupts typically track RTC ticks and then update
the RTC when the I/O process has completed. At this same time, the interval counter will be updated as
well accounting for, at most, one missed expiration.

There is a single, system-wide interval timer. Only one task can be awaiting an interval at a time. If a
task is already waiting, another call to WaitForInterval() will return immediately.

Compatibility

If the RTC is not included in your application this routine will not be available. This routine is also not
available in BasicX compatibility mode.

See Also SetInterval

ZBasic System Library 345 ZBasic Microcontrollers

WatchDog

Type Subroutine

Invocation WatchDog()

Discussion

This routine resets the watchdog timer, preventing it from resetting the system. A watchdog timer is
useful to ensure that your program continues to operate normally.

To implement a watchdog timer you first call OpenWatchDog() to prepare the watchdog timer for use.
Thereafter, if your program doesn’t call WatchDog() often enough, the watchdog will eventually time out

and cause a system reset.

See Also CloseWatchDog, OpenWatchDog

ZBasic System Library 346 ZBasic Microcontrollers

X10Cmd

Type Subroutine

Invocation X10Cmd(outPin, syncPin, house, devCmd, count)
 X10Cmd(outPin, syncPin, house, devCmd, count, flags)

Parameter Method Type Description
outPin ByVal Byte The pin on which the X10 signal will be generated.

syncPin ByVal Byte The pin on which the 60Hz sync signal will be received.
house ByVal Byte The house code.
devCmd ByVal Byte The device code or command code.

count ByVal Byte The number of times to repeat the transmission.
flags ByVal Byte Flag bits to control the operation of the command.

Discussion

This routine produces an X-10 compatible signal on the pin specified by outPin. The signal is
synchronized to the zero-crossing signal on the pin specified by syncPin. The generated signal will

include the specified house code and command/device code and will be repeated the specified number of
times without any spacing between the code sequences. The X-10 specification indicates that most
commands should be repeated twice and that successive commands should be separated by at least 3
power line cycles (~50 milliseconds). The exception is for bright and dim commands that can be repeated
any number of times.

If the flags parameter is not present, the transmission is implemented as a single 1millisecond pulse
near the edge of the zero crossing signal. If the flags parameter is present it has the effects shown in

the table below depending on the value of the parameter.

Function Hex Value Bit Mask

Three-phase output &H01 xx xx xx x1
50Hz timing &H02 xx xx xx 1x

If the three-phase output flag bit is asserted, three 1 millisecond pulses will be output during each half-
cycle. The 50Hz timing flag is used to control the phase timing of the three-phase output. If the flag bit is
not asserted, 60Hz timing is utilized. This flag bit is only used when generating three-phase output.

External Circuitry

In order to control X-10 devices, you will need a power line interface device such as the PL513 or the
TW523, both of which are available from a variety of sources. The technical documentation for both
interface devices is available on the Internet. A simplified interface between the ZX and the PL513 is
shown below. Note that this circuit will not work for the TW523. The suggested OEM circuit in the X10
Technical Note, or something similar, should be used.

ZBasic System Library 347 ZBasic Microcontrollers

Simple PL513 Interface

Example

The code below sends the commands to turn on device A1.

Const HouseCodeA as Byte = &H06
Const DeviceCode1 as Byte = &H0c
Const DeviceOn as Byte = &H05

Call X10Cmd(20, 19, HouseCodeA, DeviceCode1, 2)
Call Delay(0.50)
Call X10Cmd(20, 19, HouseCodeA, DeviceOn, 2)

Compatibility

The BasicX documentation indicates that the transmission process is done in the background. On this
implementation X10Cmd() will not return until the transmission is complete. In BasicX compatibility mode

the flags parameter is not supported.

ZBasic System Library 348 ZBasic Microcontrollers

Yield

Type Subroutine

Invocation Yield()

Discussion

This routine is can be called whenever it is desirable to allow another task to run that is ready to run. One
particular situation in which it is useful is at the end of a long process during which UpdateRTC() has
been called one or more times. Normally, when an RTC interrupt occurs a task switch is performed
immediately if the current task’s time slice has expired or i f a task is awaiting the expiration of an interval
and the interval period has elapsed. However, if interrupts are disabled this automatic task switch cannot
be performed. A call to UpdateRTC() will prepare the system for an eventual task switch which is then
triggered by a call to Yield().

Example

See the example at UpdateRTC.

See Also UpdateRTC

ZBasic System Library 349 ZBasic Microcontrollers

ZXCmdMode

Type Subroutine

Invocation ZXCmdMode()

ZXCmdMode(highSpeed)

Parameter Method Type Description
highSpeed ByVal Boolean A flag controlling the communication speed in

command mode.

Discussion

This routine causes the ZX (or generic target device, if using a ZBasic-compatible bootloader) to stop
executing your application and enter “command mode”. When in command mode, the device will
respond to download commands and other special commands. If the highSpeed parameter is specified
and it is True, command mode is invoked and the baud rate of Com1 is changed to 115.2K baud (the

standard download baud rate). If the highSpeed parameter is False or omitted, command mode is
invoked and the baud rate is left unchanged (however, see the Compatability section, below).

Note: for compatibility with the IDE and the zload utility, this subroutine must be invoked with a False or
omitted parameter. The highSpeed parameter is provided in case a custom downloader might require it.

You can use this routine in your application to facilitate downloading triggered by some particular event,
e.g. receipt of a certain character or sequence of characters, the occurrence of an external signal, etc.
You can use the downloader DLL source code (installed as part of ZBasic) to construct a special purpose
downloader for your application. Alternately, if your application detects receipt of an “ATN character” and
then invokes ZXCmdMode(), you can use the ZLoad command line utility or the ZBasic IDE to perform

downloading without needing to have DTR connected to the device.

Example

Call ZXCmdMode()

Compatibility

With VM versions prior to v3.0.4 and with native mode bootloaders prior to v1.4, invoking this subroutine
with a False or omitted parameter results in the baud rate switching to 19.2K, the standard debug baud
rate. In most cases, this change will be insignificant because in order for the download to succeed the
serial channel would be set to 19.2K baud and the Com1 baud rate would be 19.2K baud as well. Since
the new behavior does not change the Com1 baud rate, existing applications should continue to work as
they did before. The new behavior was implemented for compatibility with fixed-speed communication
links such as BlueTooth and XBee. Since the baud rate doesn’t get changed, you can configure your
system for any desirable baud rate and perform downloading over the fixed-speed link.

The VM version can be determined using the SerialNumber() subroutine. The bootloader version
number can be determined using Register.BootVersion.

	Section 1 - Routines by Category
	 Type Conversion Functions
	 Mathematical Functions
	 Memory-related Routines
	 String-related Routines
	 Data Manipulation Routines
	 Serial Communication Routines
	 Queue Management Routines
	 Input/Output Routines
	 Task-related Routines
	 Miscellaneous Routines
	Section 2 - Resource Usage
	 Package Designation Codes
	 UARTs
	 Timers
	 I/O Timer Prescaler Values
	 Timer Output Compare Pin Mapping
	 16-Bit PWM Timers
	 8-Bit PWM Timers
	 Input Capture Timers
	 Output Capture Timers
	 SPI Controllers
	 I2C Controllers
	 Analog-to-Digital Converters
	 Digital-to-Analog Converters
	 Interrupts in General
	 External Interrupts
	 Pin Change Interrupts
	 Analog Comparator Interrupts
	 Interrupt Service Routines
	 Program Memory Page Size
	Section 3 - Processor Speed and Device Configuration Issues
	 Main Clock Frequency (F_CPU)
	 RTC Scale Factor (RTC_SCALE)
	 RTC Fast Tick Frequency (F_RTC_FAST)
	 RTC Tick Frequency (F_RTC_TICK)
	 RTC Timer Frequency (F_RTC_TIMER)
	 TimerSpeed1 Frequency (F_TS1)
	 TimerSpeed2 Frequency (F_TS2)
	Section 4 - Detailed Descriptions of Subroutines and Functions
	 Abs
	 Acos
	 ADCtoCom1
	 Asc
	 Asin
	 Atn
	 Atn2
	 BitCopy
	 BlockMove
	 BusRead
	 BusWrite
	 CallTask
	 CBit
	 CBool
	 CByte
	 CByteArray
	 Ceiling
	 Chr
	 CInt
	 ClearQueue
	 CLng
	 CloseCom
	 CloseDAC
	 CloseI2C
	 ClosePWM
	 ClosePWM8
	 CloseSPI
	 CloseWatchDog
	 CloseX10
	 CNibble
	 Com1toDAC
	 ComChannels
	 Console.Read
	 Console.ReadLine
	 Console.Write
	 Console.WriteLine
	 ControlCom
	 Cos
	 CountTransitions
	 CPUSleep
	 CRC16
	 CRC32
	 CSng
	 CStr
	 CStrHex
	 CType
	 CUInt
	 CULng
	 DAC
	 DACPin
	 Debug.Print
	 DefineBus
	 DefineCom
	 DefineCom3
	 DefineSPI
	 DefineX10
	 DegToRad
	 Delay
	 DelayCycles
	 DelayMicroseconds
	 DelayMilliseconds
	 DelayUntilClockTick
	 DisableInt
	 DrainQueue
	 EnableInt
	 ExitTask
	 Exp
	 Exp10
	 FirstTime
	 Fix
	 FixB
	 FixI
	 FixL
	 FixUI
	 FixUL
	 FlipBits
	 Floor
	 Fmt
	 Fraction
	 FreqOut
	 Get1Wire
	 Get1WireByte
	 Get1WireData
	 GetADC (subroutine form)
	 GetADC (function form)
	 GetBit
	 GetDate
	 GetDateValue
	 GetDayNumber
	 GetDayOfWeek
	 GetDayOfYear
	 GetEEPROM
	 GetElapsedMicroTime
	 GetMicroTime
	 GetNibble
	 GetPersistent
	 GetPin
	 GetProgMem
	 GetQueue
	 GetQueueBufferSize
	 GetQueueCount
	 GetQueueSpace
	 GetQueueStr
	 GetTime
	 GetTimestamp
	 GetTimeValue
	 HiByte
	 HiWord
	 I2CCmd
	 I2CGetByte
	 I2CPutByte
	 I2CStart
	 I2CStop
	 IIf
	 InputCapture
	 InputCaptureEx
	 LBound
	 LCase
	 Left
	 Len
	 LoByte
	 LockTask
	 Log
	 Log10
	 LongJmp
	 LoWord
	 MakeDword
	 MakeString
	 MakeWord
	 Max
	 MemAddress
	 MemAddressU
	 MemCmp
	 MemCopy
	 MemFind
	 MemSet
	 Mid
	 MidWord
	 Min
	 NoOp
	 OpenCom
	 OpenDAC
	 OpenI2C
	 OpenI2CSlave
	 OpenPWM
	 OpenPWM8
	 OpenQueue
	 OpenSPI
	 OpenSPISlave
	 OpenWatchDog
	 OpenX10
	 OutputCapture
	 OutputCaptureEx
	 ParityCheck
	 Pause
	 PeekQueue
	 PersistentPeek
	 PersistentPoke
	 PinHigh
	 PinInput
	 PinLow
	 PinOutput
	 PinRead
	 PinToggle
	 PlaySound
	 PortBit
	 PortMask
	 Pow
	 ProgMemFind
	 PulseIn (subroutine form)
	 PulseIn (function form)
	 PulseOut
	 Put1Wire
	 Put1WireByte
	 Put1WireData
	 PutBit
	 PutDAC
	 PutDate
	 PutEEPROM
	 PutNibble
	 PutPersistent
	 PutPin
	 PutProgMem
	 PutQueue
	 PutQueueByte
	 PutQueueStr
	 PutTime
	 PutTimeStamp
	 PWM
	 PWM8
	 RadToDeg
	 RamPeek
	 RamPeekDword
	 RamPeekWord
	 RamPoke
	 RamPokeDword
	 RamPokeWord
	 Randomize
	 RCTime (subroutine form)
	 RCTime (function form)
	 Reset1Wire
	 ResetProcessor
	 ResetX10
	 ResumeTask
	 Right
	 Rnd
	 RunTask
	 SearchQueue
	 Semaphore
	 SerialGetByte
	 SerialIn
	 SerialNumber
	 SerialOut
	 SetBits
	 SetInterval
	 SetJmp
	 SetQueueX10
	 ShiftIn
	 ShiftInEx
	 ShiftOut
	 ShiftOutEx
	 Shl
	 Shr
	 Signum
	 Sin
	 SizeOf
	 SizeOfU
	 Sleep
	 SngClass
	 Span
	 SPICmd
	 SPIGetByte
	 SPIPutByte
	 SPIGetData
	 SPIPutData
	 SPIStart
	 SPIStop
	 Sqr
	 StackCheck
	 StatusCom
	 StatusQueue
	 StatusTask
	 StatusX10
	 StrAddress
	 StrCompare
	 StrFind
	 StrReplace
	 StrType
	 System.Alloc
	 System.DeviceID
	 System.Free
	 System.HeapHeadRoom
	 System.HeapSize
	 System.TaskHeadRoom
	 Tan
	 TaskIsLocked
	 TaskIsValid
	 Timer
	 To<enum>
	 ToggleBits
	 Trim
	 UBound
	 UCase
	 UnlockTask
	 UpdateRTC
	 ValueI
	 ValueL
	 ValueS
	 VarPtr
	 WaitForInterrupt
	 WaitForInterval
	 WatchDog
	 X10Cmd
	 Yield
	 ZXCmdMode

