ZBasic System Library
Reference Manual

Version4.3.2

Publication History

Copyright © 2005-2015 Elba Corp. Allrights Reserved.

November 2005
May 2006
October 2006
February 2007
August 2007
March 2008
October 2008
January 2009
April 2009

June 2009
January 2010
June 2010
October 2010
March 2011
September 2011
March 2012
January 2013
January 2014
February 2014
February 2015
September 2015

Disclaimer

First publication

Added new routine descriptions, minor corrections

Added new routine descriptions, minor corrections

Added information on new ZX models

Updated for a new ZX model and added new routine descriptions
Updated for new ZX models and added new routine descriptions
Added new routine descriptions

Added information on a new ZX model

Added new routine descriptions, minor corrections

Updated for new ZX models

Updated routine descriptions, added new descriptions
Updated for new ZX models

Updated for new ZX models

Updated for new compiler features

Updated for generic target devices and new routines.

Updated for new compiler features

Updated for new compiler features

Updated for new devices, minor corrections and improvements
Updated for new devices, minor corrections and improvements
Minor corrections and improvements

Minor corrections and improvements

Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular
purpose of the information in this document or the techniques described herein. The
reader assumes the entire responsibility for the evaluation of and use of the information
presented. The Company reserves the right to change the information described herein
at any time without notice and does not make any commitment to update the
information contained herein. No license to use proprietary information belonging to the
Company or other parties is expressed or implied.

Critical Applications Disclaimer

ELBA CORP. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE
OR TOBE USED IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE,
SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS llI
MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS WHERE DEFECT
OR FAILURE COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY,
“CRITICAL APPLICATIONS”). FURTHERMORE, ELBA CORP. PRODUCTS ARE NOT
DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT
CONTROL OF A VEHICLE OR AIRCRAFT. CUSTOMER AGREES, PRIOR TO USING
ORDISTRIBUTING ANY SYSTEMS THAT INCORPORATE ELBA CORP.
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO
THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER
ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF ELBA CORP.
PRODUCTS IN CRITICAL APPLICATIONS.

Trademarks

ZBasic, ZX-24,ZX-24a, ZX-24n, ZX-24p, ZX-24r, ZX-24s, ZX-24t, ZX-24x, ZX-24u, ZX-40, ZX-40a, ZX-40n, ZX-40p,
ZX-40r, ZX-40s, ZX-40t, ZX-44, ZX-44a, ZX-44n, ZX-44p, ZX-44r, ZX-44s, ZX-44t, ZX-328n, ZX-328|, ZX-32n,
ZX-321,ZX-1280, ZX-1280n, ZX-1281, ZX-1281n, ZX-32a4, ZX-128a4u and ZX-128al are trademarks of Elba
Corp.

ZX-24e,ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-24xu, ZX-328nu, ZX-128e, ZX-
128ne, ZX-1281e and ZX-1281ne are trademarks of Oak Micros used under license from Elba Corp.

AVR is a registered trademark of Atmel Corp.

BasicX, BX-24 and BX-35 are trademarks of NetMedia, Inc.

PBasic is a trademark and Basic Stamp is a registered trademark of Parallax, Inc.

Visual Basic is a registered trademark of Microsoft Corp.

Arduino is a trademark of the Arduino Team.

Other brand and product names are trademarks or registered trademarks of their respective owners.

ZBasic System Library iv ZBasic Microcontrollers

Table of Contents

Section 1 - ROULINES DY CAtEQOIYcceiiiieieieieierie e 1
Type CONVEISION FUNCHONS ..ottt bbb 1
MathematiCal FUNCHIONScoiiieieeee ettt nns 1
Memory-related ROULINESooiiiiieciie ettt ettt e b e e e nre e sneesneesneeenree e 2
StrNG-related ROULINESooeeiece ettt re et e e s re e teenaesneenne e 2
Data Manipulation ROULINESc.ccieiiiieieesecee sttt st ae e eneesre e ens 2
Serial CommuNIiCatioN ROUTINEScciiiiiiiieieee et 3
Queue Management ROULINEScooeiieiieiieesee st see st ste et sreesae e ereesneenaesneene e 3
INPUY/OULPUL ROULINES ..ottt sttt e e nae e sseenseeneesneenseeneenrens 4
Task-related ROULINES........cciiieiiereeeeee ettt st te e sseeteeneesneeneeeneenrens 5
MiSCEIIANEOUS ROULINESoitieiieieeiiesie ettt e s et e sseeaesneeneeeneennes 5

SECHON 2 - RESOUICE USAQJEc.eiiiiiiitiiiieie ettt s e r e n bt ese e e e 7
Package Designation COUEScciiiiiririeeeieerie ettt sb e 7
L ISR 8
I L 1T PSS 11
[/O Timer PreSCaler VAlUESccoeiiiiieceeeee et 13
Timer Output Compare Pin MappPinNg......ccceeceeieieeie e esiesee e ssee e see e saesee e ensesns 15
16-Bit PWM TIMEIS ..ottt sttt sttt sttt be st bbb s st e e e e ns 15
B-BIt PWM TIMEIS ...ttt bbbttt bbb bt 18
INPUL CAPLUIE TIMEIS ..ottt bbbttt a et b bbb ne e 20
OULP UL CAPIUIE TIMEIS ...ttt b bbb se e e e e e 22
Y O 0 110] 1= £ RSTRRR 24
2 O O 0T g1 70] 11T £SO 27
ANAlOG-10-Digital CONVEITEIS.....c.e ettt sttt s ee e 28
Digital-to-ANAlog CONVEITEIS.....cccuicieciecie ettt et r e e sreeresneenneas 29
) T g o) SR T CTT =] = | SR 30
EXEEINAT INTEITUPTS ..ottt st e e e s re e s e eneesneenneeneenneas 30
PiN Change INTEITUDPTSeeeiecie ettt ettt sttt e e s te et e e e e sneenseeneenneas 33
Analog Comparator INTEITUDLScc.eceeieeie e e es et ee e e ee e ae e neeaeesaesreennennes 35
INTErTUPT SErvICE ROULINES ..ottt st 36
Program MemoOry PAge SIZE.......cooiiiiieieeeesee e 38

Section 3 - Processor Speed and Device Configuration ISSUESc.cooevererenereenenenn. 39
Main Clock FrequenCy (F_CPU) ..o 40
RTC Scale Factor (RTC_SCALE).......o et 40
RTC Fast Tick Frequency (F_RTC _FAST) .ottt 40
RTC Tick Frequency (F_RTC _TICK) ..ottt 40
RTC Timer Frequency (F_RTC_TIMER)ccociiiieiieie ettt 40
TimerSpeedl FreqUENCY (F_TSL) .ot 40
TimerSpeed2 FreqUENCY (F_TS2) .. ceeeeeeeseeseeee e ste e e nae e e e ens 41

ZBasic System Library iii ZBasic Microcontrollers

Y o O SROR PSSRSO 43
o0 1 R 44
N 15 1@ (01 @0 1 ¢ 1 RS 45
o R 46
AASIN et e e beee—eeabeeateeabeeaheeabeeaheeabeeaheeebeeaheeebeeareeaareeareeereenreens 47
N 1 PR 48
N 1 1RSSR 49
=11 (O] o) 2T TR PRV URRRRR 50
BIOCKIMIOVE ...ttt ettt et e et e st e e st e e s abe e e eabeeeeaseessseesbseesnseeesnseeesnrenans 51
BUSREAM ...ttt ettt e s e e e be e e e st e e e eaae e s eateesbaeesbeeesbeeeanreeens 52
BUSWVIITE ... ettt ettt e et e et e e e b e e s be e e sabeeeeabeeeeabeeeeaseesasseessaeesneeesnseeesnranans 53
(OF= {1 1= 1] SRS OPRRROTR 54
(O =] | RSSO 56
(0350 o] HE SRRSO 57
(O = SRS 58
CBYLEAITAY ..ttt ettt sttt et e et e e h e e bt et e s he e bt e e e e Re e bt e aeesbe et e ennesneennennnenneas 59
(O] 11 o TSP PPTURURPRPRRSOP 60
O o RSSO 61
(O | | 62
ClEANQUEUE ...ttt sttt ettt e s ae et e s aeesbeeneesseenbeeneesbeebeeneesaeensennennseas 63
O I o R RRSPSRIN 64
(04 [0 151=1 o] 1 1 [T PSR OURRROPSRROTR 65
(010 1S1=T B 7 2N OSSOSO 66
(0310 1S1=] 124 GRS OSRPR 67
CIOSEPWIM ...ttt ettt sttt et e s b e et e e e be e et e e ebeesateeebeeeaeeebeesaseenbeesaeesabeesneenanis 68
CIOSEPWIMBS.......cceee ettt ettt ettt e s e et e e s be e s s e e ebeesateeabeesaeeebeesaseeseesaeesnseesaeennnis 69
(O [0 1ST= 3] = SRS 70
ClOSEWAICND O ...ttt bbb b e bttt e e ettt esbe b e nse e ennennas 71
[0 [0 15T =), 1 1O OO RRROPRRRO 72
[0\ 1] o] o] /= TSR 73
(OF0] 1 411 (0] 5 7 AN OSSPSR 74
COMECINANNEIS ...t et e b e e st e e eab e e e saaeeeaeeesseeesaraeen 75
(0F0] 0150 [T = =T= Lo FR RSOOSR 77
(0F0] 0150 (=T = I=T= Lo [N1 TSSOSO 78
(OF0] 0150 LAV AV A 1 (=SSOSO OSSP 79
(OF0] 0150 LAV A A 1 (=] IR = TSP 80
(0] 0110] (@] o 1 FE OO 81
O 01RO OPR PRSPPI 82
COUNETTANSITIONSueiiitiecctee e ctee ettt eeetee e ete e e e ite e e e iteeeeaseesabseesbseesabeeesaseeesasessasseessseesseessnsenans 83
(64 R0 5] (=TT o RSP TPPTUPTURPRURRROPR 84

ZBasic System Library iv ZBasic Microcontrollers

(O 2 (O3 SRS 87
L0 1 0 PRSP 88
O3 1 SRS 89
(O I [PRSP 90
O 1Y, oL PP TRROPRRTRN 91
(410 11 o | OSSR RRUSRURRRRRO 92
40 | oo TR PP PR PROPPUR PSPPI 93
DA C e e — e eh e be e e he e te e eahe e teaaeeabeebeeaeeebeebeereeareenteeaeeareas 94
DA CP Nttt et ettt e e b et e e e be e te e e eheebeeaeeabe e beaaeeabeereereeareentesaeenreas 95
DEDUG . PIINT. ...t b e et 96
[T [TS = T SRR 98
[L= {1 T @ 0o RSP 99
L= 11 0= T O o 1 S S 102
L= 110= 3] SRS 103
1= 11107= 1 OSSR 104
(DT ol 0] = o F TSRS 106
DIBIAY ... ettt b bRt h et e e e nre e 107
DEIAYCYCIES ...ttt e e ne e 108
DElayMICIOSECONMSc.eeiiiirieiterie ettt bbbt e e e nne e 109
DelayMillISECONTScoeiieieetee bbb e e 110
DelayUNtilCIOCKTICKoceeee ettt raesrea e 111
T EST= 0] = [USSP 112
DIAINQUEUEoeeveeree ettt ectee ettt et e e teeete e et e e beesaeeesbeesaeesabeesseesbeesseesabeessesenbeessessnseessnesnsensrenans 113
7= 0] L= o O SS 114
] 1= T OSSR 115
o S 116
Y0 1 1SS 117
e £ 1T = OSSPSR 118
T PSR 119
FIXB ..ottt ettt et e et h e et e et e he e beeaeeehe e teeateehe e beeateeheereeaeeaaeeteeaeenreenns 120
XL ettt et e he e be e e ehe e te et e ahe e beeaeeeheereeaeeeaeeteeneenreenns 121
e SR 122
e (1 1 USRS 123
e | OSS 124
110 = | £SO 125
1T U 126
1 S 127
7= (o (] USROS 128
FIEOOUL ...ttt e e b et s bt e n e n e n e nn s 129
LT AT = USROS 131

ZBasic System Library v ZBasic Microcontrollers

LTy AT T (=] =Y (= SRR 132

LTy AT T (=T - | - TSRS 133
GetADC (SUBIOULINE TOIM) ..eiiiiiciie ettt sttt eeraesneeens 134
GetADC (FUNCHON FOM) ..o st 135
(1] 1=] | SR 136
GEIDALE ... R et R e e e ne e reenneeaa 137
GEIDAEVAIUE.......c.ee ettt e e st et e e se et e sseenaeeneesneenteenennreenes 138
GeIDAYNUMDET ... et e e e 139
GEIDAYOMNVEEK ...t bbbt e et ne e 140
GEIDAYOTY AL ... ettt s b bt bt e e e e 141
GEIEEPROM ...ttt sttt et sttt et be et e e a e e te et e ne e teeneenreenes 142
GetEIAPSEAMICIOTIME ...iiiiiie ettt st e e e b e st e e beesnaeeteesneeans 143
L€ToY 1Y/ [(o 1 0 0TSSR 144
(€72 (1N [] o] o SRS 145
(€T (T (ST} (=] o SRS 146
(€] (| o TSSO 147
GEIPTOGMEIM ...ttt e e bbb e et sn e e b nne s 148
GEIQUEUER ...ttt st sttt sa et e abe e s bt e e et e e sbe e sabeebe e s aeeebeesabeenbeesneeenteennenans 149
GetQUEUEBUTEISIZE ..ot 151
GEIQUEUBCOUNL. ...ttt sttt b e st e be e s st e e be e saseeaeesnaeenbeesaeaea 152
GEIQUEUBSPACEeeiieieiitiete ettt r e bt b e r e s e b e n e nre s 153
GRIQUEUBSII ...ttt e e et e e e e e e e e e e atee e e s e aseeeeesaneeeeseansaeeesansreeeeennnenas 154
LTy] 1= SRR 155
LT Cy T4 1=TS] 7= U g o OSSN 156
GEITIMEVAIUE ...ttt sttt sttt et e bt e b e 157
[]2 (=SSP 158
[LAY 0 o USSP 159
24 @ @4 1 1 o S 160
[2CGEIBYLE ... r e 162
2 @ U 1= PSS 163
12 O3 = | U UTTUR PR 164
12 @357 (0] o ISP 165
PP 166
1o TU (=T o (1 (=R PR 167
INPUECAPIUIEEX ..ttt b e b b e e nane e e nnnee s 168
(112 70T o SRS 170
[O] TSP UROPRPR 171
0 TSRS 172
0 TSP PRSPPI 173
LOBYEE .t e e ne e 174
[0 T0d Q=]SSR 175

ZBasic System Library vi ZBasic Microcontrollers

10T O TSR 177
[0 00 8 10 0 PSSR 178
[0 XYY o o RSP 179
Y E= LS DYoo RSP 180
Y= 1] 1] o U 181
Y= 1T (o S 182
IVLBIX ettt h e R n e e e R e e e e Ee e e e R e e e RE e e e Rr e e e neeenne e e nne e e nnnee s 183
LT gV 0 (o ST 184
MEMAUUIESSU ...ttt re et e et e s se e sesseesaeeaesneesseenseeneeneeenes 185
[T 00O o o PRSP UROPRTR 186
/LT 01O 00)2 RR 187
1Y T=T 0] 1T USROS 188
IMIBIMSEL ...ttt s he e esae e e s e e saeeean e e e Re e enseesneesnneeanneenreennnean 189
1Yo ST 190
Y10 LAY o] o SRS 191
Y SRS 192
N[0 o SRR PSPPSR 193
(@] 1T (@ 0] o o TP PRPRPR 194
OPENDAC ... ettt h b b e E e Rt r e R n e n e ne s 196
OPENIZC ...t 198
OPENIZCSIAVE ...ttt e b e s e e e sbe e saeeebeeanaeetaeareeans 200
OPENPWWM ettt et e et et e et e e st e e e s te e e steeeseeeeaseeeenseeeenbeeesnseeennnes 201
OPENPWWIMBE ...ttt et s b et et e bt et e s be et e et e bt e beeneenre s 202
(@] 01T 0 [@ 10T [SRR 205
(@] 017 155 e SRR 206
OPENSPISIAVE ...ttt e et e sre e aeeaesse e teeneenreenes 208
(@] o1 011V F= U (o] o1 Lo o ISR 209
(@ 07T) Gt TSP PRSPPSO 211
OULPULCAPTUIE ...ttt ettt s e e bt esh e e n e s e e s e e n e e e e nre s 213
OUIPULCAPTUIEE X .. 214
= 11704 1T ol SRR 216
PAIUSE.....cee ettt e e b e e sae e e be e eRe e e be e eneeenneennneereeaneean 217
PEEKQUEUE.......ceeeetee ettt ettt ettt et e st e be e e ae e e beesbeesabeesaeeenbeesbessnseesseesnbeessenans 218
PErISISIENIPEEK ...ttt 219
PEISISIENIPOKE ...ttt nae e 220
PINHIGN .ot b e bbbttt e e e e 221
110 | S 222
0 0 S 223
PINOULPUL ...ttt bbbttt e et b e bbbt e bt e e e e e e et nne e 224
11> Vo SRR 225

ZBasic System Library Vi ZBasic Microcontrollers

T o o T | SRR 226

o F= 1S Y0 1 U] o USROS 227
0] 1571 SOOI 229
POMMASK ...ttt ettt et s e et e e e et e e saaesabeesaeeebeesbeesabeesseesabeesseesnseesseesnrensrenns 230
0SSR 231
PrOgMEMIFING ...t et eae e e neeteeneenneenes 232
Pulseln (SUDIOULING FOMM) ..ccoiuiiiiiiieiee et 233
PulseIn (fUNCHION TOFM) ...t 234
1511 LU | TR 235
U 1 YAV = RO 236
PULLWITEBYLE ...ttt sttt ettt et e s b et e eme e sb e et e e st e sneeeeeneenreenes 237
PULLWITEDALA ...ttt e e et ee e et e s b e e e aa e e ebseesneeesnbeeeenteeeenneeas 238
PULBIT ...ttt ettt e b e et e et e e saee s abeesbeeeabeesbeesabeesbeeenbeesbeesnseesnnesnbensrenns 239
PUIDAC ...ttt ettt et s e e b e e bt e et e e sae e e abeesaeesbeesaeesabeeaseeeabeesbeesnseesseesnbensrenans 240
1D T SR 242
PUIEEPROM ...ttt ettt ettt e st e st e e s ae e s beesaeesabeesseesnbeesaeesnseesnnesnbeesseesns 243
PUENIDDIE. ...ttt ettt be et e eae e ebeetesaeesaeenbeeneesreenns 244
U | Y £ E] (=] LA 245
U £ T 246
PUIPTOGMEIM ... e s n e nnn e 247
PULQUEUE ...ttt sttt ae et e e sae e et e e s ae e e be e saeeenbeeaneeenreesnnaaas 248
PUIQUEUEBBYLE ...ttt ettt e et e st e e ne e e e sa e e snne e e enneeennnee s 249
PUIQUEUBSIT ...ttt e e et e e e et e e e e e e e e eeasaeeesabaeeeeeeasaeeesenreeeesannnneanan 250
P UL TIMIE <ottt et s e et e e s bt e e be e saeeeabeesbeeeabeesheesabeesaeeenbeessessnseessnesnbensrenns 251
U I TSES3 = g] o OSSN 252
PWVIM ettt ettt et e s e et e e s ae e e b e e saee e beesaeeeabeesaeesabeeabeeeabeeeaeesnbeeaaeeenbeeareeaas 253
PWVIMBS ... ottt ettt s e et e e s ae e e be e saee et e e s aeeeabeesbeesabeeaseesnseesaeesnseesseesnteesrenans 254
(=10l o] B L= o TSRS 255
R L Y= R 256
R L g =T=T YY o] o R 257
RAMPEEKWOIU........ooiiieeieee ettt ettt e st e et e e et e e e b e e e eateeebseesbeeesnbeeesnreeesnreens 258
RAMPIOKE ...ttt e e et e e et e e et e e e e be e e st e e easeeebseesseeesnbeeesareesenneens 259
RAMPOKEDWOI........cooueeeeiee ettt e et e e e bee e st e e e eat e e eebseesseeesnbeeeenteeeeaneens 260
RAMPOKEWOIU.........oeicieietee ettt ettt et e stae st sae e s ebe e saeesabeesseeenbeesbeesnseessnesnbeesseeans 261
RANUOIMIZE ...ttt ettt e et e st s e e beesaeeebeesbeesabeesaeesabeesbeesnseessnesnbensrenans 262
RCTIime (SUBrouting fOrM).......c.ece et 263
RCTIime (fuNCtioN fOIM) ...c.eeieececese e 264
ST 0 LAY = S 265
RESEIPTOCESSON ...eiiiiiiee ettt e e e e e e e e e e e s et b e e e e e e e e s sasaabbeeeeeeaeeeaaataraeeeeaaeann 266
RESEIEXLO ...ttt e et e e e e et b e e e e e sab e e e e e e bb e e e e eaabaeeeeaabeeeeeaabaeeeeeaareeeeearraeaaan 267
RESUMEBTASK ...ttt et e et e e et e e e be e e e bee e e b e e eaabeeebseesbeeesnbeeesareeesnneens 268

ZBasic System Library viii ZBasic Microcontrollers

10 USROS 271
RUNTASK ...ttt et e e e eat e e e aee e e beeeeateeeeabeeeneeeesseesnseeesnbeeesnreessnreens 272
SEAINCNQUEUE ...ttt ettt et e et e e sae e s be e s beesseeabeesabeebeesaseebeesasesnseesanesabensseeans 273
Y= 4 F= 0] 0 (=SS 274
YT (1= 1= 1 23 (=SS 275
Y= 1= 11 RO 276
YT (1= 1N 0T 0] o T RO 277
Y=L 1= 1 11 | RO 278
Y=Y 1 =1 £SO 279
SEUNTEIVAL......oeeeeeeeee ettt et e et e e et e e e bt e e e bt e e ebeeeenbeeeenbeeeenteeeenes 280
Y= 8 0 o SRR 281
Y= (0 U ST U1t O SRR 282
10 3 11 S 283
0 11111 = SRS 284
10 4 1 ¥ S 286
] 4L (O LU RO 287
S USROS 289
S USROS 290
STONUIM Lt h et e b bt e e e s b e e s e e ae e st e e e she e e e s an e s n e e n e e e e nne s 291
Y1 USSP 292
Y (=1 @ OSSOSO 293
SHZEOTU ..t e et e et e e et e e et e e e b e e e abe e e bt e e eaaeeebeeeebeeeenreeeaares 294
10 (=T o S S 295
10 110 O = SRS 296
1Y 0= SRR 297
10 [1 o SRS 298
SPIGEIBYLE ..o 300
] | U 1= =SS 301
Y 2d (G111 DT | = VSRRSO PR 302
SPIPULDALAeeeii ettt e e e et e e e et e e e e s e as e e e e e easeeeeseassaeeesannreeeeennnenas 303
] o 5] = T USSR 304
] o 5] (0] o USROS 305
Y o | SRR 306
) r= (61 (O 4 1T RO URRURPOROSRR 307
1Y = 1 LU 5] O] o SR 308
Y r= 1 (0 1S] @ 101 1 309
I = LU S 1= S 310
STATUSKLO ettt e e ettt e e e et e e e e e e abae e e e e abeeeesasseeeeeaasseeeseassaeeesansseeeeennneeas 312
] 17N [0 [(=TSSR 313
Y ((O0] 410 LT PR P TSRS 314

ZBasic System Library iX ZBasic Microcontrollers

SHREPIACE ... e e e ae e reenraaan 316
) (13 1 SRR 317
YY1 (= 1 12N 1o oSS 318
SYSIEM.DEVICEID ...ttt et e e e et e s ae e te e e e s re e teeneenreenes 319
) (=] 0 T (=T SRR 320
System.HeapHEAAROOM.........coiiiiiiiere e 321
SYSIEM.HEAPSIZE ...t bbbttt e e e 322
System. TASKHEAAROOM ..o 323
1= PRSP OPRPRPPRT 324
LI TS24 5 0T 0d (=T o R 325
TASKISVAIT ... ettt s b et et a s 326
L1 41C] USSP PPN 327
IO 1101 10 PRSPPI 328
B0 T0 T | 1= =1 PSS 329
1110 PSSP 330
L8270 o S 331
O [L] PRSPPI 332
O] (o T S 1= L SRS 333
UPAALERTC ...ttt bbbttt e et b e bbbt et e e e e e e 334
RV 101 PSR 335
VAIUBL ...t ettt b et h et et e b e bt e R e et e et naeeaeeneas 336
VAIUBS ...t ettt a e bt h et et nr et e et ne e e eneas 337
RV =4 | ST P PR RPRR 338
ALV T o T] (=T o) PSS 339
WRITFOIINTEIVAL ...ttt nre e 343
LAV = L (o 10 o To 345
S 01 1 4o SRS 346
D =1 (o PSSR 348
20, @4 3110 11/ 0T L= USSR 349

ZBasic System Library X ZBasic Microcontrollers

This page is intentionally blank

ZBasic System Library Xi ZBasic Microcontrollers

System Library Reference

Section 1 - Routines by Category

The ZBasic System Library provides a rich collection comprising hundreds of subroutines and functions
that you can use to add functionality to your application. The routines may be divided into several
conceptual categories as shown below.

Type Conversion Functions

CBit()
CBool ()
CByt e()
CByt eArray()
Cint()
CLng()

CNi bbl e()
CSng()
Cstr()
CSt r Hex()
CType()
CUl nt ()
CuLng()

Fi xB()

Fi x1()

Fi xL()

Fi xUl ()

Fi xUL()
To<enune()

Mathematical Functions

Abs()
Acos()
Asin()

At n()

At n2()

Cei ling()
Cos()
DegToRad()
Exp()
Expl0()

Fi x()

Fl oor ()
Fraction()
Log()
Logl10()
Max()
Mn()
Pow()
RadToDeg()
Si ghum()
Sin()
SngCl ass()
Sar ()
Tan()

ZBasic System Library

convert a value to type Bi t
convert a value to type Bool ean
convert a value to type Byt e

convert an integral value to a reference to a Byt e array

convert a value to type | nt eger
convert a value to type Long
convert a value to type Ni bbl e
convert a value to type Si ngl e
convert a value to type St ri ng

convert a value to a St ri ng containing hexadecimal characters

convert a value to an enumeration member
convert a value to type Unsi gnedl nt eger
convert a value to type Long

convert a Si ngl e value to type Byt e
convert a Si ngl e value to type | nt eger
convert a Si ngl e value to type Long

convert a Si ngl e value to type Unsi gnedl nt eger

convert a Si ngl e value to type Unsi gnedLong

convert a value to an enumeration member

absolute value

arc cosine

arc sine

arc tangent

arc tangent (quadrant-correct)

largest integer not greater than a Si ngl e value
cosine

convert degrees to radians

eX

10"

integer portion of a Si ngl e value

smallest integer not less than a Si ngl e val ue
fractional portion of a Si ngl e value

natural logarithm

common logarithm

determine the largest of two values

determine the smallest of two values

raise a value to a power

convert radians to degrees

determine if a value is negative, zero or positive
sine

return the class information for a Si ngl e value
square root

tangent

ZBasic Microcontrollers

Memory-related Routines

Bi t Copy ()

Bl ockMove()
GetBit()

Get EEPROM)

Get Persi stent ()
Get Proghvem()
MemAddr ess()
MemAddr essU()
MermCnp()
MenCopy ()
MenSet ()

Per si st ent Peek()
Per si st ent Poke()
PutBit ()

Put EEPROM)

Put Per si stent ()
Put Progvem()
RanPeek()
RanPeekDwor d()
RanPeekWor d()
RanPoke()
RanPokeDwor d()
RanPokeWor d()
System Al | oc()
System Free()

Syst em HeapHeadRoom()

Syst em HeapSi ze()
Var Ptr ()

String-related Routines

Asc()

Chr ()

Fnt ()
LCase()
Left()

Len()

M d()

Ri ght ()

St r Address()
St r Conpar e()
StrFind()

St r Repl ace()
StrType()
Trim()
UCase()

Val uel ()

Val uel()

Val ueS()

copy a sequence of bits from one part of RAM to another
copy data from one part of RAM to another

extract a bit from a value in RAM

copy data from Program Memory to RAM

copy data from Persistent Memory to RAM

copy data from Program Memory to RAM
determine the RAM address of a variable
determine the RAM address of a variable

compare two blocks of data in RAM

copy data from one part of RAM to another
initialize a block of memory with a byte value

read a byte from Persistent Memory

write a byte to Persistent Memory

set or clear a bit in a value in RAM

copy data from RAM to Program Memory

copy data from RAM to Persistent Memory

copy data from RAM to Program Memory

read a byte from RAM

read a 32-bit value from RAM

read a 16-bit value from RAM

write a byte to RAM

write a 32-bit value to RAM

write a 16-bit value to RAM

allocate a block of memory

deallocate a block of memory

determine the amount of unused space in the heap
determine the amount of space reserved for the heap
determine the RAM address of a variable

extract a character value from a string

convert a character value to a string

convert a Si ngl e value to a string

convert upper case letters to lower case in a string

return the leftmost characters from a string

determine the number of characters in a string

extract or set a substring in a string

return the rightmost characters from a string

determine the address where string characters are stored
compare two strings, optionally ignoring alphabetic case
search for the first occurrence of a string within a string
replace character sequences in a string

determine the characteristics of a string

remove leading and trailing spaces from a string

convert lower case letters to upper case in a string
convert string characters to the equivalent | nt eger value
convert string characters to the equivalent Long value
convert string characters to the equivalent Si ngl e value

Data Manipulation Routines

Fl i pBits()
Hi Byt e()
Hi Wor d()

ZBasic System Library

reverse the order of bits in a byte
extract the high byte of a value
extract the high word of a value

2 ZBasic Microcontrollers

LoByt e()
LoWor d()
MakeDwor d()
MakeWor d()
MakeString()
M dWor d()
SetBits()
Shl ()

Shr ()

Toggl eBits()

extract the low byte of a value

extract the low word of a value

construct a 32-bit value from two 16-bit values
construct a 16-bit value from two 8-bit values
construct a string from a sequence of bytes
extract the middle two bytes of a 4-byte value
set the state of specified bits in a byte

shift a value to the left

shift a value to the right

change the state of specified bits in a byte

Serial Communication Routines

Debug. Pri nt

Cl oseCom()
ContChannel s()
Consol e. Read()
Consol e. ReadLi ne()
Consol e. Wite()
Consol e. WiteLine()
Cont r ol Com()

Def i neCom()

Def i neConB()
OpenCom()

Serial I n()

Serial Qut ()

St at usCom()

send strings to the debug console

terminate the use of a serial channel

prepare for using multiple serial channels
retrieve a character from the console input queue
retrieve a line from the console input queue

send a string to the console output queue

send a string to the console output queue

specify flow control pins for a serial channel

set the characteristics of a serial channel

set the characteristics of serial Com3

prepare a serial channel for use

read a character from an input pin

send a character or the characters of a string out on a pin
determine the status of a serial channel

Queue Management Routines

Cl ear Queue()

Dr ai nQueue()
Get Queue()

Get QueueBuf fer Si ze()
Get QueueCount ()
Get QueueSpace()
Get QueuesStr ()
OpenQueue()
PeekQueue()

Put Queue()

Put QueueByt e()
Put QueueStr ()
Sear chQueue()
St at usQueue()

Date/Time Routines
Get Dat e()

Get Dat eVdl ue()

Get DayNunber ()

Get Day Of Week ()

Get DayOf Year ()

Get El apsedM cr oTi me()
Get M croTi me()

Get Ti nme()

Get Ti mest anp()

ZBasic System Library

delete data from a queue

delete a number of bytes of data from a queue
retrieve data from a queue

determine the size of the data area of a queue
determine the number of bytes of data in a queue
determine the amount of space available in a queue
populate a string with characters from a queue
prepare a queue for use

copy data from a queue without removing it

put data in a queue

put a byte into a queue

put the characters of a string in a queue

search a queue for a data byte or sequence
determine if a queue has data available

get the month, day, year corresponding to a day number

get the month, day, year corresponding to a day number (packed)
compute the day number corresponding to a day of a year

get the day of the week corresponding to a date value

get the ordinal day of the year corresponding to a date value
compute an elapsed time relative to previous timing data
populate a buffer with high resolution timing data

get the current hour, minute and second

get the current date and time information

3 ZBasic Microcontrollers

Get Ti neVal ue()
Put Dat e()
Put Ti me()

Input/Output Routines

ADCt oComi()
BusRead()
BusWite()

Cl osel 2C()

Cl osePWV)

Cl osePWVB()

Cl 0oseSPI ()

Cl 0seX10()
Conilt oDAC()
Count Transi tions()
DACPI n()

Def i neBus()
Def i neSPI ()
Def i neX10()
FreqQut ()

Get IWre()

Get IW reByt e()
Get 1W reDat a()
Get ADC()

Get Pin()

| 2CCnd ()

| 2CGet Byt e()

| 2CPut Byt e()

| 2CStart ()

| 2CSt op()

| nput Capt ure()
I nput Capt ur eEx()
Openl 2C()
Openl 2CSl ave()
OpensSPI ()
OpensSPI Sl ave()
OpenPWV()
OpenPWVB()
OpenX10()

Qut put Capt ure()
Qut put Capt ur eEx()
Pi nHi gh()

Pi nl nput ()

Pi nLow()

Pi nCut put ()

Pi nRead()

Pi nToggl e()

Pl aySound()
PortBit()

Port Mask()

Pul sel n()

Pul seQut ()

Put IWre()

Put 1W r eByte()
Put 1W r eDat a()

ZBasic System Library

get the current hour, minute and second (packed)
set the current month, day, year
set the current hour, minute and second

stream analog conversion data to Com1

read data from a bus-oriented device

write data to a bus-oriented device

deinitialize an 12C communication channel

deinitialize a 16-bit PWM channel

deinitialize an 8-bit PWM channel

deinitialize an SPI communication channel

deinitialize an X-10 communication channel

receive stream of analog conversion data

count transitions on an input pin

produce an analog wltage on an output pin

specify the parameters for accessing a bus-oriented device
specify the parameters for software-based SPI communication
specify the communication parameters for an X-10 channel
produce a dual-frequency sine wave on an output pin
receive a bit using the 1-Wire protocol

receive a byte using the 1-Wire protocol

receive one or more bytes using the 1-Wire protocol
perform an analog to digital conversion on an input

read the state of an input pin

send/receive data over an 12C channel

receive a byte on an 12C channel

send a byte on an 12C channel

create a Start condition on an 12C channel

create a Stop condition on an 12C channel

record the high/low times of a pulse train on an input pin
record the high/low times of a pulse train on an input pin
prepare for 12C communication with an external device
activate 12C slave mode

prepare for SPI communication with an external device
activate SPI slave mode

prepare for 16-bit PWM generation

prepare for 8-bit PWM generation

prepare an X-10 communication channel for use
produce a pulse train

produce a pulse train on any output pin

set an output pin to the high state

configure a pin as an input

set an output pin to the low state

configure a pin as an ouput

read the logic level present on a pin

set an output pin to the opposite of the current state
reproduce sampled audio on an output pin

compose a designator for a specific bit in an I/O port
compute the bitmask for the port with which a pin is associated
measure a pulse width on an input pin

generate a pulse on an output pin

send a bit using the 1-Wire protocol

send a byte using the 1-Wire protocol

send one or more bytes using the 1-Wire protocol

4 ZBasic Microcontrollers

Put DAC()

Put Pi n()
PWM)

PWVB()

RCTi me()
Reset 1IWre()
Set QueueX10()
Shiftln()

Shi ftlnEx()
Shi ft Qut ()
Shi ft Qut Ex()
SPI Cnd()

SPI Get Byt e()
SPI Get Dat a()
SPI Put Byt e()
SPI Put Dat a()
SPI Start ()
SPI St op()

St at usX10()
X10Cmd()

Put Ti meSt anmp()
Ti mer ()

Task-related Routines
Cal | Task

Di sabl el nt ()

Del ay()

Del ayUnti | C ockTi ck()
Enabl el nt ()

Exi t Task()

LockTask()

Pause()

ResumeTask()
RunTask()

Semaphor e()
SetInterval ()

Sl eep()

St ackCheck()

St at usTask()

Syst em TaskHeadRoom()
Taskl sLocked()

Taskl sval i d()

Unl ockTask()

Updat eRTC()

Wai t Forl nterrupt()
Wai t Forlnterval ()
Yiel d()

Miscellaneous Routines

Cl oseWat chDog()
CPUSI eep()
CRC16()

CRC32()

Del ayCycl es()

ZBasic System Library

produce an analog wltage on an output pin

configure an /O pin

initiate 16-bit PWM generation or change the duty cycle
initiate 8-bit PWM generation or change the duty cycle
measure an RC charge/discharge time

send a reset signal using the 1-Wire protocol

specify an additional queue for low-level X-10 operation
perform synchronous serial input

perform synchronous serial input with more configurability
perform synchronous serial output

perform synchronous serial output with more configurability

perform SPI communication with an external device
retrieve a byte from an SPI slave

retrieve a series of bytes from an SPI slave

send a byte to an SPI slawe

send a series of bytes to an SPI slave

initialize an SPI channel

deinitialize an SPI channel

determine the status of an X-10 communication channel
send commands using the X-10 protocol

set the current date and time information

get the current clock tick value

prepare a task to begin execution

disable interrupts

pause a task

pause a task

conditionally re-enable interrupts

cause a task to terminate

suspend normal task switching

pause a task without relinquishing control
cause a waiting task to resume execution
cause a specific task to run

coordinate the use of a resource

set the interval timer period

pause a task

enable or disable stack checking
determine the status of a task

determine the unused space in a task’s stack
determine if a task is locked

determine if a task stack is in the task list
resume normal task switching

update RTC registers to account for missed ticks
pause a task until an external event occurs
pause a task until an interval timer expires
allow another task to run

deactivate the watchdog timer

cause the CPU to go into sleep mode
compute a 16-bit CRC value

compute a 32-bit CRC value

delay for a specified number of CPU cycles

5 ZBasic Microcontrollers

Del ayM cr oseconds()
Del ayM | | i seconds()
FirstTime()

Get M croTi me()

Get El apsedM croTi me()
[1f()

LBound()

LongJdnp()

NoOp()

OpenWat chDog()
ParityCheck()
Random ze()

Reset Processor ()
Rnd()

Seri al Nurber ()

Set Jnp()

Si zeOf ()

Si zeOF U()

Span()

Syst em Devi cel D()
UBound()

Wat chDog()
ZXCmdNMode()

ZBasic System Library

delay for a specified period of time
delay for a specified period of time

determine if this is the first the program has been run since downloading

populate a buffer with higher precision timing information

determine the elapsed time relative to previous time information

select the value of one of two expressions

determine the lower bound of an array

perform a non-local goto (e.g. for exception handling)
execute a “nop” instruction

activate the watchdog timer

check the parity of a data byte

initialize the random number generator

reset the CPU

retrieve the next random number

retrieve the system software serial number

prepare for a non-local Goto (e.g. exception handling)
determine the size of a data item

determine the size of a data item

determine the number of elements in an array dimension
retrieve the identification characters for the device
determine the upper bound of an array

reset the watchdog timer

activate the “command mode” (for downloading)

6 ZBasic Microcontrollers

Section 2 - Resource Usage

The various ZBasic target devices offer a variety of resources for use in your program, e.g. timers,
interrupts, UART (hardware serial port), analog-to-digital converters, etc. Some of these resources are
allocated to specific functions of ZBasic and/or are used by certain ZBasic System Library routines. The
resources available on a particular target device vary and the remainder of this section documents the
availability for each supported device. Consult the datasheet for the particular target device for detailed
information about the device.

In some of the following sub-sections, resource usage is described separately for ZX devices and generic
target devices. In others, resource usage is described only in terms of the base device and it is thus
necessary to know the base device underlying your particular ZX device; the table below shows the
correspondence.

Base CPU Type for ZX Devices

ZX Device Base CPU Type
ZX-24, ZX-40, ZX-44, ZX-24e mega32
ZX-244a, ZX-40a, ZX-44a, ZX-24ae mega644
ZX-24p, ZX-40p, ZX-44p, ZX-24n, ZX-40n, ZX-44n, mega644P
ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu

ZX-24r, ZX-40r, ZX-44r, ZX-24s, ZX-40s, ZX-44s, megal284P
ZX-24t, ZX-40t, ZX-44t, ZX-24ru, ZX-24su

ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-328nu mega328P
ZX-1280, ZX-1280n megal280
ZX-1281, ZX-1281n, ZX-1281e, ZX-1281ne megal281l
ZX-128e, ZX-128ne megal28
ZX-128al xmegal28A1
ZX-24u, ZX-128a4u xmegal28A4U
ZX-24x, ZX-32a4, ZX-24xu xmega32A4

Package Designation Codes

In the following sub-sections, some of the tables include package designation codes for the different
processor types because the pin assignments vary by package type. The table below gives package
designation codes and the corresponding package types for various devices. Note, particularly, that
suffixes like A, P and PA have been omitted because the package availability is generally the same
irrespective of the suffix.

Package Designation Codes

Code Package Types Device or Family

L44 PLCC-44 mega8515, mega8535

P14 PDIP-14, SOIC-14 tiny24, tiny44, tiny441, tiny84, tiny441, tiny841

P20 PDIP-20, SOIC-20 tiny2313, tiny4313

P28 PDIP-28 tiny48, tiny88, ATmega

P40 PDIP-40 ATmega

Q20 VQFN-20, QFN-20, MLF-20 tiny24, tiny44, tiny441, tiny84, tiny441, tiny841, tiny2313, tiny4313,
tiny1634

S20 TSSOP-20, SOIC-20 tiny87, tiny167, tiny1634

T28 TQFP-28, MLF-28, QFN-28 tiny48, tiny88, ATmega

T32 TQFP-32, MLF-32, QFN-32 tiny48, tiny88, tiny87, tiny167, tiny828, ATmega

T44 TQFP-44, MLF-44, QFN-44 various ATmega. ATxmega

T64 TQFP-64, MLF-64, QFN-64 various ATmega. ATxmega

T100 TQFP-100, MLF-100, QFN-100 various ATmega. ATxmega

ZBasic System Library

7 ZBasic Microcontrollers

UARTS

An on-board hardware serial port, (UART, USART, or LIN/UART), is used for the Com1 serial channel (if
available). By default, the UART is configured to operate at 19,200 baud and is utilized by the System
Library Routines Console.Read, Console.ReadLine, Console.Write, Console.WriteLine and Debug.Print.
You may set the console to a different initial speed using the compiler directive Opt i on Consol eSpeed
(described in the ZBasic Language Reference Manual). You may also reconfigure the UART to a
different speed by using the System Library routine OpenCom, specifying the console channel. The
UART is also used for the ADCtoCom1 and Com1toDAC routines (available only on ATmega-based ZX
devices). In both of these cases, the Com1 speed is automatically configured.

Some target devices have multiple hardware UARTSs. In these cases, one of the UARTSs is assigned to
the Com1 serial channel, another UART is assigned to the Com2 serial channel, etc. as shown in the
tables below. The effect of these assignments is generally only important with respect to which I/O pins
are available for other purposes if the additional hardware USARTSs are not being used. It also will be
important if your program manipulates the UART registers directly.

It is important to note that on the ZX-24p, ZX-24n, ZX-24r and ZX-24s, the Com2 serial channel cannot
be used at the same time as the hardware 12C channel because the pin 11 is shared between the TxD
pin of Com2 and the SDA signal.

Hardware UART Channel Assignment and I/O Pin Usage for ZX Devices

ZX Device UART Channel Tx Pin Rx Pin
ZX-24, ZX-24a USARTO Com1t 1,D.1 2,D.0
ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t USARTO Com1t 1,D.1 2,D.0
USART1 Com2 11, D.3 6, D.2
ZX-40, ZX-40a USARTO Com1l 15, D.1 14, D.0
ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t USARTO Com1l 15, D.1 14, D.0
USART1 Com2 17, D.3 16, D.2
ZX-44, ZX-44a USARTO Com1 10, D.1 9,D.0
ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t USARTO Com1 10, D.1 9, D.0
USART1 Com2 12, D.3 11, D.2
ZX-328n, ZX-328| USARTO Com1l 3,D.1 2,D.0
ZX-32n, ZX-32| USARTO Com1l 31, D.1 30, D.O
ZX-1281, ZX-1281n USART1 Com1l 28,D.3 27,D.2
USARTO Com2 3,E.1 2,E.O0
ZX-1280, ZX-1280n USARTO Com1 3,E.1 2, E.O
USART1 Com?2 46, D.3 45, D.2
USART?2 Com7 13, H.1 12, H.0
USART3 Com8 64, J.1 63, J.0
ZX-24x, ZX-24u USARTDO Com1t 1, D.3 2,D.2
USARTD1 Com?2 D.7 D.6

USARTCO Com7 9,C3 10, C.2
USARTC1 Com8 5, C7 6, C.6
USARTEO Com9 19, E.3 18, E.2
ZX-32a4, ZX-128a4u USARTDO Com1l 23,D.3 22,D.2
USARTD1 Com2 27, D.7 26, D.6
USARTCO Com7 13, C.3 12, C.2
USARTC1 Com8 17, C.7 16, C.6
USARTEO Com9 33, E.3 32, E.2
ZX-128al USARTDO Coml 28, D.3 27,D.2
USARTD1 Com2 32, D.7 31, D.6
USARTCO Com7 18, C.3 17, C.2
USARTC1 Com8 22, C.7 21,C.6
USARTEO Com9 38, E.3 37, E.2
USARTE1 Coml1l0 42, E.7 41,E.6
USARTFO Comll 48, F.3 47, F.2
USARTF1 Coml2 52, F.7 51, F.6

ZBasic System Library 8 ZBasic Microcontrollers

ZX-24e, ZX-24ae USARTO Com1t 1, D.1 2,D.0

ZX-24ne, ZX-24pe USARTO Com1t 1,D.1 2,D.0
USART1 Com2 17, D.3 18, D.2
ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su USARTO Com1l 1,D.1 2,D.0
USART1 Com2 17, D.3 18, D.2
ZX-24xu USARTDO Coml 1,D.3 2,D.2

USARTD1 Com2 13, D.7 14, D.6
USARTCO Com7 9, C3 10, C.2
USARTC1 Com8 5, C7 6, C.6
USARTEO Com9 21, E3 22,E.2

ZX-328nu USARTO Com1l 19, D.1 20, D.0
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne USARTO Com1?! 19, E.1 20, E.O
USART1 Com?2 9, D.3 10, D.2

1For these devices, the Com1 signals are logically inverted.

Hardware UART Channel Assignment and 1/0O Pin Usage for Generic Target Devices

Target Device Pkg. UART Chan. Tx Pin Rx Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny48, all - - - -
tiny88
tiny87, tiny167 S20 LINJUART Coml 2,A.1 1,A0
T32 LINJUART Coml 30,A.1 29, A0
tiny2313, tiny2313A, tiny4313 P20 USARTO Coml 3,D.1 2,D.0
Q20 USARTO Coml1 1,D.1 20,D.0
tiny828 T32 USARTO Coml 2,C3 1,C.2
tiny441, tiny841 S14 USARTO Coml 12, A1 11,A.2

USART1 Com2 8,A5 9, A4

Q20 USARTO Coml 4,A.1 3,A2

USART1 Com2 20,A5 1,A4

tiny1634 S20 USARTO Coml 1,B.0 2, A7

USART1 Com2 19,B.2 20,B.1

Q20 USARTO Coml 19,B.0 20, A.7

USART1 Com2 17,B.2 18, B.1

megal6, megal6A, mega32, mega32A, P40 USARTO Coml 15,D.1 14,D.0
mega644, mega644A

T44 USARTO Coml 10,D.1 9,D.0
megal64A, megal64P, megal64PA, mega324P, P40 USARTO Coml 15,D.1 14,D.0
mega324PA, mega644P, mega644PA, megal284P

USART1 Com2 17,D.3 16, D.2
T44 USARTO Coml 10,D.1 9,D.0
USART1 Com2 12,D.3 11,D.2
mega48, megad48A, megad48P, megad48PA, mega48PB P28 USARTO Coml 3,D.1 2,D.0
mega8, mega8A, mega88, mega88A, mega88P,
mega88PA, mega88PB, megal68, megal68A,
megal68P, megal68PA, megal68PB, mega32s,
mega328P, mega328PB

T29 USARTO Coml 27,D.1 26, D.0

T32 USARTO Coml 31,D.1 30,D.0
(mega328PB only) T32 USART1 Com2 15,B.3 16,B.4
mega64, mega64A, megal28, megal28A, megal281, T64 USARTO Coml 3,E1 2 E.O
mega2561, AT90CAN32, ATO9OCANG4, AT90OCAN128

USART1 Com2 28, D.3 27,D.2
mega640, megal280, mega2560 T100 USARTO Coml 3,E.1 2,E.O0

USART1 Com2 46,D.3 45,D.2

USART2 Com7 13,H.1 12, H.0

USART3 Com8 64,J.1 63,J0
mega8U2, megal6U2, mega32U2, T32 USART1 Coml 9,D.3 8,D.2
ATI90USB82, ATO0USB162

ZBasic System Library 9 ZBasic Microcontrollers

megal6U4, mega32U4 T44 USART1 Coml 21,D.3 20,D.2
mega8515, mega8535 P40 USARTO Coml 15,D.1 14,D.0
T44 USARTO Coml 10,D.1 9,D.0
L44 USARTO Coml 13,D.1 11, D.0

megal6l P40 USARTO Coml 11,D.1 10,D.0
T44 USARTO Coml 8,D.1 4,D.0
megal6?2 P40 USARTO Coml 11,D.1 10, D.0

USART1 Com2 4,B.3 3,B.2
T44 USARTO Coml 8,D.1 7,D.0
USART1 Com2 43,B.3 42,B.2

megal63, mega323 P40 USARTO Coml 15,D.1 14,D.0
T44 USARTO Coml 10,D.1 9,D.0
megal65, megal65A, megal65P, megal65PA, T64 USARTO Coml 2,E.1 3,E.O

mega325, mega325P, mega645, mega645A,

mega645P, megal69, megal69A, megal69P,

megal69PA, mega329, mega329P, mega329PA,

mega649, mega649A, mega649P

mega3250, mega3250P, mega6450, mega6450A, T100 USARTO Coml 2,E.1 3, E.O
mega6450P, mega3290, mega3290P, mega6490,

mega6490A, mega6490P

AT90USB646, ATO0USB647, T64 USART1 Coml 28,D.3 27,D.2
ATI90USB1286, ATO0USB1287
xmegaAl, xmegaAlU T100 USARTDO Coml 28,D.3 27,D.2

USARTD1 Com2 32,D.7 31,D.6
USARTCO Com7 18,C.3 17,C.2
USARTC1 Com8 22,C.7 21,C.6
USARTEO Com9 38,E.3 37,E.2
USARTE1 Coml0 42,E.7 41,E.6
USARTFO Coml1l 48, F.3 47,F.2
USARTF1 Coml12 52, F.7 51, F.6
xmegaA3, xmegaA3B, xmegaA3U, xmegaA3BU T64 USARTDO Coml 29,D.3 28, D.2
USARTD1 Com2 33,D.7 32, D.
USARTCO Com7 19,C.3 18,C.2
USARTC1 Com8 23,C.7 22,C.6
USARTEO Com9 39,E.3 38,E.2
xmegaA4, xmegaA4U T44 USARTDO Coml1l 23,D.3 22,D.2
USARTD1 Com2 27,D.7 26, D.6
USARTCO Com7 13,C.3 12,C.2
USARTC1 Com8 17,C.7 16, C.6
USARTEO Com9 33,E.3 32,E.2

xmegaD3 T64 USARTDO Coml 29,D.3 28,D.2
USARTCO Com2 19,C.3 18,C.2
xmegaD4 T44 USARTDO Coml 23,D.3 22,D.2

USARTCO Com2 13,C.3 12,C.2

For native code devices, the table below indicates which ISRs may be automatically included in your
application when OpenCom() is used in your program. In the ISR Name column, the symbol # should be
replaced with the corresponding USART indicator (e.g. 0 for ATtiny and ATmega or DO for ATxmega) and
the symbol * should be replaced by the software UART timer indicator (see the Timers section). If the
compiler cannot determine which specific channel is being opened, ISRs for all channels will be included.

ZBasic System Library 10 ZBasic Microcontrollers

ISRs Required for Serial Channels

Target CPU Com Channel ISR Name
tiny87, tiny167 Coml LIN_TC
Com3-Com6 Ti mer 0_ConpA

tiny2313, tiny2313A, Com1, Com2
tiny4313, tiny828, tiny441, Com3-Com6
tiny841, tiny1634

USART#_RX, USART#_TX, USART#_UDRE
Ti mer 0_ConpA

all other ATtiny Com3-Com6 Ti mer * _ConpA
all ATmega Com1, Com2, Com7, Com8 USART# RX, USART# TX, USART#_ UDRE
Com3-Com6 Ti mer * _ConpA

all ATxmega
Com3-Com6

Com1, Com2, Com7-Com12

Ti mer* _CCA

USART#_RXC, USART#_TXC, USART#_DRE

Note, particularly, that if the console (typically Com1l) is implicitly opened for an application, the ISRs for
the console channel will be included in the application even if OpenCom() is not explicitly invoked. The

console channel is implicitly opened by default for all ZX devices but not so for generic target devices.

Timers

ZBasic devices generally have multiple timers, depending on the underlying CPU type, that are used for
various purposes. One of the timers is (optionally) used to implement the real time clock (RTC), another
is used for the software-based serial ports and a third timer is used to provide the precise timing required
for certain I/O routines. The specific timer that is used for a particular function varies depending on the

underlying CPU type as shown in the table below.

Timer Usage by Target Device

RTC /0 Serial PWM8 PWM 16 Input Output
Target Device Timer Timer Timer Timer Timer Capt. Capt.
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A Timer0 Timerl TimerO Timer0O Timerl Timerl Timerl
tiny48, tiny88 TimerO0 Timerl TimerO - Timerl Timerl Timerl
tiny87, tiny167, tiny2313, tiny2313A, tiny4313, Timer0 Timerl TimerO TimerO0 Timerl Timerl Timerl
tiny828, tiny1634
tiny441, tiny841 Timer0 Timerl TimerO TimerO Timerl Timerl Timerl
Timer2 Timer2 Timer2
mega8, mega8A Timer2 Timerl Timer2 Timer2 Timerl Timerl Timerl
mega48, megad48A, megad8P, megad8PA, Timer0 Timerl Timer2 Timer2 Timerl Timerl Timerl
mega48PB, mega88, mega88A, mega88P,
mega88PA, mega88PB, megal68, megal68A,
megal68P, megal68PA, megal68PB,
mega328, mega328P, mega328PB
megal6, megal6A, megal64A, megal64P, Timer0 Timerl Timer2 Timer2 Timerl Timerl Timerl
megal64PA, mega32, mega32A, mega324P,
mega324PA, mega644, megab44A,
mega644P, mega644PA, mega8535
megal284P Timer0 Timer3 Timer2 Timer2 Timerl Timerl Timerl
Timer3 Timer3 Timer3
mega8515 Timer0 Timerl TimerO TimerO Timerl Timerl Timerl
megal6l Timer0 Timerl Timer2 Timer2 - Timerl Timerl
megal62 Timer0 Timer3 Timer2 Timer2 Timerl Timerl Timerl
Timer3 Timer3 Timer3
megal63 Timer2 Timerl Timer2 Timer2 - Timerl Timerl
mega323 Timer0 Timerl Timer2 Timer2 - Timerl Timerl
megal65, megal65A, megal65P, Timer0 Timerl Timer2 Timer2 Timerl Timerl Timerl
megal65PA, mega325, mega325P,
mega645, mega645A, mega645P,
megal69, megal69A, megal69P,
megal69PA, mega329, mega329P,
ZBasic System Library 11 ZBasic Microcontrollers

mega329PA, mega649, mega649A, mega649P

mega3250, mega3250P, Timer0 Timerl Timer2 Timer2 Timerl Timerl Timerl
mega6450, mega6450A, mega6450P,

mega3290, mega3290P,

mega6490, mega6490A, mega6490P

megal281l, mega2561 Timer2 Timer4 TimerO TimerO Timerl Timerl Timerl
Timer3 Timer3 Timer3
mega64, megab4A, megal28, megal28A TimerO Timerl Timer2 Timer2 Timerl Timerl Timerl
Timer3 Timer3 Timer3
mega640, megal280, mega2560 Timer2 Timer4 TimerO TimerO Timerl Timerl Timerl

Timer3 Timer3 Timer3
Timer4 Timer4 Timer4
Timer5 Timer5 Timer5

mega8U2, megal6U2, mega32U2, Timer0 Timerl TimerO Timer0 Timerl Timerl Timerl

AT90USB82, ATO0USB162

megal6U4, mega32U4 Timer0 Timer3 Timer4 Timer4 Timerl Timerl Timerl
Timer3 Timer3 Timer3

AT90CAN32, AT90CANG4, AT90CAN128, Timer2 Timer3 TimerO Timer0 Timerl Timerl Timerl

ATI0USB646, AT90USB647, AT90USB 1286, Timer3 Timer3 Timer3

AT90USB1287

xmegaAl, xmegaAlU TimerC1 TimerF1 TimerD1 - TimerCO TimerCO TimerCO

TimerDO TimerDO TimerDO
TimerD1 TimerD1 TimerD1
TimerEO TimerEO TimerEO
TimerE1l TimerEl TimerE1l
TimerFO TimerFO TimerFO
TimerF1 TimerF1 TimerF1

xmegaA3, xmegaA3U, TimerC1 TimerEl TimerD1 - TimerCO TimerCO TimerCO
xmegaA3B, xmegaA3BU TimerDO TimerDO TimerDO
TimerD1 TimerD1 TimerD1
TimerEO TimerEO TimerEO
TimerEl TimerEl TimerEl
TimerFO TimerFO TimerFO

xmegaA4, xmegaA4U TimerC1 TimerEO TimerD1 - TimerCO TimerCO TimerCO
TimerDO TimerDO TimerDO
TimerD1 TimerD1 TimerD1
TimerEO TimerEO TimerEO

xmegaD3 TimerC1 TimerFO TimerDO - TimerCO TimerCO TimerCO
TimerDO TimerDO TimerDO
TimerEO TimerEO TimerEO
TimerFO TimerFO TimerFO

xmegaD4 TimerCl TimerEO TimerDO - TimerCO TimerCO TimerCO
TimerDO TimerDO TimerDO
TimerEO TimerEO TimerEO

When used, the RTC Timer is configured to generate an interrupt that is used to update the RTC and to
trigger task switching. Because its role is so central, the RTC Timer (if enabled) cannot be used for any
other purpose. The I/O Timer is used by several I/O related routines as explained in more detail below.
The Serial Timer is used to generate interrupts to implement the timing required for serial channels Com3
to Comé6. If none of the channels 3-6 are open, the Serial Port Timer can be used for other purposes in
your program. Timers are also used for some specialized I/O functions as indicated in the table above.

On ATtiny and ATmega targets, the Serial timer is also used for 8-bit PWM generation. Consequently,
use of 8-bit PWM and use of Com3 to Com6 are mutually exclusive. On some target devices, the same
timer is indicated for both the RTC and the Serial/8-bit PWM functions. For these devices, the application
can employ the RTC or the Serial/8-bit PWM functions but not both.

For each timer, there exists a built-in variable that indicates when the timer is in use. For example,
Regi st er. Ti ner 0Busy and Regi st er. Ti mer C1Busy are Boolean values that indicate when TimerO

ZBasic System Library 12 ZBasic Microcontrollers

(ATtiny, ATmega) and TimerC1 (ATxmega), respectiwely, are in use. Prior to using a timer, the ZBasic
System Library code checks the value of this variable to see ifit is already being used. Ifitis not in use,
the system sets the flag to Tr ue and then proceeds to use the timer. When it is finished using the timer,
the system sets the busy flag to Fal se.

Your appplication may do the same by passing the Register variable as a parameter to the Semaphore()
function in order to get exclusive access to the timer. Of course, you must set timer busy flag to Fal se
when your code is finished with the timer to indicate that the timer is no longer in use. Likewise, you may
want to acquire a semaphore on a timer busy flag for the /O Timer before calling a System Library routine
that uses I/O Timer. If you succeed in setting the semaphore you’'ll know that the timer is not already in
use. An example of code for this purpose (for ZBasic devices that use Timerl for the I/O Timer) is shown
below.

"wait until the tinmer is available

Do While (Not Semaphore(Register. Ti mer 1Busy))
Call Sleep(0.5)

Loop

use the tiner

Cal | LockTask()

Regi ster. Ti ner 1Busy = Fal se
Call shiftQut(12, 13, 8, &H55)
Cal | Unl ockTask()

Note, particularly, the line immediately before the call to Shi ft Qut (). After the semaphore is acquired
Regsi st er. Ti mer 1Busy will be True. Unless it is setto Fal se, the call to Shi ft Qut () will fail
because that subroutine will think that the timer is in use.

Caution: setting the busy flag for a timer to Tr ue and never setting it back to Fal se will prevent the
proper functioning of all System Library routines that require that timer.

I/O Timer Prescaler Values

Some of the System Library routines that use the I/O Timer allow you to modify the frequency used to
clock the timer while others use a fixed frequency determined by the requirements of the routine. The
routines that do allow frequency modification are divided into two groups, one controlled by the value of
Regi st er. Ti mer Speedl and the other controlled by the value of Regi st er. Ti mer Speed2. The
table below shows the System Library routines that use a timer and, where applicable, the timer speed
variable that controls the timer frequency.

System Library Routines Using TimerSpeed Values
Routine TimerSpeed Value
ADCt oComil ()

Comlt oDAC()

Count Transi tions() Ti
FreqQut ()

Get IWre()

Get IWreByte()

Get 1W r eDat a()

nmer Speedl

I 2CCnd() © Ti mer Speedl
| 2CGet Byt e() © Ti mer Speedl
| 2CPut Byt e() * Ti mer Speedl
I nput Capt ure() Ti mer Speedl
I nput Capt ur eEx() Ti mer Speedl
Qut put Capt ure() Ti mer Speedl
Qut put Capt ur eEx() Ti mer Speedl
OpenPWM()

OpenPWVB()

ZBasic System Library 13 ZBasic Microcontrollers

RCTi me() Ti mer Speed?2?
Pl aySound()

Pul sel n() Ti mer Speed?2?
Pul seCut () Ti mer Speed2?
Put IW re()

Put 1W r eByt e()

Put 1W r eDat a()

PWM()

PWB()

Reset 1IW re()

Shiftln() Ti mer Speedl
Shi ft1nEx() Ti mer Speedl
Shi ft Qut () Ti mer Speedl
Shi ft Qut Ex() Ti mer Speedl
SPI Cnd() © Ti mer Speed1
X10Cnd()

Notes:

1) The timer frequency is scaled in some cases. See below.
2) The timer is used only for software based channels.

The table below shows the correspondence between the allowable values for the TimerSpeed registers
and the resulting clock frequency applied to the I/O Timer in terms of the CPU frequency. The divisor
specified is applied to the CPU clock frequency to yield the I/O Timer clock frequency. For compatibility
with Basic X (but only for ZX processors running at 14.7456MHz), some of the routines effectively divide
the timer frequency by 2 so that the time units associated with parameters or return values are preserved.
If you change the timer speed setting, the scale factor is still applied.

TimerSpeed Selector Values

TimerSpeed Frequency Frequency

Value ATtiny, ATmega ATxmega
0 0 0
1 FCPU/ 1 FCPU/ 1
2 F CPU/ 8 F CPU/ 2
3 F CPU/ 64 F CPU/ 4
4 F CPU / 256 F CPU/ 8
5 F CPU / 1024 F CPU/ 64
6 External T1 F CPU / 256
7 External T2 F CPU / 1024

8-15 n/a Event 0-7

The default values of Regi st er. Ti mer Speedl and Regi st er. Ti mer Speed2 are shown in the table
below.
Default TimerSpeed Values

CPU Family TimerSpeedl TimerSpeed?2
ATmega, ATtiny 1 2
ATxmega 2 4

Note that setting the value of either of the timer speed registers other than by direct assignment using an
assignment statement will produce undefined results.

There are several important facts to keep in mind if you modify either of the timer speed values. Firstly,
the timer speed values are initialized by the system when it begins running and they are never modified
by the system thereafter. If you change a timer speed value, that value will be used by all of the related
System Library routines until you change it again. Secondly, the applicable TimerSpeed value is used
during the configuration and setup of each I/O function. If you change the TimerSpeed value after a
particular I/O function is configured, the change will not affect I/O functions configured before that change.

ZBasic System Library 14 ZBasic Microcontrollers

Note, also, that values returned by some of the System Library routines are scaled based on the default
timer speed values. If you change the timer speed setting, you'll have to apply an additional scale factor
in order to get the correct results. For example, if you set Regi st er. Ti mer Speed?2 to 3 on an ATmega-
based device running at 14.7MHz and then call the subroutine Pul sel n(), a pulse having a width of
100y S will return the value of approximately 12.5) S since the clock speed that you specified is 1/8 that of
the default. In order to get the correct pulse width, in seconds, you will have to multiply the value returned
by 8. Those return values that are not scaled to seconds represent a number of periods of the timer
frequency. So, for example, if you change Regi st er. Ti mer Speedl to 2 on an ATmega-based device
running at 14.7MHz, the values returned by | nput Capt ur e() represent units of 542nS instead of the

default 67.8nS.

Timer Output Compare Pin Mapping

For those devices that support mapping of timer compare outputs to physical pins, the table below shows
the default mapping. You can specify a different mapping for your application by using the device
configuration parameter Ti mer OCPi n. See the description of this device parameter in the ZBasic

Lanugage Reference Manual.

Default Output Compare Pin Mapping

Device

Timer Compare
Output

TOCCn

tiny828

OCOA

0

0oCoB

CC1A

OoC1B

tiny441, tiny841

OCOA

0oCo0B

OC1A

OC1B

OC2A

oc2B

N W O N Ol N O~

> > > m > > 00000
W B~ N oo N o~ oS

16-Bit PWM Timers

The tables below give the set of valid 16-bit PWM channels, the associated timer, and the corresponding
output pin for each channel. See OpenPWM for the details of setting up a 16-bit PWM output.

16-bit PWM Timers, Channels and Pins for ZX Devices

ZX Device Timer Chan. Pin Chan. Pin Chan. Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n Timerl 1 26,D.5 2 27,D.4
ZX-24e, ZX-24ae, ZX-24ne, Timerl 1 15, D.5 2 16,D4
ZX-24pe, ZX-24nu, ZX-24pu
ZX-40, ZX-40a, ZX-40p, ZX-40n Timerl 1 19,D.5 2 18,D.4
ZX-44, ZX-44a, ZX-44p, ZX-44n Timerl 1 14,D.5 2 13,D.4
ZX-24r, ZX-24s, ZX-24t Timerl 1 26,D.5 2 27,D.4
Timer3 3 B.6 4 B.7
ZX-24ru, ZX-24su Timerl 1 15,b5 2 16,D.4
Timer3 3 22,B6 4 21,B.7
ZX-40r, ZX-40s, ZX-40t Timerl 1 19,D5 2 18,D4
Timer3 3 7, B.6 4 8, B.7
ZX-44r, ZX-44s, ZX-44t Timerl 1 14,D.5 2 13,D4
Timer3 3 2,B.6 4 3,B.7
ZX-328n, ZX-328l Timerl 1 15,B.1 2 16,B.2
ZX-32n, ZX-32I Timerl 1 13,B.1 2 14,B.2
ZX-328nu Timerl 1 12,B.1 2 13,B.2
ZBasic System Library 15 ZBasic Microcontrollers

ZX-1281, ZX-1281n Timerl 1 15,B.5 2 16,B.6 3 17, B.7
Timer3 4 5 E.3 5 6, E.4 6 7, E.5
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne Timerl 1 23,B5 2 22,B6 3 21,B.7
Timer3 4 17,E3 5 16,E4 5 16, E.5
ZX-1280, ZX-1280n Timerl 1 24B5 2 25B6 3 26, B7
Timer3 4 5 E.3 5 6, E.4 6 7, E.5
Timer4 7 15,H3 8 16,H4 9 17, H.5
Timer5 10 38,L.3 11 39,L4 12 40,L5
ZX-24x, ZX-24u TimerDO 1 26D0 2 27,D1
TimerD1 3 D.4 4 D.5
TimerCO 5 12,C0 6 11,C1
7 10,C.2 8 9, C3
TimerEOQ 9 25 EO0 10 17,E.1
11 18,E.2 12 19,E.3
ZX-32a4 TimerDO 1 20,D.0 2 21,D1
TimerD1 3 24,D4 4 25D5
TimerCO 5 10,C0 6 11,C.1
7 12,C.2 8 13,C3
TimerEOQ 9 28,E.0 10 29,E.1
11 32,E.2 12 33,E.3
ZX-24xu TimerDO 1 20,D.O0 2 19,D1
TimerD1 3 16,D.4 4 15,D.5
TimerCO 5 12,C.0 6 11,C1
7 10,C2 8 9, C3
TimerEOQ 9 24,E.0 10 23,E.1
11 11,E2 12 12,E.3
ZX-128al TimerDO 1 25D0 2 26D1
TimerD1 3 29,D4 4 30,D5
TimerCO 5 15,C.0 6 16,C.1
7 17, C.2 8 18,C.3
TimerEOQ 9 35 EO0 10 36,E.1
11 37,E.2 12 38,E.3
TimerEl 13 39,E.4 14 40,E.5
TimerFO 15 45, F.0 16 46, F.1
17 47,F.2 18 48, F.3
TimerF1 19 49,F.4 20 50, F.5
16-bit PWM Timers, Channels and Pins for Generic Target Devices
Target Device Pkg. Timer Chan. Pin Chan. Pin Chan. Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timerl 1 7,A6 2 8 A5
Q20 Timerl 1 16,A6 2 20,A.5
tiny48, tiny88 P28 Timerl 1 15,B.1 2 16,B.2
T28 Timerl 1 11,B.1 2 12,B.2
T32 Timerl 1 13,B.1 2 14,B.2
tiny441, tiny841~ S14 Timerl 1 5B2 2 6 A7
Timer2 3 9 A4 4 10,A3
Q20 Timerl 1 14B2 2 15 A7
Timer2 3 1,A4 4 2 A3
tiny87, tiny167 S20 Timerl 1 20,B0 2 19,B.1
T32 Timerl 1 28,B0O0 2 27,B.1
tiny2313, tiny2313A, tiny4313 P20 Timerl 1 15,B.3 2 16,B.4
Q20 Timerl 1 13,B3 2 14,B4
tiny828" T32 Timerl 1 7,C6 2 8,C7
tiny1634 S20 Timerl 1 18,B.3 2 3,A6
Q20 Timerl 1 16,B.3 2 1,A6
mega48, mega48A, megad8P, mega48PA, P28 Timerl 1 15,B.1 2 16,B.2

mega48PB, mega88, mega88A, mega88P,
mega88PA, mega88PB, megal68, megal68A,

ZBasic System Library 16 ZBasic Microcontrollers

megal68P, megal68PA, megal68PB,
mega328, mega328P, mega328PB

T28 Timerl 1 11,B.1 2 12,B.2
T32 Timerl 1 13,B.1 2 14,B.2
(mega328PB only) T32 Timer3 3 30,D.0 4 32,D.2
(mega328PB only) T32 Timer4d 5 31,D1 6 32,D.2
megal6, megal6A, mega32, mega32A, P40 Timerl 1 19,D5 2 18,D4
mega644, mega644A, megal64A, megal64P,
megal64PA, mega324P, mega324PA,
mega644P, mega644PA
T44 Timerl 1 14,D5 2 13,D4
megal284P P40 Timerl 1 19,D5 2 18,D4
Timer3 3 7,B6 4 8,B7
P44 Timerl 1 14,D5 2 13,D4
Timer3 3 2,B6 4 3,BY
mega64, mega64A, megal28, megal28A, T64 Timerl 1 15,B5 2 16,B.6 3 5 E.3
megal281, mega2561, AT90OCAN32, Timer3 4 17,B.7 5 6,E4 6 7,E.5
AT90CANG64, AT90CAN128
AT90USB646, ATO0USB647, T64 Timerl 1 15,B5 2 16,B6 3 17,B.7
ATI0USB1286, ATOOUSB1287 Timer3 4 41,C6 5 40,C5 6 39,C4
mega640, megal280, mega2560 T100 Timerl 1 24B5 2 25B6 3 26, B.7
Timer3 4 5E3 5 6,E4 6 7,E.5
Timer4 7 15,H3 8 16,H4 9 17,H5
Timer5 10 38,L.3 11 39,L4 12 40,L.5
mega8U2, megal6éU2, mega32U2 T32 Timerl 1 23,C6 2 25C5 3 12,B.7
ATI0USB82, ATOOUSB162
megal6éU4, mega32U4 T44 Timerl 1 29,B5 2 30,B.6 3 21,B.7
Timer3 4 31,C.6
mega8515 P40 Timerl 1 15 D5 2 29 E.2
T44 Timerl 1 11,D5 2 26,E.2
L44 1 17,5 2 32,E.2
mega8535 P40 Timerl 1 19,D5 2 18,D.4
T44 Timerl 1 14,D5 2 13,D4
L44 Timerl 1 20,D5 2 19,DA4
megal62 P40 Timerl 1 19,D5 2 29,E.2
Timer3 3 14,D4 4 5/B4
T44 Timerl 1 11,D5 2 26,E.2
Timer3 3 10,D4 4 44, B4
megal6l, megal63, mega323 all -
megal65, megal65A, megal65P, megal65PA, T64 Timerl 1 15B5 2 16.B.6
mega325, mega325P, mega645, megab45A,
mega645P, megal69, megal69A, megal69P,
megal69PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P
mega3250, mega3250P, mega6450, T100 Timerl 1 24,B5 2 25.B.6
mega6450A, mega6450P, mega3290,
mega3290P, mega6490, mega6490A,
mega6490P
xmegaAl, xmegaAlU T100 TimerDO 1 25,D.0 2 26,D.1
TimerD1 3 29,D4 4 30,D.5
TimerCO 5 15,C0 6 16,C.1
7 17,C2 8 18,C.3
TimerEO 9 35, E.0 10 36,E.1
11 37,E.2 12 38,E.3
TimerEl 13 39,E.4 14 40,E.5
TimerFO 15 45,F.0 16 46, F.1
17 47,F.2 18 48, F.3
ZBasic System Library 17 ZBasic Microcontrollers

TimerF1 19 49,F.4 20 50, F.5

xmegaA3, xmegaA3B, T64 TimerDO 1 26,D.0 2 27,D.1
xmegaA3U, xmegaA3BU TimerD1 3 30,D.4 4 31,D5
TimerCO 5 16,C.0 6 17,C.1

7 18,C2 8 19 C.3

TimerEO 9 36,E.0 10 37,E.1

11 38,E.2 12 39, E.3

TimerEl 13 40,E.4 14 42, E.5

TimerFO 15 46,F.0 16 47,F.1

17 48,F.2 18 49, F.3

xmegaA4, xmegaA4U T44 TimerDO 1 20,b0 2 21,D.1
TimerD1 3 24,D.4 4 25/D.5

TimerCO 5 10,C0 6 11,C.1

7 12,C.2 8 13,C.3

TimerEO 9 28,E.0 10 29,E.1

11 32,E.2 12 33,E.3

xmegaD3 T64 TimerDO 1 26,D.0 2 27,D.1
TimerCO 3 16,C.0 4 17,C1

5 18,C.2 6 19, C.3

TimerEO 7 36,E.0 8 37, E.1

9 38, E2 10 39 E.3

TimerFO 11 46, F.0 12 47,F.1

13 48,F.2 14 49,F.3

xmegaD4 T44 TimerDO 1 20,b.0 2 21,D.1
TimerCO 3 10,C.0 4 11,C1

5 12,C2 6 13,C3

TimereO 7 28,E0 8 29 E.1

9 32,E.2 10 33,E.3

“These devices support mapping of timer output compare pins; the pins listed are the default pins.
8-Bit PWM Timers

The tables below give the set of valid 8-bit PWM channels, the associated timer, and the corresponding
output pin for each channel. See OpenPWMS8 for the details of setting up an 8-bit PWM output.

8-bit PWM Timers, Channels and Pins for ZX Devices

ZX Device Timer Chan. Pin Chan. Pin
ZX-24 Timer2 1 25,D.7 -
ZX-40 Timer2 1 21, D.7 -
ZX-44 Timer2 1 16, D.7 -
ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t Timer2 1 25, D.7 2 12, D.6
ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t Timer2 1 21, D.7 2 20, D.6
ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t Timer2 1 16, D.7 2 15, D.6
ZX-328n, ZX-328| Timer2 1 17, B.3 2 5 D.3
ZX-32n, ZX-32| Timer2 1 15, B.3 2 1, D.3
ZX-1281, ZX-1281n Timer0 1 17, B.7 2 1, G5
ZX-1280, ZX-1280n Timer0 1 26, B.7 2 1, G5
ZX-24e Timer2 1 13, D.7 -
ZX-24ae, ZX-24ne, ZX-24pe, Timer2 1 13, D.7 2 14, D.6
ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su

ZX-128e, ZX-128ne Timer2 1 17, B.7 -
ZX-1281e, ZX-1281ne Timer0 1 21, B.7 2 G.5
ZX-328nu Timer2 1 14, B.3 2 6, D.3

ZBasic System Library 18 ZBasic Microcontrollers

8-bit PWM Timers, Channels and Pins for Generic Target Devices

Target Devices Pkg. Timer Chan. Pin Chan. Pin
tiny48, tiny88 all -
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 TimerO 1 5B2 2 6 A7
Q20 1 14,B.2 2 15 A7
tiny87, tiny167 S20 TimerO 1 3,A2
T32 1 31,A2
tiny2313, tiny2313A, tiny4313 P20 Timer0O 1 14,B2 2 9,D5
Q20 1 7,B2 2 12,D.5
tiny828" T32 Timer0 1 31,C0 2 32,C1
tiny441, tiny841~ S14 Timer0 1 7,A6 2 8,A5
Q20 1 16,A6 2 20, A5
tiny1634 S20 TimerO 1 17,C0 2 4,A5
Q20 1 15 C0 2 2 A5
mega8, mega8A P28 Timer2 1 17,B.3
T28 1 13,B.3
T32 1 15,B.3
mega48, megad48A, megad8P, megad8PA, mega48PB, mega88, P28 Timer2 1 17,B3 2 5,D.3

mega88A, mega88P, mega88PA, mega88PB, megal68,
megal68A, megal68P, megal68PA, megal68PB, mega328,
mega328P, mega328PB

T28 1 13,B3 2 1,D.3

T32 1 15B3 2 1,D3
megal6, megal6A, mega32, mega32A P40 Timer2 1 21,D.7

T44 1 16,D.7
mega644, mega644A, megal64A, megal64P, megal64PA, P40 Timer2 1 21,D.7 2 20,D.6
mega324P, mega324PA, mega644P, mega644PA, megal284P

T44 1 16,D.7 2 15,D.6
mega64, mega64A, megal28, megal28A, ATO0CAN32, T64 Timer0 1 17,B.7
AT90CANG4, AT90CAN128
megal281l, mega2561 T64 Timer0 1 17,B7 2 1,G5
ATO0USB646, AT90USB647, ATO0USB 1286, ATO0OUSB1287 T64 TimerO 1 17,B.7 2 25,D.0
mega640, megal280, mega2560 T100 TimerO 1 26,B7 2 1,G5
mega8U2, megal6U2, mega32U2, ATO0OUSB82, ATO0USB162 T32 Timer0 1 21,B.7 6 6,B.0
megal6U4, mega32U4 T44 Timer4 1 32,C.7 2 30,B.6

3 27,D.7

mega8515 P40 TimerO 1 1,B.0

T44 1 40,B.0

L44 1 2,B.O0
mega8535 P40 Timer2 1 21,D.7

T44 1 16,D.7

L44 1 22,D.7
megal6l, megal62 P40 Timer2 1 2,B1

T44 1 41,B.1
megal63, mega323 P40 Timer2 1 21,D.7

T44 1 16,D.7
megal65, megal65A, megal65P, megal65PA, mega325, T64 Timer2 1 17,B.7

mega325P, mega645, mega645A, mega645P, megal69,
megal69A, megal69P, megal69PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P

mega3250, mega3250P, mega6450, megab450A, mega6450P, T100 Timer2 1 26,B.7
mega3290, mega3290P, mega6490, mega6490A, mega6490P

all xmega all -

“These devices support mapping of timer output compare pins; the pins listed are the default pins.

ZBasic System Library 19 ZBasic Microcontrollers

Input Capture Timers

The tables below give the set of valid pins for the InputCaptureEx subroutine and also indicate (with an
asterisk) the default pin used by the InputCapture subroutine. When an input capture operation has been
started successfully, the corresponding timer busy flag (e.g. Regi st er. Ti mer 1Busy) will be set Tr ue
for the duration of the input capture operation. Note that an input capture cannot be used at the same
time as an output capture operation involving the same timer.

For native code ZX devices and all generic target devices, at least two ISRs will be automatically provided
by the compiler to facilitate the input capture operation corres ponding to the capture interrupt and the
timer overflow interrupt. The names of the interrupt vectors are related to the timer being used. For
example, for Timerl the names are Ti mer 1_Capt and Ti mer 1_OVF. Note that if the compiler cannot
determine at compile time which timer will be used, the capture and timer overflow ISRs for all possible
timers will be included in the application.

Valid Input Capture Pins for ZX Devices

ZX Device Timer Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n Timerl 12, D.6*
ZX-40, ZX-40a, ZX-40p, ZX-40n Timerl 20, D.6*
ZX-44, ZX-44a, ZX-44p, ZX-44n Timerl 15, D.6*
ZX-24r, ZX-24s, ZX-24t Timerl 12, D.6*
Timer3 B.5
ZX-40r, ZX-40s, ZX-40t Timerl 20, D.6*
Timer3 6, B.5
ZX-44r, ZX-44s, ZX-44t Timerl 15, D.6*
Timer3 1, B.5
ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu Timerl 14, D.6*
ZX-24ru, ZX-24su Timerl 14, D.6*
Timer3 23, B.5
ZX-328n, ZX-328| Timerl 14 B.O*
ZX-32n, ZX-32| Timerl 12 B.O*
ZX-1281, ZX-1281n Timerl 29, D.4*
Timer3 9, E7
ZX-1280, ZX-1280n Timerl 47, D.4*

Timer3 9 E.7
Timer4 35, L.O
Timer5 36, L.1
ZX-24x, ZX-24u TimerCO 12, C.0*
TimerDO 26, D.0
TimerEO 25, E.O
ZX-32a4 TimerCO 10, C.0*
TimerDO 20, D.O
TimerEO 28, E.O
ZX-128al TimerCO 15, C.0*
TimerDO 25, D.0
TimerEO 35, E.O
TimerE1l 39, E4
TimerFO 45, F.0
TimerF1 49, F.4

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne Timerl 8, D.4*

Timer3 13, E.7
ZX-328nu Timerl 11, B.O*
ZX-24xu TimerCO 12, C.0*

TimerDO 20, D.0
TimerEO 24, E.O

ZBasic System Library 20 ZBasic Microcontrollers

Valid Input Capture Pins for Generic Target Devices

Underlying CPU Type Pkg. Timer Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timerl 6, A.7*
Q20 Timerl 15, A.7*

tiny48, tiny88 P28 Timerl 14, B.O*

T28 Timerl 10, B.O*

T32 Timerl 12, B.0O*

tiny441, tiny841 S14 Timerl 6, A.7*
Timer2 5, B.2

Q20 Timerl 15, A.7*

Timer2 14, B.2

tiny87, tiny167 S20 Timerl 7, A.4*
T32 Timerl 9, A4*
tiny2313, tiny2313A, tiny4313 P20 Timerl 11, D.6*
Q20 Timerl 9, D.6*
tiny828 T32 Timerl 6, C.5*
tiny1634 S20 Timerl 16, C.1*
Q20 Timerl 14,C.1*
mega48, mega48A, megad48P, megad48PA, mega48PB, mega88, P28 Timerl 14, B.0*

mega88A, mega88P, mega88PA, mega88PB, megal68,
megal68A, megal68P, megal68PA, megal68PB, mega328,
mega328P, mega328PB

T32 Timerl 12, B.O*
(mega328PB only) T32 Timer3 19, E.2
(mega328PB only) T32 Timer4d 3, E.O*
megal6, megal6A, megal64A, megal64P, megal64PA, mega32, P40 Timerl 20, D.6*
mega32A, mega324P, mega324PA, mega644, megab644A,
mega644P, mega644PA

T44 Timerl 15, D.6*
megal284P P40 Timerl 20, D.6*
Timer3 6, B.5
T44 Timerl 15, D.6*
Timer3 1, B.5
mega8515 P40 Timerl 31*
T44 Timerl 21*
L44 Timerl 35*
mega8535, megal63, mega323 P40 Timerl 20, D.6*
T44 Timerl 15, D.6*
L44 Timerl 21, D.6*

megal6l, megal6?2 P40 Timerl 31, E.O*
T44 Timerl 29, E.O*
megal65, megal65A, megal65P, megal65PA, mega3?25, T64 Timerl 25, D.0*

mega325P, mega645, mega645A, mega645P,

megal69, megal69A, megal69P, megal69PA, mega329,

mega329P, mega329PA, mega649, megab49A, mega649P

mega3250, mega3250P, mega6450, mega6450A, mega6450P, T100 Timerl 43, D.0*
mega3290, mega3290P, mega6490, mega6490A, mega6490P

megal281l, mega2561, mega64, mega64A, megal28, megal28A T64 Timerl 29, D.4*

AT90CAN32, AT90CANG4, AT90OCAN128, AT90USB646, Timer3 9, E.7
ATI0USB647, AT90USB 1286, AT90USB1287
mega640, megal280, mega2560 T100 Timerl 47, D.4*

Timer3 9, E.7
Timer4 35, L.O
Timer5 36, L.1

mega8U2, megal6U2, mega32U2, AT9OUSB82, AT90USB162 T32 Timerl 22,C.7*
megal6U4, mega32U4 T44 Timerl 25, D.4*

Timer3 32, C.7
xmegaAl, xmegaAlU T100 TimerCO 15, C.0*

ZBasic System Library 21 ZBasic Microcontrollers

TimerDO 25, D.0O
TimerEO 35, E.O
TimerEl 39, E.4
TimerFO 45, F.0
TimerF1 49, F.4
xmegaA3, xmegaA3BU, xmegaA3U, xmegaA3BU T64 TimerCO 16, C.0*
TimerDO 26, D.0O
TimerEO 36, E.O
TimerFO 46, F.0
xmegaA4, xmegaA4U T44 TimerCO 10, C.0*
TimerDO 20, D.O
TimerEO 28, E.O
xmegaD3 T64 TimerCO 16, C.0*
TimerDO 26, D.0O
TimerEO 36, E.O
TimerFO 46, F.0
xmegaD4 T44 TimerCO 10, C.0*
TimerDO 20, D.O
TimerEO 28, E.O

Output Capture Timers

The tables below give the set of pins and corresponding timers that can be used by the Output CaptureEx
subroutine and also indicate (with an asterisk) the default pin used by the OutputCapture subroutine.
When an output capture operation has been started successfully, the corresponding timer busy flag (e.g.
Regi st er. Ti mer 1Busy) will be set Tr ue for the duration of the output capture operation. Note that an
output capture cannot be used at the same time as an input capture operation involving the same timer.

When performing an output capture on a general I/O pin (i.e. a pin not listed in the tables below), any
available 16-bit timer will be used to generate the required timing. If no 16-bit timer is available at the

time, the routine will return immediately.

For native code ZX devices and all generic target devices, at least one ISR will be provided by the
compiler automatically to facilitate the output capture operation corresponding to the timer compare
interrupt. The names of the interrupt vectors are related to the timer and the compare register being
used. For example, for an ATtiny or ATmega device using Timerl the ISR name would be
Ti mer 1_COMPB while for an xmega device for TimerCO the ISR name would be TI MERCO_CCB. Note
that if the compiler cannot determine at compile time which timer and compare register will be used, or if
output capture on a general I/O pin is specified, the “compare B” ISRs for all possible timers will be

included in the application.

Hardware Output Capture Pins for ZX Devices

Output Output
ZX Device Timer Pin Timer Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n Timerl 27, D.4*
ZX-40, ZX-40a, ZX-40p, ZX-40n Timerl 18, D.4*
ZX-44, ZX-44a, ZX-44p, ZX-44n Timerl 13, D.4*
ZX-24r, ZX-24s, ZX-24t Timerl 27,D.4* Timer3 B.7
ZX-40r, ZX-40s, ZX-40t Timerl 18, D.4* Timer3 8, B.7
ZX-44r, ZX-44s, ZX-44t Timerl 13,D.4* Timer3 3,B.7
ZX-328n, ZX-328| Timerl 16, B.2*
ZX-32n, ZX-32| Timerl 14, B.2*
ZX-1281, ZX-1281n Timerl 16, B.6* Timerl 17, B.7"
Timer3 6, E.4
ZX-1280, ZX-1280n Timerl 25, B.6* Timerl 26, B.7°
Timer3 6, E.4 Timer4 16, H.4
Timer5 39, L4
ZX-24x, ZX-24u TimerCO 11, C.1 TimerDO 27, D.1*

ZBasic System Library 22

ZBasic Microcontrollers

TimerEO 17, E.1

ZX-32a4 TimerCO 11, C.1 TimerDO 21, D.1*
TimerEO 29, E.1
ZX-128al TimerCO 16, C.1 TimerDO 26, D.1*

TimerEO 36, E.1 TimerEl 40, E.5
TimerFO 46, F.1 TimerF1 50, F.5

ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu Timerl 13, D.4*

ZX-24ru, ZX-24su Timerl 16, D.4* Timer3 21,B.7

ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne Timerl 22,B.6* Timerl 21,B.7"
Timer3 16, E.4

ZX-328nu Timerl 13, B.2*

ZX-24xu TimerCO 11, C.1 TimerDO 13, D.1*

TimerEO 23, E.1

Denotes the default OutputCapture pin.
lRequires the TIMER1_COMPC ISR and supports OutputCapture modulation.

Hardware Output Capture Pins for Generic Target Devices

Output

Target Device Pkg. Timer Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 Timerl 8, A.5*
Q20 Timerl 20, A5*
tiny48, tiny88 P28 Timerl 16, B.2*

T28 Timerl 12, B.2*
T32 Timerl 14, B.2*
tiny441, tiny841° S14 Timerl 6, A.7*
Timer2 10, A.3
Q20 Timerl 15, A.7*
Timer2 2,A.3

tiny87, tiny167 S20 Timerl 19, B.1*
T32 Timerl 27,B.1*
tiny2313, tiny2313A, tiny4313 P20 Timerl 16, B.4*
Q20 Timerl 14, B.4*
tiny828° T32 Timerl 8, C.7*
tiny 1634 S20 Timerl 3, A.6*

Q20 Timerl 1, A.6*
mega48, mega48A, megad8P, mega48PA, mega48PB, mega88, mega88A, P28 Timerl 16, B.2*
mega88P, mega88PA, mega88PB, megal68, megal68A, megal68P,
megal68PA, megal68PB, mega328, mega328P, mega328PB

T28 Timerl 12, B.2*

T32 Timerl 14, B.2*
(mega328PB only) T32 Timer3 32,D.2
(mega328PB only) T32 Timerd 32,D.2
megal6, megal6A, mega32, mega32A, megabd4, mega644A, megal64A, P40 Timerl 18, D.4*
megal64P, megal64PA, mega324P, mega324PA, mega644P, mega644PA

T44 Timerl 13, D.4*

megal284P P40 Timerl 18, D.4*
Timer3 8, B.7

T44 Timerl 13, D.4*

Timer3 3, B.7

mega64, mega64A, megal28, megal28A, megal281, mega2561, T64 Timerl 16, B.6*
AT90CAN32, AT90CANG64, AT90OCAN128 Timerl 17, B.7'

Timer3 6, E.4
ATI0USB646, ATO0USB647, ATO0OUSB 1286, ATO0USB1287 T64 Timerl 16, B.6*

Timerl 17, B.7"
Timer3 40, C.5
mega640, megal280, mega2560 T100 Timerl 25, B.6*
Timerl 26, B.7"
Timer3 6, E.4

ZBasic System Library 23 ZBasic Microcontrollers

Timer4
Timer5

16, H.4
39, L4

mega8U2, megal6U2, mega32U2, AT9O0USB82, ATOOUSB162

T32

Timerl

25, C.5*

megal6U4, mega32U4

T44

Timerl

30, B.6*

mega8515

P40

Timerl

29, E.2*

T44

Timerl

26, E.2*

L44

Timerl

32, E.2*

mega8535, megal63, mega323

P40

Timerl

18, D.4*

Ta4

Timerl

13, D.4*

L44

Timerl

19, D.4*

megal6l

P40

Timerl

29, E.2*

T44

Timerl

26, E.2*

megal62

P40

Timerl
Timer3

29, E.2*
5 B.4

T44

Timerl
Timer3

26, E.2*
44, B.4

megal65, megal65A, megal65P, megal65PA, mega325, mega325P,
mega645, mega645A, mega645P,

megal69, megal69A, megal69P, megal69PA, mega329, mega329P,
mega329PA, mega649, megab49A, megab649P

T64

Timerl

16. B.6*

mega3250, mega3250P, mega6450, mega6450A, mega6450P, mega3290,
mega3290P, mega6490, mega6490A, mega6490P

T100

Timerl

25. B.6*

xmegaAl, xmegaAlU

T100

TimerCO
TimerDO
TimerEO
TimerE1l
TimerFO
TimerF1

16, C.1
26, D.1*
36, E.1
40, E.5
46, F.1
50, F.5

xmegaA3, xmegaA3B, xmegaA3B, xmegaA3BU

T64

TimerCO
TimerDO
TimerEO
TimerE1l
TimerF0

17,C.1
27, D.1*
37, E.1
41, E.5
47, F.1

xmegaA4, xmegaA4U

Ta4

TimerCO
TimerDO
TimerEO

11, C.1
21, D.1*
29, E.1

xmegaD3

T64

TimerCO
TimerDO
TimerEO
TimerFO

17,C.1
27, D.1*
37, E.1
47, F.1

xmegaD4

T44

TimerCO
TimerDO
TimerEO

11, C.1
21, D.1*
29, E.1

Denotes the default OutputCapture pin.

lRequires the TIMER1_COMPC ISR and supports OutputCapture modulation.

“These devices support mapping of timer output compare pins; the pins listed are the default pins.

As noted in the two tables above, some devices support OutputCapture modulation on a dedicated pin.
This capability allows the OutputCapture waveform to modulate the compare output of the Serial Timer.

See the description of OutputCaptureEx for more information.

SPI Controllers

On some ZX devices, your program is stored in an external EEPROM that is read and written using the
SPlinterface. A dedicated I/O pin is required for selecting the EEPROM device during SP1 operations

and this I/O pin cannot be used for other purposes. However, the SPI bus itself can be used to

communicate with other SPI devices. Although most SPI devices are tolerant of the ZX device using the
SPI bus to fetch instructions from your program, some are not. Generally speaking, if you can send and

ZBasic System Library 24

ZBasic Microcontrollers

receive all of the data that an SP| device requires using a single call to SPICmd(), then that SPI device is
usable with the ZX models that utilize an external EEPROM.

The table below indicates which ZX devices use an external EEPROM for user program storage and, if
so, the I/O pin used for the chip select. For devices that do not use an external EEPROM for user
program storage, the indicated chip select pin can be used for general purpose I/O with the proviso that if
the SPI controller is used in the application program the chip select pin must either be an output or it must
be held high during SP1 transactions.

SPI EEPROM Usage and Control/Data Pins By Controller Index for ZX Devices

Uses SPI Citrl. CS SCK MOSI MISO
ZX Device EEPROM Idx. Pin Pin Pin Pin
ZX-24, ZX-24a, ZX-24p Yes ot B.4 B.7 B.5 B.6
ZX-40, ZX-40a, ZX-40p Yes 0 5 B.4 8, B.7 6, B.5 7,B.6
ZX-44, ZX-44a, ZX-44p Yes 0 44, B.4 3,B.7 1,B.5 2,B.6
ZX-24x, ZX-24u No (023 D.4 D.7 D.5 D.6
1 8, C4 5.C.7 7,C.5 6, C.6
ZX-24n, ZX-24r, ZX-24s, ZX-24t No (023 B.4 B.7 B.5 B.6
ZX-40n, ZX-40r, ZX-40s, ZX-40t No 0 5, B.4 8, B.7 6, B.5 7,B.6
ZX-44n, ZX-44r, ZX-44s, ZX-44t No 0 44,B.4 3,B.7 1,B.5 2,B.6
ZX-328n, ZX-328| No 0 16,B.2 19,B.5 17,B.3 18,B.4
ZX-32n, ZX-32| No 0 14,B.2 17,B.5 15,B.3 16,B.4
ZX-1281, ZX-1281n No 0 10,B.0 11,B.1 12,B.2 13,B.3
ZX-1280, ZX-1280n No 0 19,B.0 20,B.1 21,B.2 22,B.3
ZX-32a4 No 0 24,D.4 27,D.7 25,D.5 26,D.6
1 23,C4 17,C.7 15,C5 16,C.6
ZX-128al No 0 29,D.4 32,D.7 30,D.5 31,D.6
1 19,C4 22,C.7 20,C5 21,C.6
2 39,E.4 42,E.7 40,E.5 41,E.6
3 49, F4 52,F.7 50,F5 51, F.6
ZX-24e, ZX-24ae, ZX-24pe, ZX-24pu Yes 0 24,B.4 21,B.7 23,B.5 22,B.6
ZX-24ne, ZX-24nu, ZX-24ru, ZX-24su No 0 24,B.4 21,B.7 23,B5 22,B.6
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne No 0 28,B.0 27,B.1 26,B.2 25, B.3
ZX-328nu No 0 13,B.2 16,B.5 14,B.3 15,B.4
ZX-24xu No 0 16, D.4 13,D.7 15,D.5 14,D.6
1 8, C4 5. C.7 7,C.5 6, C.6

1 The SPI pins are found along the edge of the board between pins 1 and 24

For generic target devices, user programs are always stored in internal Flash memory. The table below
shows the chip select pin associated with each on-chip SPI controller as well as the SPI control/data pins.
As described above, the SPI chip select pin(s) may be used for general purpose I/O except that if the
related SPI controller is used in the application program the chip select pin must either be an output or it
must be held high during SPI transactions

SPI Control/Data Pins By Controller Index for Generic Target Devices

Ctrl. (O] SCK MOSI MISO

Target Device Pkg. ldx. Pin Pin Pin Pin

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, all - -

tiny2313, tiny2313A, tiny4313, tiny1634

tiny48, tiny88 P28 0 16,B.2 19,B.5 17.B.3 18,B.4
T28 12,B.2 15,B.5 13.B.3 14, B.4
T32 14,B.2 17,B.5 15.B.3 16,B.4

tiny441, tiny841 S14 0 6, A7 9, A4 7, A.6 8, A5
Q20 15, A7 1,A4 16,A6 20 A5

tiny87, tiny167 S20 0 9,A6 B8 A5 7,A.4 3,A2
T32 11, A6 10,A5 9, A4 31, A2

tiny828 T32 0 31,C0 30,b3 27,D.0 28,D.1

ZBasic System Library 25 ZBasic Microcontrollers

mega48, mega48A, megad48P, mega48PA, P28 0 16,B.2 19,B.5 17,B.3 18,B.4
mega48PB, mega88, mega88A, mega88P,

mega88PA, mega88PB, megal68, megal68A,

megal68P, megal68PA, megal68PB, mega328,

mega328P, mega328PB

T28 12,B.2 15,B.5 13,B.3 14,B.4
T32 14,B.2 17,B.5 15,B.3 16,B.4
(mega328PB only) T32 1 19,E.2 24,C1 22,E3 23,C.0

megal6, megal6A, megal64A, megal64P, P40 0 5B.4 8, B7 6, B.5 7,B.6
megal64PA, mega32, mega32A, mega324P,

mega324PA, mega644, megab44A, megab44pP,

mega644PA, megal284P, megal6l, megal6?2,

megal63, mega323

T44 44,B.4 3, B.7 1,B.5 2,B.6

mega64, mega64A, megal28, megal28A, megal281, T64 0 10,B.0 11,B.1 12,B.2 13, B.3
mega2561, AT90CAN32, AT90OCANG64, ATO0OCAN128

mega640, megal280, mega2560 T100 O 19,B.0 20,B.1 21,B.2 22, B.3

mega8U2, megal6éU2, mega32U2 T32 0 14,B.0 15,B.1 16,B.2 17,B.3

ATI0USB82, ATOOUSB162

megal6U4, mega32U4 T44 0 8,B0 9B1 10,B.2 11,B.3

mega8515, mega8535 P40 0 5 B4 8, B.7 6, B.5 7,B.6
T44 44,B.4 8, B.7 6, B.5 7, B.6
L44 6,B.4 9 B.7 7,B.5 8, B.6

megal65, megal65A, megal65P, megal65PA, T64 0 10,B.0 11,B.1 12,B.2 13,B.3

mega325, mega325P, mega645, megab45A,
mega645P, megal69, megal69A, megal69P,
megal69PA, mega329, mega329P, mega329PA,
mega649, mega649A, mega649P

mega3250, mega3250P, mega6450, mega6450A, T100 O 19,B.0 20,B.1 21,B.2 22 B.3
mega6450P, mega3290, mega3290P, mega6490,
mega6490A, mega6490P

ATI90USB646, AT90USB647, AT90USB 1286, T64 0 10,B.0 11,B.1 12,B.2 13,B.3
ATI0USB1287
xmegaAl, xmegaAlU T100 O 29,D.4 32,D.7 30,D.5 31,D.6
1 19,C4 22,C.7 20,C5 21,C.6
2 39, E4 42,E.7 40,E5 41,E.6
3 49,F4 52,F.7 50,F.5 51, F.6
xmegaA3, xmegaA3B, xmegaA3U, xmegaA3BU T64 0 30,D.4 33,D.7 31,D5 32,D.6
1 20,C4 23,C.7 21,C5 22,C6
2 40,E.4 43,E.7 41, E5 42, E.6
xmegaA4, xmegaA4U T44 0 24,D.4 27,D.7 25,D.5 26,D.6
1 23,C4 17,C.7 15,C5 16,C.6
xmegaD3 T64 0 30,D.4 33,D.7 31,D5 32,D.6
1 20,C4 23,C.7 21,C5 22,C6
xmegaD4 T44 0 24,D.4 27,D.7 25,D.5 26,D.6
1 23,C4 17,C.7 15,C5 16,C.6

ZBasic System Library 26 ZBasic Microcontrollers

12C Controllers

For the available hardware 12C channels, the table below gives the pin numbers used for SDA and SCL.

SCL and SDA Pins by Channel for ZX Devices

ZX Device Chan. SCL SDA
ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t 0 12, C.0 11,C.1

ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t 0 22,C.0 23,C.1
ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t 0 19, C.0 20,C.1
ZX-24e, ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su 0 12, C.0 11,C1
ZX-328n, ZX-328l, ZX-32n, ZX-32I 0 28,C.5 27,C4
ZX-1281, ZX-1281n 0 25,D.0 26,D.1
ZX-1280, ZX-1280n 0 43,D.0 44,D.1
ZX-24x, ZX-24u 0 11, C.1 12, C.0
1 17, E.1 25, E.O
ZX-32a4 0 11, C.1 10, C.0
1 29, E.1 28,E.O
ZX-128al 0 16, C.1 15,C.0
1 36, E.1 35 E.O
2 26, D.1 25,D.0
3 46, F.1 45, F.0
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne 0 12,D.0 11,D.1
ZX-328nu 0 22,C5 21,C4
ZX-24xu 0 11, C.1 12,C.0
1

23,E.1 24, E.O0

It is important to note that on the ZX-24n, ZX-24p, ZX-24r, ZX-24s and ZX-24t, the hardware 12C channel
cannot be used while Com2 is open since pin 11 is shared by the SDA signal and TxD for Com2.

SCL and SDA Pins by Channel for Generic Target Devices

Target Device Pkg. Chan. SCL SDA

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny87, tiny167, all - - -

tiny2313, tiny2313A, tiny4313, tiny828, tiny441, tiny841, tiny1634

tiny48, tiny88 P28 0 28,C5 27,C4
T28 0 24,C.5 23,CA4
T32 0 28, C.5 27,C.A4

mega48, mega48A, megad48P, mega48PA, mega48PB, mega88, P28 0 28,C.5 27,CA4

mega88A, mega88P, mega88PA, mega88PB, megal68, megal68A,
megal68P, megal68PA, megal68PB, mega328, mega328P,

mega328PB
T28 0 28,C5 27,C4
T32 0 28,C5 27,C4
(mega328PB only) T32 1 6,E.1 3,E.O
megal6, megal6A, megal64A, megal64P, megal64PA, mega32, P40 0 22,C.0 23, C.1
mega32A, mega324P, mega324PA, mega644, mega644A, mega644P,
mega644PA, megal284P, mega8535, megal63, mega323
T44 0 19, C.0 20, C.1
megab4, mega64A, megal28, megal28A, megal281, mega2561, T64 0 25, D.0 26, D.1
AT90CAN32, AT90CANG4, AT90CAN128, AT90USB646, AT90USB647,
ATO0USB1286, ATOOUSB1287
mega8U2, megal6U2, mega32U2 T32 - - -
AT90USB82, AT90USB162, mega8515, megal6l, megal62
megal6U4, mega32U4 T44 0 18, D.0 19, D.1
megal65, megal65A, megal65P, megal65PA, T64 0 6,E4 7,ES5

mega325, mega325P,
mega645, mega645A, mega645P,
megal69, megal69A, megal69P, megal69PA,

ZBasic System Library 27 ZBasic Microcontrollers

mega329, mega329P, mega329PA,

mega649, mega649A, mega649P

mega3250, mega3250P, T100 0 6,E.4 7,ES5
mega6450, mega6450A, mega6450P,

mega3290, mega3290P,

mega6490, mega6490A, mega6490P

mega640, megal280, mega2560 T100 0 43, D.0 44, D.1
xmegaAl, xmegaAlU T100 0 16, C.1 15, C.0
1 36, E.1 35,E.O
2 26, D.1 25,D.0
3 46, F.1 45, F.0
xmegaA3, xmegaA3U, xmegaA3B, xmegaA3BU, xmegaD3 T64 0 16, C.1 15, C.0
1 36, E.1 35, E.O
xmegaA4, xmegaA4U T44 0 11, C.1 10, C.0
1 29, E.1 28,E.O
xmegaD4 T44 0 11, C.1 10, C.0
1 29, E.1 28, E.O

Analog-to-Digital Converters

Most ZBasic target devices have a multiple analog inputs. These inputs may be fed to an internal analog-
to-digital converter (ADC) or they may be used to perform analog level comparisons. The I/O port
containing the analog inputs varies by target device as indicated in the table below. The System Library
routines Get ADC() and ADCt oConil() use the ADC. The analog comparator is used by

Wi t For I nt errupt () when configured to await an analog comparator event.

Analog Input Pins for ZX Devices

ZX Device Analog Inputs
ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t 13-20
ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t 33-40
ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t 30-37
ZX-24x, ZX-24u 13-20, B.0-B.3
ZX-328n, ZX-328l 23-28
ZX-32n, ZX-32I 23-28, 19, 22
ZX-1281, ZX-1281n 54-61
ZX-1280, ZX-1280n 82-89, 90-97
ZX-32a4 40-44, 1-3, 4-7
ZX-128al 95-100, 1-2, 5-12
ZX-24e, ZX-24ae, ZX-24pe, ZX-24ne 29-36
ZX-24pu, ZX-24nu, ZX-24ru, ZX-24su 29-36
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne 54-61
ZX-24xu 29-36, 25-28
ZX-328nu 17-24

Analog Input Pins for Generic Target Devices

Target Device Pkg. Analog Inputs
tiny2313, tiny2313A, tiny4313, mega8515, megal6l, megal6?2, all -
mega8U2, megal6U2, mega32U2, AT90USB82, AT90USB162
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 6-13

Q20 1-5, 15, 16, 20
tiny441, tiny841 S14 2-13

Q20 1-5, 11-16, 20
tiny48, tiny88 P28 23-28

T28 19-24

T32 23-28, 19, 22
tiny87, tiny167 S20 1-4, 7-10, 12, 13

T32 29-31, 3, 9-12, 15,

ZBasic System Library 28 ZBasic Microcontrollers

18, 19

tiny828 T32 1-3, 6-17, 19, 20,
22-32
tiny1634 S20 1-6, 15-20
Q20 1-4, 13-18
mega48, megad48A, megad48P, megad8PA, mega48PB, mega88, mega88A, P28 23-28
mega88P, mega88PA, mega88PB, megal68, megal68A, megal68P,
megal68PA, megal68PB, mega328, mega328P, mega328PB
T28 19-24
T32 23-28, 19, 22
megal6, megal6A, megal64A, megal64P, megal64PA, mega32, P40 33-40
mega32A, mega324P, mega324PA, mega644, mega644A, megab44pP,
mega644PA, megal284P
T44 40-47
mega64, mega64A, megal28, megal28A, megal281, mega2561, T64 54-61

AT90CAN32, ATO0OCANG4, AT9OCAN128

mega640, megal280, mega2560

T100 82-89, 90-97

megal6U4, mega32U4 T44 36-41

mega8535, megal63, mega323 P40 33-40
T44 30-37
L44 36-43

megal65, megal65A, megal65P, megal65PA, mega325, mega325P, T64 54-61

mega645, mega645A, mega645P, megal69, megal69A, megal69oP,

megal69PA, mega329, mega329P, mega329PA, mega649, mega649A,

mega649P

mega3250, mega3250P, mega6450, mega6450A, mega6450P, mega3290, T100 90-97

mega3290P, mega6490, mega6490A, mega6490P

ATI0USB646, AT90USB647, ATO90USB 1286, AT90USB1287 T64 54-61

XxmegaAl, xmegaAlU

T100 95-100, 1-2, 5-12

xmegaA3, xmegaA3U, xmegaA3B, xmegaA3BU

T64 62-64, 1-5, 6-13

xmegaA4, xmegaA4U

T44 40-44, 1-3, 4-7

xmegaD3

T64 62-64, 1-5

xmegaD4

T44 40-44, 1-3

Digital-to-Analog Converters

The table below indicates the available channels and the corresponding DAC hardware used.

Supported DAC Channels for ZX Devices

ZX Devices DACB DACA
ZX-24x, ZX-24u Chan 1, Pin 8 -
Chan 2, Pin 9
ZX-32a4 Chan 1, Pin 6 (B.2) -
Chan 2, Pin 7 (B.3)
ZX-128al Chan 1, Pin7 (B.2) Chan 3, Pin 97 (A.2)
Chan 2, Pin 8 (B.3) Chan 4, Pin 98 (A.3)
ZX-24xu Chan 1, Pin 26 (B.2) -
Chan 2, Pin 25 (B.3)
Supported DAC Channels for Generic Target Devices
ZX Devices DACB DACA

xmegaAl, xmegaAlU

Chan 1, Pin 7 (B.2)
Chan 2, Pin 8 (B.3)

Chan 3, Pin 97 (A.2)
Chan 4, Pin 98 (A.3)

xmegaA3, xmegaA3B,
xmegaA3U, xmegaA3BU

Chan 1, Pin 7 (B.2)
Chan 2, Pin 8 (B.3)

xmegaA4, xmegaA4U

Chan 1, Pin 6 (B.2)

ZBasic System Library

29

ZBasic Microcontrollers

Chan 2, Pin 7 (B.3)
xmegal6D3, xmegaD4 - -

Note, particularly, that the ATxmega can produce two analog outputs from a single DAC. In the table
above, channels 1 and 2 are the two outputs from one DAC and channels 3 and 4 are the two outputs
from the second DAC (if available). In order to use the second channel on a given DAC, the first channel
must have been opened in dual output mode (see the mode details in the description of OpenDAC). Also
note that using both outputs from a DAC will result in analog levels with significantly more noise due to
the sample-and-hold and automatic refresh circuitry employed. For this reason, it is generally
recommended to use single output per DAC.

Interrupts in General

Some of the System Library routines disable interrupts in order to achieve the precise timing that is
required. Having interrupts disabled for long periods of time can interfere with the operation of other parts
of the system that use interrupts like task management, serial /O and the real time clock. In most cases,
the System Library routines have been implemented to keep track of real time clock interrupts that should
have occurred during the time interrupts are disabled and then the RTC is updated at the end of the
operation. This strategy avoids the problem of the RTC losing time. However, there is a limit to the
amount of time that missed RTC timer interrupts can be accurately tracked, that limit being 65535 divided
by the RTC fast tick frequency. See Section 3 for more information about the RTC fast tick frequency.

Unfortunately, there is no way to similarly protect the serial /O process. You can reduce the impact of
having interrupts disabled with respect to serial output by ensuring that all serial output queues are empty
before calling a System Library routine that disables interrupts. This is not as critical for a hardware-
based serial channel (e.g. Coml) as it is for the software-based serial channels Com3 to Com6. There is
no way, however, to work around the problem of serial input data arriving while interrupts are disabled.
The hardware-based serial channels will store one received character and hold it while interrupts are
disabled but if a second character arrives while interrupts are disabled it will be lost. Channels 3-6 rely on
interrupts for every bit received so the situation is much more problematic. In this case, having interrupts
disabled for longer than approximately one-third of the bit time will likely cause garbled input if a
character’s transmit time overlaps the period when interrupts are disabled. For characters being
transmitted by channels 3-6, having interrupts disabled for more than about 10% of the bit time may
cause the receiver to lose synchronization.

For reference purposes, the table below indicates which I/O routines disable interrupts for the duration of
their execution. See the individual descriptions for more detailed information.

System Library Routines that Disable Interrupts

Count Transi tions | 2CPut Byt e Put Pi n
DACPi n Pl aySound RCTi me
FreqQut Pul sel n Reset 1Wr e
Get1lWre Pul seCut Shiftln
Get IW reByte Put 1Wre Shi ft 1 nEx
Get I1W reDat a Put 1W r eByt e Shi f t Qut

| 2CCnd Put 1W r eDat a Shi f t Qut Ex
| 2CCGet Byt e Put DAC

The 12C routines do not disable interrupts when the hardware 12C controller is used (e.g. channel 0).

External Interrupts

ATtiny and ATmega target devices (and ZX devices based on them) support a varying number of external
interrupt inputs. (External interrupts are not available on any ATxmega devices.) The table below gives
the available external interrupt input pins for ZX devices.

ZBasic System Library 30 ZBasic Microcontrollers

External Interrupt Pins for ZX Devices

Ext. Ext.

ZX Device Int. Pin Int. Pin

ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t INTO 6, D.2 INT1 11,D.3
INT2 18, B.2

ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t INTO 16, D.2 INT1 17, D.3
INT2 3,B.2

ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t INTO 11, D.2 INT1 12,D.3
INT2 42, B.2

ZX-328n, ZX-328| INTO 4, D.2 INT1 5,D.3

ZX-32n, ZX-32I INTO 32,D.2 INT1T 1,D.3

ZX-1281, ZX-1281n INTO 25, D.0 INT1 26, D.1

INT2 27,D.2 INT3 28, D.3
INT4 6, E.4 INTS 7,E.5
INT6 8, E.6 INT7 9, E.7
ZX-1280, ZX-1280n INTO 43, D.0O INT1 44,D.1
INT2 45, D.2 INT3 46, D.3
INT4 6, E.4 INTS 7,E.5
INT6 8, E.6 INT7 9, E.7

ZX-24e, ZX-24ae, ZX-24pe, ZX-24ne, ZX-24pu, ZX-24nu, INTO 18, D.2 INT1L 17,D.3
ZX-24ru, ZX-24su INT2 26, B.2
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne INTO 12, D.0 INT1 11,D.1

INT2 10, D.2 INT3 9,D.3
INT4 16, E.4 INTS 15, E.5
INT6 14, E.6 INT7 13, E.7
ZX-328nu INTO 5, D.2 INT1 6,D.3

The table below gives the available external interrupt input pins for generic target devices. Note that
external interrupts are not available on xmega devices.

External Interrupt Pins for Generic ATtiny and ATmega Targets

Ext.
Target Device Pkg. Int. Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 INTO 5, B.2
Q20 INTO 14, B.2
tiny48, tiny88 P28 INTO 4,D.2
INT1 5, D.3
T28 INTO 28, D.2
INT1 1, D.3
T32 INTO 32,D.2
INT1 1, D.3
tiny441, tiny841 S14 INTO 3,B.1
Q20 INTO 12, B.1
tiny87, tiny167 S20 INTO 12, B.6
INT1 4, A.3
T32 INTO 15, B.6
INT1 3,A3
tiny828 T32 INTO 32,C.1
INT1 1, C.2
tiny1634 S20 INTO 15, C.2
Q20 INTO 13, C.2
tiny2313, tiny2313A, tiny4313 P20 INTO 6, D.2
INT1 7,D.3
Q20 INTO 4,D.2
INT1 5,D.3
mega48, mega48A, mega48P, megad8PA, mega48PB, mega88, mega88A, P28 INTO 4,D.2
mega88P, mega88PA, mega88PB, megal68, megal68A, megal68P, INT1 5, D.3

megal68PA, megal68PB, mega328, mega328P, mega328PB

ZBasic System Library 31 ZBasic Microcontrollers

T32 INTO 32,D.2

INT1 1,D.3
megal6, megal6bA, megal64A, megal64P, megal64PA, mega32, mega32A, P40 INTO 16, D.2
mega324P, mega324PA, mega644, mega644A, megab44P, megab644PA, INT1 17, D.3
megal284P, mega323, mega8535 INT2 3,B.2
T44 INTO 11, D.2
INT1 12,D.3
INT2 42, B.2
megal6l, megal62, mega8515 P40 INTO 12, D.2
INT1 13, D.3
INT2 31, E.O
T44 INTO 8,D.2
INT1 9, D.3
INT2 29, E.O
L44 INTO 14, D.2
INT1 15, D.3
INT2 35, E.O
megal63 P40 INTO 12, D.2
INT1 13,D.3
T44 INTO 8,D.2
INT1 9,D.3
megal65, megal65A, megal65P, megal65PA, mega325, mega325P, T64 INTO 26,D.1
mega645, mega645A, mega645P, megal69, megal69A, megal69P,
megal69PA, mega329, mega329P, mega329PA, mega649, mega649A,
mega649P
mega3250, mega3250P, mega6450, mega6450A, mega6450P, T100 INTO 44, D.1
mega3290, mega3290P, mega6490, mega6490A, mega6490P
megal281, mega2561, T64 INTO 25, D.0
AT90CAN32, AT90CANG4, AT90OCAN128 INT1 26, D.1
INT2 27,D.2
INT3 28, D.3
INT4 6, E.4
INTS 7, E.5
INT6 8, E.6
INT7 9, E.7
mega640, megal280, mega2560 T100 INTO 43, D.0
INT1 44, D.1
INT2 45, D.2
INT3 46, D.3
INT4 6, E.4
INTS 7,E5
INT6 8, E.6
INT7 9, E.7
mega8U2, megal6U2, mega32U2, ATOOUSB82, AT90USB162 T32 INTO 6, D.0
INT1 7,D.1
INT2 8,D.2
INT3 9, D.3
INT4 22, C.7
INTS 10, D.4
INT6 12, D.6
INT7 13, D.7
megal6U4, mega32U4 T44 INTO 18, D.0
INT1 19, D.1
INT2 20, D.2
INT3 21, D.3
INT6 1,E.6
AT90USB646, ATO0USB647, ATO0USB 1286, ATO0OUSB1287 T64 INTO 25, D.0
INT1 26, D.1
INT2 27,D.2
INT3 28, D.3

ZBasic System Library 32 ZBasic Microcontrollers

INT4
INTS
INT6
INT7

18, E.4
19, E.5
1, E.6
2, E.7

“The interrupt input configuration is shared between INTO and INT1. Consequently, if both are used at
the same time the last configured will control the input configuration.

Pin Change Interrupts

The table below shows how ports are mapped to the four possible pin change interrupts on ATtiny and
ATmega devices. See the description of WaitForinterrupt for more information on preparing to await a pin

change interrupt.

ATtiny and ATmega Pin Change Interrupt Support

Target Device WaitForinterrupt PinChange Port
i nt Num Interrupt Pins
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441, WaitPinChangeA PCINTO A.7-A.0
tiny841 WaitPinChangeB PCINTL B.3-B.0
tiny48, tiny88 WaitPinChangeB PCINTO B.7-B.0
WaitPinChangeC PCINT1 C.7-C.0
WaitPinChangeD PCINT2 D.7-D.0
WaitPinChangeA PCINT3 A.3-A.0
tiny87, tiny167 WaitPinChangeA PCINTO A.7-A.0
WaitPinChangeB PCINTL B.7-B.0
tiny2313, tiny2313A WaitPinChangeB PCINTO B.7-B.0
tiny4313 WaitPinChangeB PCINTO B.7-B.0
WaitPinChangeA PCINTL A.3-A.0
WaitPinChangeD PCINT2 D.6-D.0
tiny828 WaitPinChangeA PCINTO A.7-A.0
WaitPinChangeB PCINTL B.7-B.0
WaitPinChangeC PCINT2 C.7-C.0
WaitPinChangeD PCINT3 D.3-D.0
tiny1634 WaitPinChangeA PCINTO A.7-A.0
WaitPinChangeB PCINT1 B.3-B.0
WaitPinChangeC PCINT2 C.3-C.0
mega8, mega8A, megal6, megalbA, mega32, mega32A, - - -
mega64, megab4A, megal28, megal28A,
mega8515, mega8535, megal6l, megal63, mega323,
AT90CAN32, ATO0OCANG4, ATO9OCAN128
mega48, mega48A, megad48P, megad48PA, mega48PB, WaitPinChangeB PCINTO B.7-B.0
mega88, mega88A, mega88P, mega88PA, mega88PB, WaitPinChangeC PCINT1 C.6-C.0
megal68, megal68A, megal68P, megal68PA, megal68PB, WaitPinChangeD PCINT2 D.7-D.0
mega328, mega328P, mega328PB
(mega328PB only) WaitPinChangeE PCINT3 E.3-E.O
megal64A, megal64P, megal64PA, WaitPinChangeA PCINTO A.7-A.0
mega324P, mega324PA, WaitPinChangeB PCINT1 B.7-B.0
mega644, mega644A, mega644P, mega644PA, WaitPinChangeC PCINT2 C.7-C.0
megal284P WaitPinChangeD PCINT3 D.7-D.0
megal281, mega2561 WaitPinChangeB PCINTO B.7-B.0
WaitPinChangeE PCINT1 E.O
mega640, megal280, mega2560 WaitPinChangeB PCINTO B.7-B.0
WaitPinChangeJ PCINTL J.7-J.0
WaitPinChangeK PCINT2 K.7-K.0
mega8U2, megal6U2, mega32U2, WaitPinChangeB PCINTO B.7-B.0
ATI0USB82, ATOOUSB162 WaitPinChangeC PCINT1 D.5, C.2,
C.4, C.5,
C.6
megal6U4, mega32U4, WaitPinChangeB PCINTO B.7-B.0

ZBasic System Library 33

ZBasic Microcontrollers

AT90USB646, AT90USB647, ATO0USB 1286, ATO0OUSB1287

megal62 WaitPinChangeA PCINTO A.7-A.0

WaitPinChangeC PCINT1 C.7-C.0
megal65, megal65A, megal65P, megal65PA, mega325, WaitPinChangeE PCINTO E.7-E.O
mega325P, mega645, mega645A, mega645P, megal69, WaitPinChangeB PCINT1 B.7-B.0

megal69A, megal69P, megal69PA, mega329, mega329P,
mega329PA, mega649, mega649A, mega649P

mega3250, mega3250P, mega6450, mega6450A, WaitPinChangeE PCINTO E.7-E.O
mega6450P, mega3290, mega3290P, mega6490, WaitPinChangeB PCINT1 B.7-B.0
mega6490A, mega6490P WaitPinChangeH PCINT2 H.7-H.O

WaitPinChangeJ PCINT3 J.6-J.0

The table below shows how ports are mapped to the four possible pin change interrupts on ATxmega
devices. Note that for each port, there are two independent channels available. See the description of
WaitForlnterrupt for more information on preparing to await a pin change interrupt.

ATxmega Pin Change Interrupt Support

Processors WaitForlnterrupt Pin Change

i nt Num Trigger Interrupt
xmegaAl, xmegaAlU, Wai t Pi nChangeAO Port A, channel 0 PORTA_I NTO
xmegaA3, xmegaA3U, Wi t Pi nChangeAl Port A, channel 1 PORTA_I NT1
xmegaA3B, xmegaA3BU, Wai t Pi nChangeBO Port B, channel 0 PORTB_I NTO
xmegaA4, xmegaA4U, Wai t Pi nChangeBl Port B, channel 1 ~ PORTB_I NT1
xmegaD3, xmegaD4 Wai t Pi nChangeCO Port C, channel 0 PORTC_I NTO

Wai t Pi nChangeCl Port C, channel 1 PORTC_I NT1
Wi t Pi nChangeDO Port D' channel O PG?TD_I NTO
Wi t Pi nChangeDl Port D’ channel 1 P(PTD_' NT1
Wi t Pi nChangeEO Port E, channel O PG?TE_I NTO
Wi t Pi nChangeEl Port E’ channel 1 P(PTE_' NT1

xmegaAl, xmegaAlU, xmegaA3, xmegaA3U, WaitPinChangeFO0 PortF, channel 0 PORTF_I NTO
xmegaA3B, xmegaA3BU, xmegaD3 Wai t Pi nChangeFl Port F, channel 1 PORTF_I NT1

xmegaAl, xmegaAlU Wai t Pi nChangeHO Port H, channel 0 PORTH_I NTO
Wai t Pi nChangeHl Port H, channel 1 ~ PORTH_I NT1
Wai t Pi nChangeJO Port J, channel 0 PORTJ_I NTO
Wai t Pi nChangeJ1l Port J, channel 1 PORTJ_I NT1
Wai t Pi nChangeKO Port K, channel 0 PORTK_I NTO
Wai t Pi nChangeKl Pport K, channel 1 PORTK | NT1
Wai t Pi nChangeQ port Q, channel 0 PORTQ_I NTO
Wai t Pi nChangeQl port Q, channel 1 PORTQ_INT1

ZBasic System Library 34 ZBasic Microcontrollers

Analog Comparator Interrupts

The table below shows analog comparator input pins for ZX devices. See the description of
WaitForlnterrupt for more information on preparing to await an analog comparator interrupt.

Analog Comparator Input Pins for ZX Devices

AINO AIN1
ZX Device Pin Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t 18,B.2 19,B.3
ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t 3,B.2 4,B.3
ZX-44, ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t 42, B.2 43,B.3
ZX-328n, ZX-328| 12, D.6 13, D.7
ZX-32n, ZX-32I 10, D.6 11, D.7
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 4, E.2 5 E.3
ZX-24e, ZX-24ae, ZX-24pe, ZX-24ne, ZX-24pu, ZX-24nu, ZX-24ru, ZX-24su 26,B.2 25,B.3
ZX-128e, ZX-128ne , ZX-1281e, ZX-1281ne 18,E.2 17,E.3
ZX-328nu 9, D.6 10,D.7

On the ZX-24 models, AINO is common with pin A.2 and AIN1 is common with pin A.0 so these I/O pins
will need to be configured to be inputs in high-impedance mode. Note, however, that ZX-24 models built
using boards earlier than Rev 5 (see the bottom side of the board), AIN1 has no external connection so
the negative input must be supplied via the analog multiplexor.

The table below shows the analog comparator input pins for generic ATtiny and ATmega targets.

Analog Comparator Input Pins for Generic ATtiny and Atmega Devices

AINO AIN1

Target Device Pkg. Pin Pin
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A P14 12,A.1 11,A.2
Q20 4,A.1 3,A.2
tiny48, tiny88 P28 12,D.6 13,D.7

T28 8,D.6 9, D.7
T32 10,D.6 11,D.7

tiny441, tiny841 S14 10,A.3 9,A4
Q20 2,A3 1, A4
tiny87, tiny167 S20 9,A6 10, A.7
T32 11, A6 12, A7
tiny2313, tiny2313A, tiny4313 P20 12,B.0 13,B.1
Q20 10,B.0 11,B.1
tiny828 T32 10,A.1 11,A2
tiny1634 S20 8,A.1 7,A2

Q20 6,A1 5 A.2
mega48, mega48A, megad48P, mega48PA, mega48PB, mega88, mega88A, P28 12,D.6 13,D.7
mega88P, mega88PA, mega88PB, megal68, megal68A, megal68P,
megal68PA, megal68PB, mega328, mega328P, mega328PB

T32 10,D.6 11,D.7
megal6, megal6A, megal64A, megal64P, megal64PA, mega32, mega32A, P40 3, B.2 4, B.3
mega324P, mega324PA, mega644, mega644A, megab44P, mega644PA,
megal284P, megal6l, megal62, megal63, mega323

T44 42,B.2 43,B.3
mega8515, mega8535 P40 3,B.2 4, B.3
T44 42,B.2 43,B.3
L44 4,B.2 5, B.3
megal65, megal65A, megal65P, megal65PA, mega325, mega325P, T64 4,E.2 5 E.3
mega645, mega645A, mega645P, megal69, megal69A, megal6oP,
megal69PA, mega329, mega329P, mega329PA, mega649, megab49A,
mega649P
mega3250, mega3250P, mega6450, mega6450A, mega6450P, T100 4,E.2 5, E.3

ZBasic System Library 35 ZBasic Microcontrollers

mega3290, mega3290P, mega6490, mega6490A, mega6490P

megal281l, mega2561, mega64, mega64A, megal28, megal28A, T64 4,E.2 5 E.3
AT90CAN32, AT90CANG4, AT90OCAN128

mega640, megal280, mega2560 T100 4,E.2 5, E.3
mega8U2, megal6U2, mega32U2, AT90USB82, AT90USB162 T32 7,D.1 8,D.2
ATI0USB646, ATO0USB647, ATO0USB 1286, ATO0USB1287 T64 1,E.6 2, E.7
megal6U4, mega32U4 T44 1,E.6 -

The table below shows the register containing the Analog Comparator Multiplexer Enable (ACME) bit.
Where available, this bit can be used to allow the output of the analog input multiplexer to feed the
negative input of the analog comparator. For target devices having n/a in the second column, this
capaability is not present.

Register Containing the ACME Bit by Target Device

ACME bit
Target Device Register
tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny48, tiny88, tiny87, tiny167 ADCSRB
tiny2313, tiny2313A, tiny4313, tiny828, tiny441, tiny841 n/a
tiny1634 ACSRB
mega8, mega8A, megal6, megalbA, mega32, mega32A, megal63, mega323, mega8535 SFIOR
mega48, mega48A, megad48P, megad8PA, megad48PB, mega88, mega88A, mega88P, ADCSRB
mega88PA, mega88PB, megal68, megal68A, megal68P, megal68PA, megal68PB,
mega328, mega328P, mega328PB
mega8515, megal6l, megal62 n/a
megal64A, megal64P, megal64PA, mega324P, mega324PA, mega644, mega644A, ADCSRB
mega644P, mega644PA, megal284P
megal65, megal65A, megal65P, megal65PA, mega325, mega325P, mega645, ADCSRB
mega645A, mega645P, megal69, megal69A, megal69P, megal69PA, mega3?29,
mega329P, mega329PA, mega649, mega649A, mega649P
mega3250, mega3250P, mega6450, mega6450A, mega6450P, ADCSRB
mega3290, mega3290P, mega6490, mega6490A, mega6490P
mega64, mega64A, megal28, megal28A, AT90CAN32, ATO0OCANG4, AT90CAN128 SFIOR
megal281l, mega2561, mega640, megal280, mega2560, megal6U4, mega32U4 ADCSRB
mega8U2, megal6U2, mega32U2, ATOOUSB82, ATO0OUSB162 n/a
ATI0USB646, ATO0USB647, ATO0USB 1286, ATO0OUSB1287 ADCSRB

The table below shows the analog comparator input pins for ATxmega targets and ZX devices based on
Xxmega chips.

ATxmega Analog Comparator Interrupt Support

Processors WaitForinterrupt Interrupt

i nt Num Trigger Interrupt
xmegaAl, xmegaAlU, xmegaA3, wai t Anal ogConpAO0 AC A, Channel 0 ACA _ACO
xmegaA3U, xmegaA3B, xmegaA3BU, wai t Anal ogConpAl AC A, Channel 1 ACA AC1
xmegaA4, xmegaA4U, xmegaD3, xmegaD4 wai t Anal ogConpAW AC A, Window ACA ACW
xmegaAl, xmegaAlU, xmegaA3, wai t Anal ogConpBO AC B, Channel 0 ACB_ACO
xmegaA3U, xmegaA3B, xmegaA3BU wai t Anal ogConpB1 AC B, Channel 1 ACB_AC1

wai t Anal ogConpBW AC B, Window ACB_ACW

Interrupt Service Routines

For the native code devices (e.g. ZX-24n), a few interrupt service routines (ISRs) are typically included in
your program (e.g. for Com1 and the RTC if not specifically disabled) while others are included only if
certain System Library routines are used in your program. In some cases, the additional ISRs that are
included when a specific System Library routine is used depends on how the routine is invoked and what
the compiler can deduce regarding which ISRs might be needed. For example, if OpenCom() is invoked

ZBasic System Library 36 ZBasic Microcontrollers

one or more times but the compiler can determine that the Com1 is always the channel being used, no
additional ISRs are included since the Com1 ISRs are usually included anyway. On the other hand, if the
compiler cannot determine which channel is being opened in one or more cases, it includes the ISRs for
all Com channels, both hardware-based and software-based channels.

In the description of each System Library routine, information is given about the set of ISRs might be
included in your program if you use that routine. This information is only important, of course, if you are
also providing one or more ISRs in your code because conflicts may arise. (See the section entitled
“Defining Interrupt Service Routines” in the ZBasic Language Reference Manual for more information on
how this is done.) The table below gives an overview of which System Library routines may cause ISRs
to be included atomatically in your program.

System Library Routines that May Load ISRs

System Library Routine

ISR for ATtiny/ATmega ISR for ATxmega

ADCt oComl() Tl MER#_COVPA n/a
Conilt oDAC() TI MER#_COVPA n/a
I nput Capture() TI MER* _CAPT TC* _CCA
TI MER* _OVF TC*_OVF
Qut put Capt ure() TI MER* _COWPB TC* _CCB
OpenCon() USART#_RX USART#_RXC
USART#_TX USART#_TXC
USART#_UDRE USART#_UDRE
TI MER& COVPA TC& CCA
OpenX10() I NT* ACA_ACO
TI MER$_COVPB TC$_CCB
Wai t Forl nterrupt() I NT# PORTX_| NT#
PCl NT# ACA_ACO
ANALOG_COWP ACA_AC1
ACA_ACW
ACB_ACO
ACB_AC1
ACB_ACW

In the table above some ISR names (shaded) are given symbolically in the interest of brevity,
representing multiple possible ISR names. The table below describes how to interpret the symbolic ISR

entries.

Key to Symbolic ISR Names

Symbolic ISR Name

Meaning

TI VERZ_COVPA

Replace TI MER# with the name of the I/O Timer, e.g. TIMERL.

TI VER*_COVPB
TI MER*_CAPT
TI MER*_OVF

Replace TI MER* with the applicable 16-bit timer name, e.g. TIMERA.

TI VER&_COVPA

Replace TI MER& with the software UART timer name, e.g. TIMER2.

TI NER$_COVPB

Replace TI MER$ with the RTC timer name, e.g. TIMERO.

TC* _CCA Replace TC* with the applicable timer name, e.g. TCCO.

TC*_CCB

TC*_OVF

TC& CCA Replace TC$ with the software UART timer name, e.g. TCCO.
TC$_CCB Replace TC$ with the RTC timer name, e.g. TCCO.

USART#_RX Replace USART# with the applicable UART name, e.g. USARTO.
USART#_TX

USART#_UDRE

USART#_RXC Replace USART# with the applicable UART name, e.g. USARTCO.
USART#_TXC

USART#_UDRE

| NT# Replace | NT# with the external interrupt name, e.g. INTO.

I NT* Replace | NT* with the X-10 zero-crossing interrupt name, e.g. INTO.
PCI NT# Replace PCl NT# with the pin change interrupt name, e.g. PCINTO.
PORTX_| NT# Replace PORTx with the applicable port name, e.g. PORTA and replace

ZBasic System Library

37 ZBasic Microcontrollers

I NT# with the applicable pin change channel designator, e.g. INTO.

Program Memory Page Size

For ZBasic devices having Program Memory in internal Flash Memory, the page size of that memory is an
important value. For example, for an application that writes to Program Memory a buffer of the length of
the page size must be allocated from the heap in order to perform the necessary read-modify-write
operation that is required for updating Flash Memory locations. This is one factor affecting the minimum
heap size for a particular device and application. The tables below give the Program Memory page size
for ZX devices and generic target devices.

Program Memory Page Size for ZX Devices

ZX Device Page Size
ZX-24, ZX-24a, ZX-24p, ZX-40, ZX-40a, ZX-40p, ZX-44, ZX-44a, ZX-44p, n/a
ZX-24e, ZX-24ae, ZX-24pe, ZX-24pu

ZX-24n, ZX-40n, ZX-44n, ZX-24ne, ZX-24nu 256
ZX-24r, ZX-24s, ZX-24t, ZX-40r, ZX-40s, ZX-40t, ZX-44r, ZX-44s, ZX-44t, 256
ZX-24ru, ZX-24su

ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-328nu 128
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 256
ZX-24x, ZX-24u, ZX-32a4, ZX-24xu 256
ZX-128al 512
ZX-128e, ZX-128ne, ZX-1281e, ZX-1281ne 256

Program Memory Page Size for Generic Target Devices

Target Device Page Size
tiny2313, tiny2313A, tiny24, tiny24A, tiny1634" 32
tiny4313, tiny44, tiny44A, tiny84, tiny84A, tiny48, tiny88, tiny828, tiny441, tiny841" 64
tiny87, tiny167 128
mega48, megad48A, megad48P, megad48PA, mega48PB, mega8, mega8A, 64
mega88, mega88A, mega88P, mega88PA, mega88PB

megal68, megal68A, megal68P, megal68PA, megal68PB, mega328, mega328P, 128

mega328PB, megal6, megal6A, megal64A, megal64P, megal64PA, mega32, mega32A,
mega324P, mega324PA

mega644, mega644A, mega644P, mega644PA, megal284P, mega64, mega64A, megal28, 256
megal28A, megal281l, mega2561, mega640, megal280, mega2560

AT90CAN32, AT90CANG64, AT90OCAN128 256
mega8U2 64
megal6U2, mega32U2 128
megal6U4, mega32U4 256
mega8515, mega8535 64
megal6l, megal62, megal63, mega323 128
megal65, megal65A, megal65P, megal65PA, mega325, mega325P, 128

megal69, megal69A, megal69P, megal69PA, mega329, mega329P, mega329PA,
mega3250, mega3250P, mega3290, mega3290P

mega645, mega645A, mega645P, mega649, mega649A, mega649P, 256
mega6450, mega6450A, mega6450P, mega6490, mega6490A, mega6490P

ATI90USB82, ATO0USB162 128
ATI0USB646, ATO0USB647, ATOOUSB 1286, ATO0USB1287 256
xmega with 64K or less of Flash memory 256
xmega with 128K or more of Flash memory 512

“For these devices, a block of 4 times the page size is required.

ZBasic System Library 38 ZBasic Microcontrollers

Section 3 - Processor Speed and Device Configuration Issues

For ZX devices, the processor speed and configuration are fixed and specific to each device. The clock
speed for most ATmega-based ZX devices is 14.7456MHz but special versions are available that run
slower and faster. ZX devices based on the ATxmega run at 29.4912MHz. The first table below
summarizes the differences that arise due to the difference in operating speeds. The second table
summarizes the differences at reduced operating speeds obtained by using the clock prescaler directive.

ZX Device Processor Speed Variations

Parameter 7.3728 MHz 14.7456 MHz 18.432 MHz 29.4912 MHz
RTC Tick Frequency 512 Hz 512 Hz 500 Hz 512 Hz
RTC Fast Tick Frequency 512 Hz 1024 Hz 1000 Hz 512 Hz
RTC Scale Factor 1 2 2 1

RTC Timer Frequency 115.2 KHz 230.4 KHz 72 KHz 115.2 KHz
Multi-tasking Time Slice 1.95mS 1.95mS 2.0mS 1.95mS
Default Ti mer Speedl Units 135.6 nS 67.8 nS 54.4 nS 67.8 nS
Default Ti mer Speed2 Units 1.085 1S 1.085 | S* 434 nS 271 nS
Count Transi tions() Sample Rate 204.8 KHz 409.6 KHz 512 KHz 737.3 KHz
Maximum SW serial baud rate 9600 19200 19200 19200
Parameter 460.8 KHz 921.6 KHz 1.8432 MHz 3.6864 MHz
RTC Tick Frequency 400 Hz 512 Hz 400 Hz 400 Hz
RTC Fast Tick Frequency 400 Hz 512 Hz 400 Hz 400 Hz
RTC Scale Factor 1 1 1 1

RTC Timer Frequency 7.2 KHz 115.2 KHz 7.2 KHz 3.6 KHz
Multi-tasking Time Slice 2.5mS 1.95mS 2.5mS 2.5mS
Default Ti mer Speed1 Units 2.171S 1.085 S 542.5 nS 271.3 nS
Default Ti mer Speed?2 Units 17.36 1S 8.68S 434S 2174S
Count Transi tions() Sample Rate 12.8 KHz 25.6 KHz 51.2 KHz 102.4 KHz
Maximum SW serial baud rate 600 1200 2400 4800

Note, particularly, that the “units” value for Ti mer Speed2 on ZX devices running at 14.7456MHz is
scaled to match the value corresponding to operating at 7.3728MHz. This is done for compatibility with
Basic X devices that all operate at the lower speed. Consult the section I/O Timer Prescaler Values for
information on which routines use the Ti mer Speedl and Ti ner Speed2 values. The scaling effect
described above can be disabled by setting the value of Regi st er. | OScal i ng to Fal se.

For generic target devices, the processor speed can be any reasonable value and the RTC frequency can
be any value attainable using the available prescaler and compare value settings for the RTC timer.
Further, the initial I/O Timer prescaler settings Register. TimerSpeedl and Register. TimerSpeed2 can be
any useful values. Consquently, the meaning of results returned by some ZBasic System Library routines
can only be described in terms of the value of these configurable items (all of which are specified at
compile time).

The table below gives several important values that are dependent on device configuration parameter
values both in the case of ZX devices (with fixed values) or generic target devices (with user-specified
values). The symbols given in the table entries is used in the descriptions of various ZBasic System
Library routines thus allowing you to infer the meaning of the results based on device configuration
values.

ZBasic System Library 39 ZBasic Microcontrollers

ZBasic Device Parameters

Example
Device Parameter Symbol Value for ZX-24n
Main Clock Frequency F CPU 14.7456 MHz
RTC Scale Factor RTC_SCALE 2
RTC Fast Tick Frequency F RTC_FAST 1024 Hz
RTC Tick Frequency F_RTC_TICK 512 Hz
RTC Timer Frequency F RTC_TIMER 230.4 KHz
TimerSpeedl Frequency F_TS1 14.7456 MHz"
TimerSpeed2 Frequency F_TS2 1.8432 MHz"

1) Assuming the default Register. TimerSpeed1l value of 1.
2) Assuming the default Register. TimerSpeed2 value of 2.

Main Clock Frequency (F_CPU)

This value represents the operating speed of the target CPU. In the case of generic target devices, it is
specified via the target device parameter ClockFrequency.

RTC Scale Factor (RTC_SCALE)

This value, limited to being 1 or 2, represents a scale factor for mapping RTC timer compare interrupts to
Register.RTCFastTick and Register.RTCTick updates. If RTC_SCALE is 1, Register.RTCFastTick and
Register.RTCTick change at the same rate. If RTC_SCALE is 2, Register. RTCFastTick changes at twice
the rate as Register. RTCTick.

RTC Fast Tick Frequency (F_RTC_FAST)

This value represents the rate of change of Register.RTCFastTick which is updated on every RTC timer
interrupt. The rate of change is equal to RTC_SCALE times the rate of change of Register.RTCTick.

RTC Tick Frequency (F_RTC_TICK)

This value represents the rate of change of Register.RTCTick which is equal to the rate of change of
Register.RTCFastTick divided by RTC_SCALE.

RTC Timer Frequency (F_RTC_TIMER)

This value represents the rate of change of the counting register of the RTC timer and its value is a
fraction of F_CP U determined by the RTC timer prescaler setting. For example, if the RTC timer
prescaler setting indicates a divide-by-64 prescaler, F_RTC_TIMER will be F_CPU / 64. For generic
target devices, the compiler computes the prescaler divisor based on the specified ClockFrequency,
RTCFrequency and RTCScale configuration parameters using the smallest available prescaler setting
given the maximum compare register value for the particular device.

TimerSpeedl Frequency (F_TS1)

This value represents the rate of change of the counting register of the I/O timer and its value is
computed by dividing F_CPU by the prescaler value selected by the value of Register. TimerSpeedl. For
generic target devices, the initial value of Register. TimerSpeedl is implied by the configuration parameter
TimerSpeedlDivisor. See the section I/O Timer Prescaler Values for information on the relationship of
prescaler selector values to divisor values.

ZBasic System Library 40 ZBasic Microcontrollers

TimerSpeed2 Frequency (F_TS2)

This value represents the rate of change of the counting register of the I/O timer and its value is
computed by dividing F_CPU by the prescaler value selected by the value of Register. TimerSpeed2. For
generic target devices, the initial value of Register. TimerSpeed?2 is implied by the configuration parameter
TimerSpeed2Divisor. See the section I/O Timer Prescaler Values for information on the relationship of
prescaler selector values to divisor values.

It is highly recommended to use the built-in values Regi st er . CPUFr equency,

Regi st er. RTCTi ckFr equency, and Regi st er . RTCTi mer Fr equency in your application code
instead of using hard-coded values. Doing so also simplifies code that must run on multiple devices that
operate at different speeds. See the descriptions of these values in the ZBasic Language Reference
Manual for more details.

ZBasic System Library 41 ZBasic Microcontrollers

Section 4 - Detailed Descriptions of Subroutines and Functions

In the descriptions that follow, the parameter types that are accepted by each routine are described.
Some parameters accept a specific fundamental data type while others may accept a few similar types.
Others accept virtually any parameter type. In order to more succinctly describe the types of parameters
accepted, some descriptive type categories are used. For example, the category integral is used to
connote those types that have the integral characteristic, such as Byt e, | nt eger, Unsi gnedl nt eger,
Long and Unsi gnedLong. The table below indicates which types belong to which categories.

Type Category Membership
Type/Category any type numeric integral signed int8/16 intl6 int32 any 32-bit
Bool ean X
Bi t
Ni bbl e
Byt e
I nt eger
Unsi gnedl nt eger
Long
Unsi gnedLong
Si ngl e
Enum
String

XX | X|X|[X

X| X | X|[X|X|X]|X
x

XXX |[X|X]|X]|X[X

XIX|X[X[X|X|X|X]|X]|X

The remainder of this document presents complete descriptions of each of the System Library routines,
arranged in alphabetical order. Unless specifically noted otherwise, the descriptions apply to all ZBasic
devices. In some cases, a routine exhibits different behavior in Basic X compatibility mode or operates in
a manner that is slightly different from that implemented in the Basic X environment. In these cases, the
heading Compatibility will appear in the description detailing the differences. The advanced System
Library routines that are not present in the Basic X environment are also similarly noted. If you are not
using Basic X compatibility mode or are not upgrading Basic X code these notations may be safely
ignored.

ZBasic System Library 42 ZBasic Microcontrollers

Abs

Type Function returning the same type as the parameter

Invocation Abs(arg)

Parameter Method Type Description

arg ByVal numeric The value from which the absolute value will be
computed.

Discussion

The absolute value function returns the magnitude of the passed value. It is primarily useful for signed
numeric types such as Si ngl e, | nt eger and Long. Unsigned parameter values will be returned
unchanged.

The type of the return value will be the same as the type of the parameter provided.

Example

Dimi as Integer, j as Integer

-45
Abs(i) ' result is 45

ZBasic System Library 43 ZBasic Microcontrollers

Acos

Type Function returning Single

Invocation Acos(arg)

Parameter Method Type Description

arg ByVal Single The value from which the arc cosine will be computed.
Discussion

The arc cosine function is the inverse of the cosine function. The return value will be the angle,
expressed in radians, whose cosine corresponds to the passed value. The type of the return value will be
Si ngl e and the value will range from 0.0 to . If the argument is greater than 1.0 or less than —1.0, the
result will be undefined.

Example

Dimval as Single, theta as Single

val = 0.5
theta = Acos(val) ‘'the result will be approximtely 1.0472.
See Also Cos, DegToRad, RadToDeg

ZBasic System Library 44 ZBasic Microcontrollers

ADCtoCom1l

Type Subroutine

Invocation ADCtoCom1(pin, rate)

Parameter Method Type Description

pin ByVval Byte The pin number from which analog readings will be taken.
Valid pins are those corresponding to PortA, pins 13 to 20.
rate ByVval int16 The rate at which conversions will be performed. The value is

the number of conversions per second and may range from 28
to 11000 samples per second.

Discussion

Calling this subroutine causes a continuous series of analog-to-digital conversions to be performed on the
signal appearing at the specified pin. Each 8-bit digital result is automatically sent out the Com1 serial
port. Before starting the conversions, the baud rate of Com1 is set to 115,200. The specified pin is
automatically set to the proper state for A/D conversion so no additional setup is required prior to use.
The conversion stream will continue until ADCToComiL() is called again with the pi n parameter set to

zero (the r at e parameter being meaningless in this case).

The analog input range is approximately 0.25 to 0.75 times Vcc (1.25 volts to 3.75 volts when running on
5 wolts) and the resulting digital range is 0 to 255. Analog input levels below the low end of the range and
above the high end of the range will produce the low and high digital values, respectively.

Note that the subroutine ComLToDAC() is designed to receive the data stream generated by this
Subroutine. For best accuracy, state changes on other pins of the port containing the analog input should
be avoided during the conversion process.

Resource Usage

This subroutine uses the processor's A/D conwerter, Com1 and the I/O Timer. No other use of these
resources should be attempted while the conversion is active. For native code devices, the following
ISRs are required.

ISRs Required

Underlying CPU ISR Name

mega328P, nega644P, negal28 Ti mer 1_ConpA

megal284P Ti mer 3_ConpA

megal28l Ti mer 4_ConpA

negal280 Ti mer 4_ConpA
Compatibility

This subroutine is only available on ATmega-based ZX devices.

See Also Com1ltoDAC

ZBasic System Library 45 ZBasic Microcontrollers

Asc

Type Function returning Byte

Invocation Asc(str)
Asc(str, index)

Parameter Method Type Description
str ByVval String The string from which a character will be returned.
index ByVal int8/16 The 1-based position in the string from which the character

will be returned.

Discussion

This function returns the ASCII character code of the character at the position of the string that is
specified. If the second parameter is missing, position 1 is assumed. Note that if the index is less than 1
or larger than the number of characters in the string the return value will be zero.

Example

Dims as String
Dimb as Byte

S
b

" |_|0\Adyll
Asc(s)

After execution, the variable b will have the value of 72 (48 hex), the character code for H.

Compatibility

Basic X does not support the presence of the second parameter.

See Also Chr

ZBasic System Library 46 ZBasic Microcontrollers

Asin

Type Function returning Single

Invocation Asin(arg)

Parameter Method Type Description

arg ByVval Single The value from which the arc sine will be computed.
Discussion

The arc sine function is the inverse of the sine function. The return value will be the angle, expressed in
radians, whose sine corresponds to the passed value. The type of the return value will be Si ngl e and
the value will range from -1t/2 to /2. If the argument is greater than 1.0 or less than —1.0, the result will
be undefined.

Example

Dimval as Single, theta as Single

val = 0.5
theta = Asin(val) " result is approximately 0.5236
See Also Sin, DegToRad, RadToDeg

ZBasic System Library 47 ZBasic Microcontrollers

Atn

Type Function returning Single

Invocation Atn(arg)

Parameter Method Type Description

arg ByVval Single The value from which the arc tangent will be computed.
Discussion

The arc tangent function is the inverse of the tangent function. The return value will be the angle,
expressed in radians, whose tangent corresponds to the passed value. The return value will be of type
Si ngl e and the value will range from -1t/2 to 1/2.

Example

Dimval as Single, theta as Single

val = 0.5
theta = Atn(val) ' result is approximately 0.4636
See Also Atn2, DegToRad, RadToDeg

ZBasic System Library 48 ZBasic Microcontrollers

Atn2

Type Function returning Single
Invocation Atn2(y, x)

Parameter Method Type Description
y ByVval Single y coordinate.
X ByVval Single x coordinate.
Discussion

This function computes the principal value of the arc tangent of y/ X, using the signs of both arguments to
determine the quadrant of the return value. The return value will be the angle, expressed in radians, from
the positive x-axis to the line connecting the origin and the given point. The type of the return value will be
Si ngl e and the value will range from -1 to . If both x and y are zero, the value 0.0 will be returned as

a special case.

Example

Dimx as Single, y as Single, theta as Single

x =1.0
y =-1.0

theta = Atn2(y, x) " result is —0.7854

Compatibility

This function is not available in Basic X compatibility mode.

See Also Atn, DegToRad, RadToDeg

ZBasic System Library

49

ZBasic Microcontrollers

BitCopy

Type Subroutine

Invocation BitCopy(destAddr, destBitOfst, srcAddr, srcBitOfst, bitCount)

Parameter Method Type Description

dstAddr ByVval integral The address to which to begin copying.

dstBitOfst ByVal integral The bit offset to which to begin copying.

srcAddr ByVal integral The address from which to begin copying.

srcBitOfst ByVal integral The bit offset from which to begin copying.

bitCount ByVal integral The number of bits to copy.

Discussion

This subroutine can be used to copy an arbitrary number of bits from one location in RAM to another.
The copy operation may begin and/or end in the middle of a byte if desired. An overlapping copy (when
the destination is in the midst of the data being copied) is handled correctly so that the data to be copied
is not overwritten.

For the purposes of this subroutine, RAM considered a sequence of bits with the least significant bits of
each byte preceding the more significant bits. This is the same model of RAM that is utilized by

GetBit () and Put Bi t (). The least significant bit of a byte is at offset zero and the most significant bit
is at offset 7.

Note that the bit offsets specified for the second and fourth parameters may have values greater than 7.
If a bit offset greater than 7 is given, the corresponding address component is adjusted internally to give
the same effect. For example, if an address of 200 and a bit offset of 19 are specified, these are
converted internally to 202 and 3, respectively.

All six parameters are converted internally to Unsi gnedl nt eger .

Caution

This subroutine should be used with care because it is possible to overwrite important data on the stack
or other areas of memory which may cause your program to malfunction.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in Basic X compatibility mode.

See Also MemCopy, MemSet

ZBasic System Library 50 ZBasic Microcontrollers

BlockMove

Type Subroutine

Invocation BlockMowve(count, source, destination)

Parameter Method Type Description

count ByVval integral The number of bytes to copy.

source ByVval integral The address from which to begin copying.
destination ByVal integral The address to which to begin copying.
Discussion

This subroutine is provided for compatibility with BasicX. The more aptly named MenmCopy() should be

used by new applications. An overlapping copy (when the destination is in the midst of the data being
copied) is handled correctly so that the data to be copied is not overwritten.

Compatibility
With VM firmware versions prior to v1.1.0 an overlapping copy is not handled correctly nor is it handled

correctly in BasicX. A BasicX application that relies on the incorrect handling will, therefore, not work as
expected when run on ZX processors.

See Also BitCopy, MemCopy

ZBasic System Library 51 ZBasic Microcontrollers

BusRead

Type Subroutine

Invocation BusRead(addr, data, count)
BusRead(addr, data, count, delta)

Parameter Method Type Description

addr ByVval integral The bus address at which to begin reading.

data ByRef anyType A buffer to receive the data read.

count ByVal integral The number of bytes to read.

delta ByVval integral The amount by which the address should be changed after

each byte is read.

Discussion

For ZBasic devices that support external RAM (e.g. ZX-1281), if the external RAM interface is enabled
and a bus has not been defined using DefineBus(), then the external RAM interface is used for the read
operation. In this case, the full 16 bits of the specified address are used and the delta parameter is
interpreted as a signed 8-bit value that is sign-extended before adding it to the address with each
iteration.

For ZBasic devices that do not support external RAM or if the external RAM interface is not enabled, this
routine performs a series of read operations on the bus previously defined with the DefineBus() call. This
is called the “bit bang” mode. For each read cycle, the low 8-bits of the address is output on the
previously specified port and then the ALE pin is strobed (high, then back low). Next, the port is made an
input and the RD pin is set low, data is read via the PIN register corresponding to the port, and the RD pin
is set back high again. The data value read is stored in the buffer, the specified delta is added to the 8-bit
bus address and the cycle is repeated until the specified number of bytes has been read.

It is important to remember that in the bit bang mode only 8 bits of the address are used. Depending on
the values of the addr, count and del t a parameters, the effective address may wrap around to zero.

For example, with del t a=1 specifying a count parameter larger than (256 — LoByt e(addr)) will
result in the effective address wrapping around to zero.

In either mode, if the optional del t a parameter is not specified, the value of 1 is assumed. Specifying
the delta as zero will result in multiple reads from the same address. A delta of —1 or &Hf f will result in
the address being decremented after each read.

Example

Dimdata(l to 20) as Byte

Cal| DefineBus(Port.A C. O, C1, C2)

Cal | BusRead(0, data, SizeO(data))

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24) nor is is available on ATxmega-based ZBasic devices. Moreover, it is not available in Basic X
compatibility mode.

See Also BusWrite, DefineBus

ZBasic System Library 52 ZBasic Microcontrollers

BusWrite

Type Subroutine

Invocation BusWrite(addr, data, count)
BusWrite(addr, data, count, delta)

Parameter Method Type Description

addr ByVval integral The bus address at which to begin writing.

data ByRef anyType The data to be written.

count ByVal integral The number of bytes to write.

delta ByVval integral The amount by which the address should be changed after

each byte is written.

Discussion

For ZBasic devices that support external RAM (e.g. ZX-1281), if the external RAM interface is enabled
and bus has not been defined using DefineBus(), then the external RAM interface is used for the write
operation. In this case, the full 16 bits of the specified address are used and the delta parameter is
interpreted as a signed 8-bit value that is sign-extended before adding it to the address with each
iteration.

For ZBasic devices that do not support external RAM or if the external RAM interface is not enabled, this
routine performs a series of write operations on the bus previously defined with the DefineBus() call. This
is called the “bit bang” mode. For each write cycle, the low 8-bits of the address is output on the
previously specified port and then the ALE pin is strobed (high, then back low). Then, the next data value
to be written is output on the port and the WR pin is strobed (low then back high). Finally, the specified
delta is added to the bus address and the cycle is repeated until the specified number of bytes has been
written.

It is important to remember that in the bit bang mode only 8 bits of the address are used. Depending on
the values of the addr, count and del t a parameters, the effective address may wrap around to zero.

For example, with del t a=1 specifying a count parameter larger than (256 — LoByt e(addr)) will
result in the effective address wrapping around to zero.

In either mode, if the optional del t a parameter is not specified, the value of 1 is assumed. Specifying
the delta as zero will result in multiple writes to the same address. A delta of —1 or &Hf f will result in the
address being decremented after each write.

Example

Dimdata(l to 20) as Byte

Cal| DefineBus(Port.A C. O, C1, C2)

Call BusWite(0, data, SizeOf(data))

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24) nor is is available on ATxmega-based ZBasic devices. Moreover, it is not available in Basic X
compatibility mode.

See Also BusRead, DefineBus

ZBasic System Library 53 ZBasic Microcontrollers

CallTask

Type Special Purpose

Invocation CallTask taskName, taskStack
CallTask taskName, taskStack, taskStackSize
CallTask taskName(parameterList), taskStack
CallTask taskName(parameterList), taskStack, taskStackSize

Parameter Method Type Description

taskName ByVal identifier The name of the task to invoke.

parameterList varies varies Zero or more parameters to be passed to the task,
separated by commas.

taskStack ByRef array of Byte The stack for the task (see discussion)

taskStackSize ByVal integral The size of the stack.

Discussion

This construct is used to prepare a task for running; the task doesn’t actually execute until its turn comes
up in the normal task rotation. In the first and second cases, the t askNane given must be the name of a
user-defined subroutine that takes no parameters. In the third and fourth cases, the t askNane given
must be a user-defined subroutine that takes a number of parameters whose type and number match that
of the supplied parameter list. The subroutine may be public or private but if it is private it must exist in the
same module as the CallTask invocation that refers to it.

The t askSt ack may be a Byte array, typically defined at the module level, that contains a sufficient
amount of space for the task’s stack needs. The array can be public or private but if it is private it must
exist in the same module as the CallTask invocation that refers to it. Alternately, the stack for a task may
be specified by giving its address as an integral expression. In this case, it is usually also advisable to
specify the size of the stack since the compiler cannot deduce the size. A task must have exclusive use
of the memory dedicated to its task stack. A particular task stack may be used by more than one task but
one task must terminate before the next task can re-use the task stack.

If a task is passed parameters when it is invoked, it is advisable that those parameters be passed ByVal
because the lifetime of the task may exceed the lifetime of the routine from which the task was invoked. If
parameters are passed ByRef (explicitly or implicitly), the compiler will issue a warning. Also, certain
types of expressions (notably, those involving user-defined functions that return String types) may not be
used as parameter values for task invocation because they require the creation of temporary variable
space on the stack during evaluation. The compiler will issue an error message when it detects such
situations. This problem can be rectified by manually creating a variable (preferably at the module level)
to hold the parameter value.

For native mode devices (e.g. ZX-24n), the task stack size must either be explicitly specified or it must be
determinable by the compiler from the size of the task stack array. The compiler will issue an error
message if it cannot determine the size of the task stack.

Please read the section on multi-tasking in the ZBasic Reference Manual for more details, including
information about how to determine the proper task stack size.

Example 1

DimtaskStack(1l to 50) as Byte

Sub Mai n()
Cal | Task MyTask, taskStack
Do

Debug. Print "Hello from Main"
Call Del ay(1.0)

ZBasic System Library 54 ZBasic Microcontrollers

Loop
End Sub

Sub MyTask()
Do
Debug. Print "Hello from MyTask"
Call Del ay(2.0)
Loop
End Sub

Example 2

DimtaskStack(1l to 50) as Byte

Sub Mai n()
Cal | Task MyTask(2.0), taskStack
Do

Debug. Print "Hello from Mai n"
Call Delay(1.0)
Loop
End Sub

Sub MyTask(ByVal taskDelay as Single)
Do
Debug. Print "Hello from MyTask"
Cal | Del ay(taskDel ay)
Loop
End Sub

Example 3
DimtaskStack(1l to 50) as Byte
Sub Mai n()

Di m st kAddr as Unsi gnedl nt eger
Di m stkSi ze as | nteger

st kAddr = taskStack. Dat aAddr ess
stkSize = SizeO (taskStack)
Cal | Task MyTask(2.0), stkAddr, stkSize
Do
Debug. Print "Hello from Mai n"
Call Delay(1.0)
Loop
End Sub
Sub MyTask(ByVal taskDelay as Single)
Do
Debug. Print "Hello from MyTask"
Cal | Del ay(taskDel ay)
Loop
End Sub
Compatibility

In Basic X compatibility mode, the task name must be enclosed in quotes (i.e. so that it appears to be a
string). Also, task parameters, specifying the task stack by address, and specifying the task stack size
are not supported in Basic X compatibility mode. CallTask cannot be used unless the RTC is enabled in
your application.

ZBasic System Library 55 ZBasic Microcontrollers

CBit

Type Function returning Bit
Invocation CBit(arg)
Parameter Method Type Description
arg ByVval integral, String or Boolean The value to convert to a Bit value.
Discussion

This function converts a numeric, String or Boolean value to a Bit value as described in the table below.

Input Type Result
i ntegral, Bool ean The value is the least significant bit of the supplied value.
String The result is the least significant bit of the numeric value of the

characters in the string, ignoring leading space and tab characters.
The value string may begin with a plus or minus sign and an optional
radix indicator (&H for hexadecimal, &O for octal, &B or & X for binary,
all case insensitive). The conversion is terminated upon reaching the
end of the string or encountering the first character that is not valid for
the indicated radix.

Example
Di m pinval as Bit

pinval = CBit(GetPin(12))

Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 56 ZBasic Microcontrollers

CBool

Type Function returning Boolean

Invocation CBool(arg)

Parameter Method Type Description

arg ByVval Byte The value to convert to a Boolean value.

Discussion

This function converts a Byte value to a Boolean value. If the byte has the value O the result will be
False, otherwise it will be True.

Example

Di m pi nHi as Bool ean

pi nHi = CBool (CGet Pin(12))

ZBasic System Library 57 ZBasic Microcontrollers

CByte

Type Function returning Byte

Invocation CByte(arg)

Parameter Method Type Description

arg ByVval numeric, String, Boolean or Enum The value to convert to Byte.
Discussion

This function converts any numeric or enumeration value to a Byte value. See the table below for details
of the conversion.

Input Type Result

Bool ean Returns the byte value of the Boolean data item: 0 or 255.

Byt e No effect, the value is as supplied.

I nt eger Returns the low byte of the value provided. However, if the supplied

value is negative or greater than 255, the returned value will be 255.

Unsi gnedl nt eger Returns the low byte of the value provided. However, if the supplied
value is greater than 255, the returned value will be 255.

Enum Returns the low byte of the value provided. However, if the supplied
value is greater than 255, the returned value will be 255.

Long Returns the low byte of the value provided. However, if the supplied
value is negative or greater than 255, the returned value will be 255.

Unsi gnedLong Returns the low byte of the value provided. However, if the supplied
value is greater than 255, the returned value will be 255.

Si ngl e The supplied value is converted to a Long value (signed 32-bit integer),

rounded to the nearest integer. If the fractional part is exactly 0.5, the
resulting integer will be even. This is known as “statistical rounding”. If
the resulting integer value is negative or larger than 255, the result will
be 255. Otherwise, the result will be the integral value.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&O for octal, &B or & X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Compatibility

In Basic X, calling CByt e() with an Unsi gnedl nt eger argument returns the low byte of the value. This
behavior is inconsistent with the other type conversions. This implementation attempts to make them
consistent.

ZBasic System Library 58 ZBasic Microcontrollers

CByteArray

Type Function returning a reference to a Byte array

Invocation CByteArray(addr)

Parameter Method Type Description
addr ByVal int16 The address to be converted to a reference to a Byte array.
Discussion

This special function is useful when you have an integral value that you know to be the address of a Byte
array and you want to pass it to a subroutine or function that requires a Byte array parameter. The
example below shows it being used to determine the number of bytes of data available in the system
input queue.

Example

Dimcnt as Integer
cnt = Get QueueCount (CByt eArray(Regi st er. RxQueue))

See Also StatusTask

ZBasic System Library 59 ZBasic Microcontrollers

Ceiling

Type Function returning Single

Invocation Ceiling(arg)

Parameter Method Type Description

arg ByVal Single The value of which to compute the ceiling.

Discussion

This function returns a Single value that is the smallest integer that is greater than or equal to the

supplied value, effectively rounding up to the nearest integer.

Example

Dimceil as Single

ceil = Ceiling(l.5) "result is 2.0
ceil = Ceiling(-1.5) "'result is -1.0
Compatibility

This function is not available in Basic X compatibility mode.

See Also Floor, Fraction

ZBasic System Library 60

ZBasic Microcontrollers

Chr

Type Function returning String

Invocation Chr(arg)

Parameter Method Type Description

arg ByVal integral The character code to place in the string.
Discussion

This function returns a string containing a single character having the value of the supplied parameter. |If
the parameter is a multi-byte type such as Integer or Long the least significant byte of the value is used
and the remaining bytes are ignored.

Tables of ASCII character values may be found in many places on the Internet. A search for “ASCI|
table” or “AS CII chart” will produce many results.

Example

Dims as String
s = Chr(33)

After execution, s will be "! " because 33 is the decimal code for the exclamation mark.

See Also Asc

ZBasic System Library 61 ZBasic Microcontrollers

Cint

Type Function returning Integer

Invocation Cint(arg)

Parameter Method Type Description

arg ByVval numeric, Boolean, String or Enum The value to convert to Integer.
Discussion

This function converts any numeric or enumeration value to an Integer value. See the table below for
details of the conversion.

Input Type Result

Byt e, Bool ean High byte zero, low byte as supplied.

I nt eger No effect, the value is as supplied.

Unsi gnedl nt eger Value bits are the same as supplied, although interpreted
as a signed value.

Enum The resulting value is the Enum member value.

Long The resulting value will be the low word of the supplied
value.

Unsi gnedLong The resulting value will be the low word of the supplied
value.

Si ngl e The supplied value is converted to signed 32-bit integer,

rounded to the nearest integer. If the fractional part is
exactly 0.5, the resulting integer will be even. This is
known as “statistical rounding”. If the resulting integer is
larger than will fit in 16-bits, the result is undefined.

String The result is the numeric value of the characters in the
string, ignoring leading space and tab characters. The
value string may begin with a plus or minus sign and an
optional radix indicator (&H for hexadecimal, &O for octal,
&B or &Xfor binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or
encountering the first character that is not valid for the
indicated radix.

Example
Dimi as Integer

Cint(2.5) "'result is 2
Cint(1.5) "'result is 2

ZBasic System Library 62 ZBasic Microcontrollers

ClearQueue

Type Subroutine

Invocation ClearQueue(queue)

Parameter Method Type Description

queue ByRef array of Byte The queue to be cleared.
Discussion

This routine modifies the tracking information contained in the queue data structure to indicate that the
queue is empty. If the queue is already empty, this has no effect. If there are characters in the queue,
they will be discarded.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

DiminQueue(l to 40) as Byte

Call OpenQueue(inQueue, SizeO (inQueue))

Cal | Put QueueStr (i nQueue, "Hello")

Cal| C ear Queue(i nQueue)

After the call to ClearQueue() the queue will no longer contain the characters that were added.
Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byt e.

ZBasic System Library 63 ZBasic Microcontrollers

CLng

Type Function returning Long

Invocation CLng(arg)

Parameter Method Type Description

arg ByVval numeric, Boolean, String or Enum The value to convert to Long.
Discussion

This function converts any numeric or enumeration value to a Long value. See the table below for details
of the conversion.

Input Type Result
Byt e, Bool ean High 3 bytes zero, low byte as supplied.
I nt eger High word will be all ones if the supplied value is negative, zero

otherwise. Low word as supplied.
Unsi gnedl nt eger High word zero, low word as supplied.

Enum The resulting value is the Enum member value.

Long No effect, the value is as supplied.

Unsi gnedLong Value bits are the same as supplied, although interpreted as a signed
value.

Si ngl e The supplied value is converted to a signed 32-bit integer, rounded to

the nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
magnitude of the supplied value is too large to be represented in 32 bits,
the result is undefined.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&0 for octal, &B or &Xfor binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Example
Dim| as Long

CLng(2.5) "'result is 2
CLng(1.5) "'result is 2

ZBasic System Library 64 ZBasic Microcontrollers

CloseCom

Type Subroutine

Invocation CloseCom(channel, inQueue, outQueue)

Parameter Method Type Description

channel ByVval Byte The serial channel to close.

inQueue ByRef array of Byte The input queue associated with the channel.

outQueue ByRef array of Byte The output queue associated with the channel.

Discussion

This routine shuts down the specified serial channel. All communication is terminated even if there are
still characters in the output queue that have not yet been sent. This call does not clear the queues. If
that is a requirement, calls to Cl ear Queue() will need to be made. Alternately, you may want to use the
value returned by St at usCont() to wait for all queued characters to be transmitted before invoking

Cl oseCon{).

When used with ZX devices, inwking this subroutine for Com1 (channel = 1) does not actually close the
Com1 channel if the application was configured with Com1 implicitly open at startup time. In this case,
the effect of the call is to cause Coml1 to revert to the default speed (19.2K baud) and to using the default
I/O queues.

If the specified serial channel is not open or if an invalid channel number is given the call has no effect. If
the channel being closed is the only one of the software-based channels (Com3-Com6) that is open, the

Serial Timer will be turned off and the corresponding timer busy flag will be set to False indicating that the
Serial Timer is available for other uses.

See Also ClearQueue, DefineCom, OpenCom, StatusCom

ZBasic System Library 65 ZBasic Microcontrollers

CloseDAC

Type Subroutine

Invocation CloseDAC(channel)
CloseDAC(channel, status)

Parameter Method Type Description

channel Byval Byte The DAC channel to close.

status ByRef Boolean A variable to receive the status code.
Discussion

This subroutine terminates the DAC operation on the specified channel. The st at us parameter, if
supplied, receives a value to indicate success or failure of the call. If the second channel of the DAC
channel pair is also open, it will continue to operate unaffected.

Example

Cal |l Cl oseDAC(1) ' terminate DAC on channel 1

Compatibility

This subroutine is only available for xmega devices and is not available in Basic X compatibility mode.

See Also DAC, OpenDAC

ZBasic System Library 66 ZBasic Microcontrollers

Closel2C

Type Subroutine

Invocation Closel2C(channel)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
Discussion

This subroutine closes an 12C channel. For the hardware 12C channel, it disables the on-board 12C
controller allowing the hardware 12C pins to be used for other purposes. For software 12C channels it has
no effect.

Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also Openl2C

ZBasic System Library 67 ZBasic Microcontrollers

ClosePWM

Type Subroutine

Invocation ClosePWM(channel)
ClosePWM(channel, status)

Parameter Method Type Description

channel Byval Byte The PWM channel to close.

status ByRef Boolean A variable to receive the status code.
Discussion

This subroutine terminates the PWM signal generation on the specified channel and all other PWM
channels associated with the same 16-bit timer. The resulting state of the output pins for the affected
channels is indeterminate. If your application requires a specific output state, it is recommended that you
call Put Pi n() to set the desired state prior to calling Cl osePWV) .

A side effect of a successful Cl osePWM) call is that the timer busy flag for the associated timer (e.g.
Regi st er. Ti nmer 1Busy) will be set to Fal se indicating that the timer may be used for other purposes.

Example

Call ClosePWV1) " terminate PWM on channel 1 and 2

Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also OpenPWM, PWM

ZBasic System Library 68 ZBasic Microcontrollers

ClosePWM8

Type Subroutine

Invocation ClosePWM8(channel)
ClosePWM8(channel, status)

Parameter Method Type Description

channel Byval Byte The 8-bit PWM channel to close.
status ByRef Boolean A variable to receive the status code.
Discussion

This subroutine terminates the PWM signal generation on the specified 8-bit channel and all other PWM
channels associated with the same 8-bit timer. The resulting state of the output pins for the affected
channels is indeterminate. If your application requires a specific output state, it is recommended that you
call Put Pi n() to set the desired state prior to calling Cl osePWvB() .

The st at us parameter, if supplied, receives a value to indicate success or failure of the call.

A side effect of a successful Cl osePWVB() call is that the timer busy flag for the associated timer (e.qg.
Regi st er. Ti mer 2Busy) will be set to Fal se indicating that the timer may be used for other purposes.

Example

Call Cl osePWvB(1) ' terminate PWM on channel 1 (and channel 2)
Compatibility
This subroutine is not available in Basic X com patibility mode nor is it available on ATxmega-based

ZBasic devices.

See Also OpenPWM8, PWM8

ZBasic System Library 69 ZBasic Microcontrollers

CloseSPI

Type Subroutine

Invocation CloseSPI(channel)

Parameter Method Type Description

channel ByVval Byte The SPI channel number (1-4).
Discussion

This subroutine closes an SPI channel. The primary purpose for this subroutine is to cancel SPI Slave
mode. It has no effect for channels that are not open or channels that are open in Master mode.

Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also OpenSPI, SPICmd, SPIGetByte, SPIPutByte, SPIGetData, SPIPutData,
SPIStart, SPIStop

ZBasic System Library 70 ZBasic Microcontrollers

CloseWatchDog

Type Subroutine
Invocation CloseWatchDog()
Discussion

This subroutine disables the watchdog timer.

Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also OpenWatchDog, WatchDog

ZBasic System Library 71

ZBasic Microcontrollers

CloseX10

Type Subroutine

Invocation CloseX10(channel, inQueue, outQueue)

Parameter Method Type Description

channel ByVval Byte The X-10 channel to close.

inQueue ByRef array of Byte The input queue associated with the channel.

outQueue ByRef array of Byte The output queue associated with the channel.

Discussion
This routine shuts down the specified X-10 communication channel. All communication is terminated

even if there are still data in the output queue that have not yet been sent. This call does not clear the
queues. Ifthat is a requirement, calls to Cl ear Queue() will need to be made.

If the specified X-10 channel is not open or if an invalid channel number is given the call has no effect.

The i nQueue and out Queue parameters are currently not used but are present for congruency with
Cl oseCon{). Zero values may be used for either or both parameters.

Resource Usage

The X-10 communication requires the use of a zero-crossing signal input to the ZX See the description
of OpenX10() for more information.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in Basic X compatibility mode.

See Also DefineX10, OpenX10, Status X10

ZBasic System Library 72 ZBasic Microcontrollers

CNibble

Type Function returning Nibble

Invocation CNibble(arg)

Parameter Method Type Description
arg ByVval integral, String or Boolean The value to convert to a Nibble value.
Discussion

This function converts a numeric, String or Boolean value to a Nibble value as described in the table
below.

Input Type Result
integral, Boolean The value is the four least significant bits of the supplied value.
String The result is the four least significant bits of the numeric value of the

characters in the string, ignoring leading space and tab characters.
The value string may begin with a plus or minus sign and an optional
radix indicator (&H for hexadecimal, &O for octal, &B or & X for binary,
all case insensitive). The conversion is terminated upon reaching the
end of the string or encountering the first character that is not valid for
the indicated radix.

Example
Dim nVal as Ni bble

nVal = CNi bbl e(Regi ster. PortC)

Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 73 ZBasic Microcontrollers

ComltoDAC

Type Subroutine

Invocation Com 1toDAC(pin)

Parameter Method Type Description

pin ByVval Byte The pin number on which the analog voltage will be re-created.

Discussion

Calling this subroutine prepares Com1 to receive a continuous stream of 8-bit values from an external
source. The baud rate is automatically set 115,200. When each value is received, the value is output as
an analog wltage on the specified pin. The resulting analog voltage will range from near 0 wolts
corresponding to the received value of 0 to near the processor voltage (usually +5 wlts) corresponding to
the received value of 255. The method used to create the analog wltage is similar to that used for

Put DAC() and the signal will require some filtering. See the description of Put DAC() for more details.
The output pin is updated at a fixed rate of 11,000 times per second.

This routine returns immediately after setting up the conversion process. The conversion process will be
terminated if Conilt oDAC() is called again with a parameter of zero. Also, if data is not received for
approximately 200 cycles, the conversion process will be automatically terminated.

Note that the subroutine ADCt oConil() is designed to produce the data stream to be received by this
subroutine.
Resource Usage

This subroutine uses Com1 and the I/O Timer. No other use of these resources should be attempted
while the reception is active. For native code devices, the following ISRs are automatically loaded.

ISRs Required

Underlying CPU ISR Name

mega328P, nega644P, nmegal28 Ti mer 1_ConpA

nmegal284P Ti mer 3_ConpA

megalz8l Ti mer 4_ConpA

megal280 Ti mer 4_ConpA
Compatibility

This subroutine is only available on ATmega-based ZX devices.

See Also ADCtoCom1

ZBasic System Library 74 ZBasic Microcontrollers

ComChannels

Type Subroutine

Invocation ComcChannels(chanCount, maxSpeed)

Parameter Method Type Description

chanCount ByVal Byte The total desired number of software-based serial channels.
maxSpeed ByVval int8/16 The desired maximum baud rate to be supported.
Discussion

In addition to the serial channels implemented in hardware on the processor (e.g. Com1), ZBasic can
support up to four additional serial communication channels that are implemented in the system software.
The software-based serial channels are numbered Com3 through Com6. However, by default, only one
additional channel, Com3, is supported. If you want to use serial channels 4 through 6 you must call this
subroutine first to specify the maximum number (generally, up to 4) that you want to have available. This
subroutine must be called only when there are no open software-based serial channels (COMS3 through
COMS®). Ifitis called when one or more channels are already open, it will have no effect. For native
mode devices, the upper limit of the chanCount parameter may be lower than 4 if the Opt i on
ContChannel s directive is used. If the value of chanCount exceeds the upper limit the call will fail
silently.

After ComChannels() has been invoked, the serial channels that will be available depends on the value
specified by the chanCount parameter. If the value 2 is specified, for example, channels Com3 and
Com4 will be available. Once the number of software-based serial channels has been established you
may then use DefineCom(), OpenCom(), and CloseCom() to manage the available channels by
specifying the appropriate channel number in those calls.

In addition to specifying the total number of software-based serial channels that you want, you must also
specify the maximum baud rate that you wish to utilize. The supported rates are 300, 600, 1200, 2400,
4800, 9600 and 19,200 baud but see below for additional discussion about the maximum baud.

Because the COM3 to COMG6 serial channels are implemented in software, when one or more of the
channels is open there will be a certain amount of processing overhead that will reduce the speed at
which program instructions will be executed. Moreover, the processing overhead is higher when
supporting higher baud rates as compared to lower baud rates and the overhead is higher when
supporting a larger number of channels. It is prudent, therefore, to choose the lowest baud rate and
lowest number of channels that is practical for your application.

Also note that when supporting two or more channels, there is a small possibility that incoming characters
might not be properly recognized at the highest rate. The probability of not being able to properly
synchronize on the incoming character's start bit increases with each additional channel that is supported.
For this reason, it is recommended that the maximum baud rate be limited to 9600 when configured for 2
or more channels.

For devices operating at speeds between 7.37MHz and 14.7456MHz, the number of software-
implemented serial channels should be limited to two and the maximum speed should be limited to 9600
baud. At slower speeds, further reductions in the channel use and maximum speed may be necessary.

Resource Usage

The software-implemented serial channels utilize the Serial Timer for the bit rate timing. No other use of
the Serial Timer should be attempted when serial channels 3-6 are open. The “Busy” flag for the timer
used to implement the software serial channels will be set to True when one or more of the software-
implemented serial channels is open.

ZBasic System Library 75 ZBasic Microcontrollers

Example

Dimiqg4(l to 20) as Byte
Dimoq4(1l to 20) as Byte

Cal | Conthannel s(4, 4800)

Cal | DefineCom(6, 12, 13, &H80)
Call OpenCon(6, 4800, iq4, oqg4)

Compatibility

This routine is not available in Basic X compatibility mode.

See Also DefineCom, CloseCom, OpenCom, StatusCom, SerialGetByte, SerialOut

ZBasic System Library 76

ZBasic Microcontrollers

Console.Read

Type Function returning Byte
Invocation Console.Read()
Discussion

This function can be invoked to retrieve a character from the input queue associated with Com1 (by
default, but see Option Console in the ZBasic Language Reference Manual). If the value of

Regi st er. Consol e. Echo is Tr ue, the character will automatically be sent back out via the output
gueue associated with the designated serial channel. When this function is called it will not return until a
character is available. However, other tasks will continue to execute. You may wish to query the
designated queue to find out if there are characters available before calling this function. See the
example below.

Example

Dimb as Byte
b = Console.Read() ' this will wait until a character is available

I f (Get QueueCount (CByteArray(Regi ster. RxQueue)) > 0) Then

b = Console.Read() ' read the next avail able character
End If
Compatibility

This function is not available in Basic X compatibility mode.

See Also Console.ReadLine, Console.Write, Console.WriteLine

ZBasic System Library 77 ZBasic Microcontrollers

Console.ReadLine

Type Function returning String
Invocation Console.ReadLine()
Discussion

This function can be invoked to retrieve a sequence of characters from from the input queue associated
with Com1 (by default, but see Option Console in the ZBasic Language Reference Manual) terminated by
an end-of-line character. If the value of Regi st er. Consol e. Echo is Tr ue, each character received

will automatically be sent back out via the output queue associated with the designated serial channel.
When this function is called it will not return until an end-of-line character is received. However, other
tasks will continue to execute. The end-of-line character is line feed (&H0a) by default but you may

change it using Regi st er. Consol e. EQL.

While the characters of the line are being read, if a backspace character is received (&H08) the most
recently received character will be deleted from the internal buffer. Additional backspace characters will
each remove another character from the buffer until it is empty. If a carriage return is received (&H0d) it
will be ignored unless Regi st er. Consol e. EQOL is a carriage return.

The end-of-line character is not included in the returned strin% and the maximum length of the string is

255 characters. Additional characters received after the 255" character will be discarded while awaiting
the end-of-line character.

Example

Dims as String
s = Consol e. ReadLi ne()

Compatibility

This function is not available in Basic X compatibility mode.

See Also Console.Read, Console.Write, Console.WriteLine

ZBasic System Library 78 ZBasic Microcontrollers

Console.Write

Type Special Purpose

Invocation Console.Write(arg)

Parameter Method Type Description

arg ByVal String A string to send out the console port
Discussion

Console.Write is neither a subroutine nor a function. It has more in common with ZBasic statements but it
is described here for ease of reference. This special purpose method is useful for outputting debugging
information and other data to Com1 (by default, but see Option Console in the ZBasic Language
Reference Manual). Note that no carriage return/new line is output after the string.

When this method is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue.

Example

Console. Wite("Hello, world! ")

Console. Wite("The value is " & CStr(val))

This example uses the concatenation operator to produce a single string that is passed to the method.

See Also Debug.Print, Console.Read, Console.ReadLine, Console.WriteLine

ZBasic System Library 79 ZBasic Microcontrollers

Console.WriteLine

Type Special Purpose

Invocation Console.WriteLine(arg)

Parameter Method Type Description

arg ByVval String A string to send out the console port
Discussion

Console.WriteLine is neither a subroutine nor a function. It has more in common with ZBasic statements
but it described here for ease of reference. This special purpose method is useful for outputting
debugging information and other data to Com1 (by default, but see Option Console in the ZBasic
Language Reference Manual). Note that a carriage return/new line is always output following the string.

When this method is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. This caveat
applies separately to the string specified by the parameter and to the end-of-line sequence that is also
output.

Examples

Console. WitelLine("Hello, world! ")

Consol e. WiteLine("The value is " & CStr(val))
The second example uses the concatenation operator to produce a single string that is passed to the

method.

See Also Debug.Print, Console.Read, Console.ReadLine, Console.Write

ZBasic System Library 80 ZBasic Microcontrollers

ControlCom

Type Subroutine

Invocation ControlCom(chan, rxFlowPin, txFlowPin)
ControlCom (chan, rxFlowPin, txFlowPin, flags)

Parameter Method Type Description

chan Byval Byte The serial channel of interest.

rxFlowPin ByVval Byte The pin to use for receive flow control.

txFlowPin ByVval Byte The pin to use for transmit flow control.

flags ByVal Byte Flag bits controlling the sense of the flow control lines.
Discussion

This subroutine sets a flow control pin for the receive side and/or transmit side of a serial channel. Either
or both of the second and third parameters may be zero indicating that that type of flow control is not
desired. If the fourth parameter is not specified, it defaults to the value zero indicating that the flow
control pins should be active high. If the fourth parameter is specified, the bits of its value have the
meaning given in the table below.

Flag Parameter Values

Value Meaning
&HO1 The receive flow control pin should be active low.
&HO02 The transmit flow control pin should be active low.

The remaining bits are currently undefined but may be used in the future. For compatibility with new
functionality that may be added in the future, the unused bits should always be zero.

If a receive flow control pin is specified, the pin will be made an output and placed in the active state.
This indicates to the sender that the ZX is ready to accept serial data. When the channel’s receive queue
is nearly full (two bytes of space left), the receive flow control pin will be set to the inactive state indicating
to the sender that data transmission should be temporarily suspended. When additional space becomes
available in the receive queue (at least three bytes), the receive flow control pin will be set back to the
active state.

If a transmit flow control pin is specified, the pin will be made an input. Before sending data, the ZX will
check the state of the transmit flow control pin and, if it is at the inactive level, no data will be sent. Note
that the input is checked periodically and transmission will resume if the transmit flow control pin is in the
active state when sampled.

The current state of the flow control signals is part of the value returned by StatusCom().

It is important to note that a receive queue that is too small is likely to result in a deadlock since there will
never be enough free space to activate the flow control signal. Also, when a channel is closed the flow
control settings for the channel are cleared. For that reason, it is recommended that the call to
ControlCom() be made, if desired, some time after a channel is opened and before it is closed.
Compatibility

This subroutine is not available on ZX devices based on the mega32 (e.g. ZX-24). Moreover it is not

available in Basic X compatibility mode.

See Also CloseCom, ComChannels, DefineCom, OpenCom, StatusCom

ZBasic System Library 81 ZBasic Microcontrollers

Cos

Type Function returning Single

Invocation Cos(arg)

Parameter Method Type Description

arg ByVval Single The angle, in radians, of which the cosine will be computed.
Discussion

The return value will be the cosine of the supplied value, ranging from —1.0 to 1.0.
Example

Const pi as Single = 3.14159

Dimval as Single

val = Cos(pi) "'result is -1.0

See Also Acos, DegToRad, RadToDeg

ZBasic System Library 82 ZBasic Microcontrollers

CountTransitions

Type Function returning Long
Invocation CountTransitions(pin, interval)
Parameter Method Type Description
pin ByVval Byte The pin on which logic transitions will be counted.
interval ByVval Single or The time interval specified in seconds or I/O Timer ticks,
Long respectively, during which transitions will be counted. See the
discussion below for information on range and resolution.
Discussion

When called, this routine will begin counting logic transitions on the specified pin and will continue until
the specified interval has elapsed. During the counting process processor interrupts are disabled. This
strategy allows high precision in measuring the interval but has the drawback that other processes that
utilize interrupts will not function correctly. Among such affected processes are all serial communication
and multi-tasking. For this reason, the counting interval should be kept as short as possible. RTC ticks
that occur during the counting process are accumulated and the RTC is updated when the counting is
finished.

The specified pin, which you must configure to be an input before calling, is sampled at a fixed rate of
approximately 1/36 (ATtiny, ATmega) or 1/40 (ATxmega) of the CPU frequency. The sample rate, default
resolution and maximum measurement interval are shown in the table below for various CPU
frequencies. You may modify the range and resolution of the measurement interval by modifying the
built-in variable Regi st er. Ti mer Speedl. See the special section /O Timer Prescaler Values for more
details.

Important Values for ZX Devices

Processor Default Maximum
Family Frequency Sample Rate Resolution Interval
ATmega 7.3738 MHz 204.8 KHz 4.883 1S 10,485 sec.
ATmega 14.7456 MHz 409.6 KHz 2441 S 5,242 sec.
ATmega 18.432 MHz 512.0 KHz 1.953 S 4,194 sec.

ATxmega 29.4912 MHz 737.3 KHz 1.356 1S 2,912 sec.

For generic target devices, which can operate at an arbitrary main frequency and RTC frequency, the
important values related to CountTransitions are shown in the table below where F_CPU is the main
processor frequency.

Important Values for Generic Target Devices

Processor Sample Rate Default Maximum
Family F_SAWP Resolution Interval
ATtiny, ATmega F_CPU/ 36 1/ F_SAWMP 2147483647/ F_SAMP
ATxmega F_CPU 40 1/ F_SAWP 2147483647/ F_SAMP

Resource Usage

This function uses the I/O Timer and disables interrupts during the counting process. However, RTC ticks
are accumulated during the process and the RTC is updated upon completion. The maximum number of
missed RTC ticks that can be tracked is 65,535. A measurement interval longer than that number of RTC
fast ticks will result in incorrect RTC accumulator values. The maximum measurement interval for correct
adjustment the RTC is shown in the tables above.

Compatibility

In BasicX missed RTC ticks are not accounted for.

ZBasic System Library 83 ZBasic Microcontrollers

CPUSIleep

Type Subroutine
Invocation CPUSIeep()
CPUSleep(mode)
Parameter Method Type Description
mode ByVval Byte The sleep mode to use.

Discussion

This routine puts the processor into a special sleep mode in which activity and power consumption are
reduced. The characteristics of the sleep mode are controlled by certain bits in one or more CPU
registers (see the tables below). For more information about the modes, consult the Atmel
documentation for the ATtiny, ATmega or ATxmega processor being used. If the optional node
parameter (not supported for VM devices) is not given, the existing sleep mode bit values will be used.

Registers Containing the Sleep Mode Bits for ZX Devices

ZX Device Register

ZX-24, ZX-40, ZX-44, ZX-24e, ZX-128e, ZX-128ne Regi st er . MCUCR

ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t, ZX-24ae, ZX-24ne, ZX- Regi st er. SMCR
24pe, ZX-24ru, ZX-24su

ZX-40a, ZX-40p, ZX-40n, ZX-40r, ZX-40s, ZX-40t Regi st er. SMCR
ZX-44a, ZX-44p, ZX-44n, ZX-44r, ZX-44s, ZX-44t Regi st er. SMCR
ZX-328n, ZX-328l, ZX-32n, ZX-32I, ZX-328nu Regi st er. SMCR
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n, ZX-1281e, ZX-1281ne Regi st er . SMCR
ZX-24x, ZX-24u, ZX-32a4, ZX-128al, ZX-24xu Regi st er. SLEEP_CTRL

Registers Containing the Sleep Mode Bits for Generic Target Devices

Target Device Register

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny2313, tiny2313A, Regi st er . MCUCR
tiny4313, tiny1634, tiny441, tiny841

tiny48, tiny88, tiny87, tiny167, tiny828 Regi st er . SMCR

mega48, mega48A, mega48P, megad8PA, mega48PB, mega88, mega88A, Regi ster. SMCR
mega88P, mega88PA, mega88PB, megal68, megal68A, megal68P,
megal68PA, megal68PB, mega328, mega328P, mega328PB

mega8515, megal6l, megal62 Regi st er . MCUCR
Regi st er . MCUCSR
Regi st er . EMCUCR

mega8, mega8A, megal6, megalbA, mega32, mega32A, megab4, megab4A, Regi st er . MCUCR
megal28, megal28A, megal63, mega323, mega8535

megal64A, megal64P, megal64PA, mega324P, mega324PA, mega644, Regi st er. SMCR
mega644A, mega644P, mega644PA, megal284P, megal281, mega2561,
mega640, megal280, mega2560

megal65, megal65A, megal65P, megal65PA, mega325, mega325P, Regi st er. SMCR
mega645, mega645A, mega645P, megal69, megal69A, megal6oP,

megal69PA, mega329, mega329P, mega329PA, mega649, mega649A,

mega649P, mega3250, mega3250P, mega6450, mega6450A, mega6450P,

mega3290, mega3290P, mega6490, mega6490A, mega6490P, megal6U4,

mega32U4, mega8U2, megal6U2, mega32U2, AT90USB82, ATO0USB 162,

AT90CAN32, AT90CANG4, AT90CAN128, ATO0USB646, ATO0USB647,

ATI90USB1286, ATO0USB1287

all ATxmega Regi st er. SLEEP_CTRL

ZBasic System Library 84 ZBasic Microcontrollers

CRC16

Type Function returning Unsignedinteger

Invocation CRC16(data, count, crcPoly, crclnit, crcFlags)

Parameter Method Type Description

data ByRef any Type The data bytes to add to the CRC value.
count ByVval integral The number of bytes to process.

crcPoly ByVal Unsignedinteger The CRC polynomial to use.

crcinit ByVal Unsignedinteger The initial value of the CRC.

crcFlags ByVal integral Flag bits that control the CRC computation.
Discussion

This function computes the CRC value over a number of data bytes using a specified polynomial and
initial value. The values to use for the poly nomial and the initial value depend on the style of CRC that
you need to generate. See the discussion below for further details. The f | ags parameter contains bhits
that control aspects of the CRC computation as described in the table below.

Flag Values for the CRC Compuation
Constant Hex Binary Description
zXCRCRef I n &HO1 xxxXx Xxxx1 Each input data bytes will be “reflected”.
zXxCRCRef Qut &HO02 xxxx xx1x The final CRC value will be “reflected”.

The remaining bits are reserved for future use and should always be zero.

In this context, the term “reflection” refers to reversing the order of the bits in a data item so that the most
significant becomes the least significant and vice versa. For a multi-byte data item, the bits in each byte
are reversed and the order of the bytes is reversed as well.

Although this function will typically be used to compute the CRC value for an entire block of data at once,
it may also be used in a byte-by-byte or data burst mode. To do so, you would pass the computed CRC
value from the previous iteration as the initial value. Note, however, that you shouldn’t use the zxRef Qut

flag bit in this case. Rather, if you need reflected output you would perform the bit reversal on the final
CRC value when you reach the end of the data stream. You can reverse the bit order of a 16-bit value by
using the following code fragment.

crc = MakeWbrd(FlipBits(Hi Byte(crc)), FlipBits(LoByte(crc)))

CRC algorithms can be described by a parametric model known as the RockSoft model (see
http://www.repairfaqg.org/filipg/LINK/F_crc_v34.htmi#CRCV _005). This CRC implementation supports the
POLY, INIT, REFIN and REFOUT parameters of the model with WIDTH=16 and XOROUT=0. If

necessary, you can easily implement a non-zero XOROUT parameter by using the following code
fragment.

crc = crc Xor Xor Qut Val ue

The Rocksoft model parameters for commonly used CRC computations are given in the table below.

ZBasic System Library 85 ZBasic Microcontrollers

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

Rocksoft Model Parameters for Common CRC Algorithms
Parameter/Type CRC-16 CRC-CCITT ModBus CRC-32

W DTH 16 16 16 32

POLY &HB005 &H1021 &HB005 &H04c11db7
INIT &HO0000 &Hf f f f &Hf f f f EHFfFFffff
REFI N True Fal se True True
REFOUT True Fal se True True
XOROUT &HO000 &HO000 &HO000 EHFfFFffff
CHECK &Hbb3d &H29b1 &HAb37 &Hcbf 43926

The parameters are included in the table above for the CRC-32 algorithm but, of course, they must be
used with the CRC32() function. The CHECK value is the CRC result for the string of characters

"123456789".

Additional information on CRC calculations may be found in many places on the Internet. One useful site
that implements a CRC calculator is http://www.zorc.breitbandkatze.de/crc.html. If you don't know the
parameters required for a particular CRC, you may be able to deduce the correct parameters by using the
calculator if you have a sample message and its CRC value. One of the variables available in the CRC
calculator on the web page mentioned is “direct” vs. “nondirect”. This implementation uses the “direct”
method.

Example
Dimdata(l to 20) as Byte
Dim crc as Unsi gnedl nt eger

' conpute the CRC using the CRC-16 al gorithm
crc = CRCl6(data, 10, &H8005, &HO000, zxCRCRefln O zxCRCRef Qut)

Compatibility

This function is not available in Basic X compatibility mode. Also, on ZX models that are based on the
ATmega32 processor (e.g. the ZX-24) this function is implemented in “user code” (as opposed to being
part of the VM) and is consequently slower than on other ZX models and ZBasic devices generally.

See Also CRC32

ZBasic System Library 86 ZBasic Microcontrollers

http://www.zorc.breitbandkatze.de/crc.html
http://www.zorc.breitbandkatze.de/crc.html

CRC32

Type Function returning UnsignedLong

Invocation CRC32(data, count, crcPoly, crclnit, crcFlags)

Parameter Method Type Description

data ByRef any Type The data bytes to add to the CRC value.
count ByVal integral The number of bytes to process.

crcPoly ByVal UnsignedLong The CRC polynomial to use.

crcinit ByVal UnsignedLong The initial value of the CRC.

crcFlags ByVal integral Flag bits that control the CRC computation.
Discussion

This function computes the CRC value over a number of data bytes using a specified polynomial and
initial value. The values to use for the poly nomial and the initial value depend on the style of CRC that
you need to generate. The f | ags parameter contains bits that control aspects of the CRC computation
as described in the table below.

Flag Values for the CRC Compuation
Constant Hex Binary Description
zXCRCRef I n &HO1 xxxXx XxXX1 The input data bytes will be “reflected”.
zxCRCRef Qut &HO2 xxxx xx1x The final CRC will be “reflected”.

The remaining bits are reserved for future use and should always be zero.

Although this function will typically be used to compute the CRC value for an entire block of data at once,
it may also be used in a byte-by-byte or data burst mode. To do so, you would pass the computed CRC
value from the previous iteration as the initial value. Note, however, that you shouldn’t use the zx Ref Qut
flag bit in this case. Rather, if you need reflected output you would perform the bit reversal on the final
CRC value when you reach the end of the data stream.

See the discussion of the CRC16() function for additional information.

Example

Dimdata(l to 20) as Byte

Dimcrc as Unsi gnedLong

crc = Not CRC32(data, 10, &HO4c1ldb7, &Hffffffff, zxCRCRefln O zxCRCRef Qut)
Compatibility

This function is not available in Basic X compatibility mode. Also, on ZX models that are based on the

ATmega32 processor (e.g. the ZX-24) this function is implemented in “user code” (as opposed to being
part of the VM) and is consequently slower than on other ZX models and ZBasic devices generally.

See Also CRC16

ZBasic System Library 87 ZBasic Microcontrollers

CSng

Type Function returning Single

Invocation Csng(arg)

Parameter Method Type

Description

arg ByVal numeric or Enum

The value to convert to Single.

Discussion

This function converts any numeric or enumeration value to a Si ngl e value. For integral and Enum
types, the result will be the floating point approximation of the integral value. If a Si ngl e type parameter
is supplied, the result is identical to the parameter value. If a Stri ng type parameter is supplied, the
result will be the numeric value of the character string. The form of the character representation
supported is identical to that supported by Val ueS() .

Example

Dimb as Byte
Dimf as Single

b =21
f = CSng(b)
Compatibility

In Basic X, passing an Unsi gnedLong value larger than 2,147,483,647 erroneously generates a negative

Single result. This implementation handles Unsi gnedLong values correctly.

ZBasic System Library

88

ZBasic Microcontrollers

CStr

Type Function returning String

Invocation Cstr(arg)

Parameter Method Type Description

arg ByVal any type The value to convert to String.
Discussion

This function converts any Boolean, numeric or enumeration value to a String value. See the table below
for details of the conversion.

Input Type Result

Bool ean The string " True" or " Fal se".

Byte, Bit, N bble A string containing decimal digits representing the
value.

I nt eger A string containing decimal digits representing the

value. Ifthe value is negative, the string will begin
with a minus sign.

Unsi gnedl nt eger A string containing decimal digits representing the
value.

Enum A string containing decimal digits representing the
Enum member value.

Long A string containing decimal digits representing the

value. If the value is negative, the string will begin
with a minus sign.

Unsi gnedLong A string containing decimal digits representing the
value.
Si ngl e A string representing the value. Depending on the

value, the form may be standard decimal form with a
decimal point separating the whole and fractional
parts or it may be in “scientific notation” form. In some
cases, there will be no decimal point at all, e.g. with
values having no fractional part.

When converting Si ngl e values, some special cases are detected resulting in the strings shown in the
table below. See the function SngCl ass() for more information about the special cases.

Special Value Result
NaN R
+Infinity & &"
Denormalized value "H.#"

Compatibility

In Basic X the special Si ngl e values are not handled properly.

See Also CStrHex, Fmt

ZBasic System Library 89 ZBasic Microcontrollers

CStrHex

Type Function returning String

Invocation CStrHex(arg)

Parameter Method Type Description

arg ByVal numeric The value to convert to a hexadecimal String.
Discussion

This function converts any Boolean, numeric or enumeration value to a String value. The content of the
string will be hexadecimal characters that represent the value of the bytes comprising the passed value.
The number of characters in the string varies depending on the type of the value passed. See the table

below.

Input Type Number of Characters

Bool ean, Bit, N bble, Byte 2

I nt eger, Unsignedl nteger, Enum 4

Long, UnsignedLong, Single 8
Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 90 ZBasic Microcontrollers

CType

Type Function returning a converted type (see discussion below)

Invocation CType(valuel, enumType) or
CType(value2, typeCast)

Parameter Method Type Description

valuel ByVval numeric or Enum The value to convert to another type.
enumType ByVal Enum The name of an Enum type.

value2 ByVal any type The value to convert to another type.
typeCast ByVal string A C/C++ typecast.

Discussion

In the first form shown above, this function converts any numeric value or enumeration member to be a
member of specified enumeration type. No checking is done to confirm that the given value actually
corresponds to one of the members of the enumeration. See the section on enumerations in the ZBasic
Reference Manual for more information.

Example

Enum Col or
Red
G een
Bl ue

End Enum

Dimc as Col or

¢ = CType(1l, Color) " ¢ will have the value Green

In the second form, useful only for native mode devices, the specified value is emitted along with the
specified typecast string in a form intended to coerce the value to a desired type. The typecast string,
which may be any valid C/C++ cast, may have one of two forms. If the typecast string contains a dollar
sign, the value given, which may be an arbitrarily complex expression, is substituted in place of the dollar
sign and the result is emitted. If no dollar sign is present in the typecast string, the typecast string is
emitted verbatim followed immediately by the value (enclosed in parentheses if the value comprises a
complex expression).

Examples

Cal|l foo(CType(val + 10, "(char *)"))
addr = CType(bar(3), "reinterpret _cast<uint16_t>($)")

In the first example, assuming that foo() is an external C/C++ function that requires a char * parameter,
the generated code would look something like this:

foo((char *)(zv_val + 10));

In the second example, assuming that bar() is an external C/C++ function that returns a pointer of some
type, the generated code would look something like this:

zv_addr = reinterpret_cast<uintl6_t>(bar(3));

ZBasic System Library 91 ZBasic Microcontrollers

CUInt

Type Function returning Unsignedinteger

Invocation CUint(arg)

Parameter Method Type Description

arg ByVval numeric, Boolean, String or Enum The value to convert to Unsignedinteger.
Discussion

This function converts any numeric or enumeration value to an Unsignedinteger value. See the table
below for details of the conversion.

Input Type Result
Byt e, Bool ean High byte zero, low byte as supplied.
I nt eger Value bits are the same as supplied, although interpreted as an

unsigned value.
Unsi gnedl nt eger No effect, the value is as supplied.

Enum Resulting value is the Enum member value.

Long Resulting value is the low word of the supplied value.

Unsi gnedLong Resulting value is the low word of the supplied value.

Si ngl e The supplied value is converted to a signed 32-bit integer, rounded to

the nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
resulting signed integer is negative or larger than 65535, the result is
undefined. Otherwise, the result is the value of the integer.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&O for octal, &B or & X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Example

Di m u as Unsi gnedl nt eger

u = CUnt(2.5) "'result is 2
u=CUnt(1.5) "'result is 2
Compatibility

The ability to conwvert from Si ngl e is not supported in Basic X compatibility mode.

ZBasic System Library 92 ZBasic Microcontrollers

CULng

Type Function returning UnsignedLong

Invocation CULng(arg)

Parameter Method Type Description
arg ByVal numeric, Boolean, String or Enum The value to convert to UnsignedLong.
Discussion

This function converts any numeric or enumeration value to an UnsignedLong value. See the table below
for details of the conversion.

Input Type Result

Byt e, Bool ean High 3 bytes zero, low byte as supplied.

I nt eger High word will be zero, low word as supplied.

Unsi gnedl nt eger High word will be zero, low word as supplied.

Enum High word zero, low word contains Enum member value.

Long Value bits are the same as supplied, although interpreted as an
unsigned value.

Unsi gnedLong No effect, the value is as supplied.

Si ngl e Supplied value converted to signed 32-bit integer, rounded to the

nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
supplied value is negative or if it is too large to be represented in 32
bits, the result is undefined.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for
hexadecimal, &O for octal, &B or & X for binary, all case insensitive).
The conversion is terminated upon reaching the end of the string or
encountering the first character that is not valid for the indicated radix.

Example

Di m ul as UnsignedLong

ul
ul

CULng(2. 5) "'result is 2
CULng(1.5) "'result is 2

ZBasic System Library 93 ZBasic Microcontrollers

DAC

Type Subroutine

Invocation DAC(channel, dacValue)
DAC(channel, dacValue, stat)

Parameter Method Type Description

channel Byval Byte The DAC channel to use.

dacValue ByVval integral The desired DAC value (see discussion below).
stat ByRef Boolean The variable to receive the status code.
Discussion

This routine creates an analog signal on the pin corresponding to the specified channel (see OpenDAC()
for more information). Only the least significant 12 bits of the specified value are used and the resulting
analog level will be approximately equal to dacVal ue divided by 4095 times the DAC reference wltage

specified with OpenDAC().

Compatibility

This subroutine is only available for xmega devices and is not available in Basic X com patibility mode.

See Also CloseDAC, OpenDAC

ZBasic System Library 94 ZBasic Microcontrollers

DACPIn

Type Subroutine

Invocation DACPin(pin, dacValue, dacAccumulator)

Parameter Method Type Description

pin ByVval Byte The pin to which the DAC signal will be output.

dacValue ByVal Byte The value representing the desired analog output. See the
discussion below.

dacAccumulator ByRef Byte A value used in the DAC process. See discussion below.

Discussion

This routine creates a digital approximation of an analog signal on the specified pin using a pseudo-PWM
technigue. ZBasic supports this routine for backward compatibility. New applications should use
Put DAC() as it is more flexible. See the description of Put DAC() for more information.

For ZBasic devices based on the ATxmega, a hardware DAC is available. In most applications requiring
a DAC, using the hardware DAC will produce much better results.

Resource Usage

This routine disables interrupts for approximately 200y S during the generation process.

See Also DAC, OpenDAC, PutDAC

ZBasic System Library 95 ZBasic Microcontrollers

Debug.Print

Type Special Purpose

Invocation Debug.Print stringList

Parameter Method Type Description

stringList ByVval String One or more strings or values to send out the console port.
Discussion

Debug.Print is neither a subroutine nor a function. It has more in common with ZBasic statements but it
described here for ease of reference. This special purpose method is useful for outputting debugging
information and other data to Com1 (by default, but see Option Console in the ZBasic Language
Reference Manual). The arguments provided to the command consist of zero or more strings or values
each separated by a semicolon. Unless the list ends with a semicolon, a carriage return/new line will also
be output after all of the strings have been output.

If a non-string scalar value is supplied, it is output as if it were converted to a string using the CStr()
function. If a RAM-resident Byte array name is given, its content is output, byte by byte, up to but not
including the first byte having the value zero (i.e it is treated as a null-terminated sequence of characters).

When this statement is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. This caveat
applies independently to each string in the semicolon-separated list as well as to the end-of-line string, if
applicable. The latency-inducing effect described above can be mitigated by preparing a new output
queue that is sufficiently large such that there is always enough free space in the queue when this
method is invoked.

Examples

Debug. Print "Hello, world! "

This prints the given string followed by a carriage return/new line.

Debug. Print "The value is "; val;

This prints the string followed immediately by the string equivalent of the value. Note that since the
command ends with a semicolon, no carriage return/new line will be generated.

Dimba(l to 10) as Byte
ba(1) = Asc("A")

ba(2) = Asc("B")
ba(3) = Asc("C")
ba(4) =0

Debug. Print ba

This is equivalent to Debug. Pri nt "ABC".

Compatibility

This function is not available on VM mode devices nor in Basic X compatibility mode.

See Also Console.Write, Console.WriteLine

ZBasic System Library 96 ZBasic Microcontrollers

ZBasic System Library 97 ZBasic Microcontrollers

DefineBus

Type Subroutine

Invocation DefineBus(port, alePin, rdPin, wrPin)

Parameter Method Type Description

port ByVal integral The port to use for address and data. PortA=0, PortB=1, etc.
alePin ByVval integral The pin to use for the address latch strobe.

rdPin ByVal integral The pin to use for the read data strobe.

wrPin ByVal integral The pin to use for the write data strobe.

Discussion

This subroutine is used to define the parameters to use for subsequent BusRead() and BusWrite()
operations. The port specified by the port parameter is used both for outputting the address from which
to read/write and for reading/writing the data. The port is specified by giving a port index — PortA = 0,
PortB = 1, etc. You may use the built-in constants Port . A, Port . B, etc. to specify the port index. If all
the parameters are valid, the pin specified by the al ePi n parameter is set to output low while the pins
specified by the r dPi n and wr Pi n parameters are set to output high. If any of the provided parameters
is invalid, the bus will not be properly configured and subsequent calls to BusRead() or BusWite()
will return immediately with no effect.

The pin numbers specified for the al ePi n, r dPi n and wr Pi n parameters must all be different and none
of them should be in the port specified by the port parameter. If these conditions are violated, the result
is undefined.

Example

Call DefineBus(Port.A CO0O, C1, C2)

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24) nor is is available on ATxmega-based ZBasic devices. Moreover, it is not available in Basic X
compatibility mode.

See Also BusRead, BusWrite

ZBasic System Library 98 ZBasic Microcontrollers

DefineCom

Type Subroutine

Invocation DefineCom(channel, rxPin, txPin, flags)
DefineCom(channel, rxPin, txPin, flags, stopBits)

Parameter Method Type Description

channel Byval Byte The serial channel being defined.

rxPin ByVval Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.
flags ByVval Byte Configuration flags. See the discussion below.
stopBits ByVal Byte The desired number of stop bits.

Discussion

This routine configures a serial channel, preparing it to be opened using OpenCon{) . This routine may
be called with the channel parameter specifiying either a hardware UART channel (1, 2 and 7-12) or a
software UART channel (3-6). If the specified channel is already open, this routine does nothing.
Likewise, there is no effect if the specified channel is invalid or if either of the r xPi n and t xPi n
parameters is invalid for the target device or the specified serial channel. Further, if the number of data
bits specified in the flags parameter in invalid for the specified serial channel, this routine does nothing.

Hardware Channels

For hardware UART channels the r xPi n and t xPi n parameters are meaningless and, therefore,
ignored. By default, a hardware channel is opened in “8 data bits, no parity, 1 stop bit” mode (sometimes
referred to as 8-N-1), the most common serial format. Unless you want to configure a hardware channel
for a different mode it is not necessary to call DefineCom() before opening the channel. Specifying a
value for the optional st opBi t s parameter that is greater than 1 will select 2 stop bits; otherwise, the
default of 1 stop bit is used. Note that some of the bits in the f | ags parameter are ignored for hardware
channels as indicated by shaded entries in the table below.

Software Channels

For software UART channels, either of the r xPi n and t xPi n parameters (but not both) may be zero
allowing you to define a transmit-only or receive-only serial. If the two parameter values are different, the
specified pins are automatically configured as input and output, respectively. As a special case, the

r xPi n and t xPi n parameters may specify the same pin and the pin is initially configured as an input to
support half-duplex, bussed operation. In this mode, the the pin will be made an output when transmitting
a zero bit if configured for non-inverted operation or when transmitting a one bit if configured for inverted
operation. A pull-up resistor (non-inverted mode) or pull-down resistor (inverted mode) is required for
bussed operation since the pin will only be actively driven in one of the two output states.

If the optional st opBi t s parameter is not specified, one stop bit is transmitted for each character sent.
Otherwise, the specified number of stop bits is transmitted. The allowable range for st opBi t s is 1 to
240 for software-based channels and 1 to 2 for hardware based channels. If a value outside the
acceptable range is specified, the default of 1 stop bit will be used. The ability to specify two or more stop
bits is useful for slowing down the transmission of data in cases where the receiver needs additional time
to process received data.

Configuration Flags

ZBasic System Library 99 ZBasic Microcontrollers

The f | ags parameter contains several bit fields used to specify some of the details of the operation of
the serial channel. Note, however, that some of the bits are applicable only to software UART channels.

Serial Channel Configuration Flag Values

Function Hex Value Bit Mask

Inverted Logic™ &H80 IX XX XXXX
Non-inverted Logic &HOO OX XX XXXX
Ignore Parity Bit &HA40 X1 XX XXXX
Store Parity Bit &HOO X0 XX XXXX
Even Parity &H30 XX 11 XXXX
Odd Parity &H20 XX 10 XXXX
No Parity &HOO xX 00 XXXX
5-bit Data &HO5 XX xx 0101
6-bit Data &HO6 XX xx 0110
7-bit Data &HO7 xx xx 0111
8-bit Data &HO8 XX xx 1000
7-bit Data, bussed mode™ &HOb XX xx 1011
8-bit Data, bussed mode™ &HOc XX xx 1100

~ Applicable only to software-based channels (3-6).
2 Applicable only to hardware-based channels (1, 2, 7 and up).

The remaining bit values are currently undefined but may be employed in the future.

When Non-inverted Logic is selected, the idle state of the transmit line will be logic 1. When a character
transmission is begun, a “start bit” of logic zero will be sent for one bit time (the inverse of the baud rate).
Next the data bits are sent, each for one bit time, beginning with the least significant bit and continuing
through the eighth data bit or parity bit as the case may be. Finally, one or more “stop bits” of logic one
are sent, each for one bit time. With Inverted Logic, each of these elements is complemented — the idle
state of the transmit line is logic 0.

Whether you should choose the inverted or non-inverted mode depends on the device that you intend to
communicate with and how many, if any, level converters exist between the two devices. Typically, if the
other device is capable of sending and receiving TTL-level serial data, you'll likely choose non-inverted
Logic.

If the “Ignore Parity” flag is asserted, in 7-bit mode the most significant bit of each character received will
be zero and in 8-bit mode only one byte will be stored in the queue for each character received. If the
“Ignore Parity” bit is not asserted, in 7-bit mode the MSB will contain the received parity bit and in 8-bit
mode a second byte containing the parity bit will be stored in the queue for each character received. The
ParityCheck() function is useful for checking the parity of a received character.

The software UART channels support a bussed mode where the transmit pin is actively driven only during
logic zero periods (low for non-inverted mode, high for inverted mode). This mode, selected by using the
special values shown in the table above for 7-bit and 8-bit data widths (i.e., the normal values augmented
by 4), is useful for having multiple devices driving the same transmit line. This mode is commonly
referred to as open drain (non-inverted mode) or open source (inverted mode) operation and requires a
pullup resistor (non-inverted mode) or a pulldown resistor (inverted mode) on the common transmit line in
order to establish the proper logic level when the line is not being actively driven by any device.

Note that a pullup resistor (non-inverted mode) or a pulldown resistor (inverted mode) is recommended
on the transmit line to force the transmit line to the idle state prior to the time your program initializes the
COM port. If you don't do this, the receiving device may see false transmissions prior to the first
character actually transmitted. Depending on what other circuitry is connected to the receive line, you
may need to do the same to prevent the ZBasic device from receiving false transmissions.

Example

Cal | Conthannel s(2, 9600)
Cal | DefineCom(4, 0, 12, &H08)

ZBasic System Library 100 ZBasic Microcontrollers

This call sequence prepares software-based channel 4 for transmit-only using pin 12, eight data bits, no
parity and non-inverted logic.

Call DefineCom(2, 0, 0, &H07, 2)
Call OpenCon(2, 19200, iq, oq)

This call sequence prepares hardware-based channel 2 for seven data bits, no parity, and two stop bits.

Compatibility

This routine is not available in Basic X compatibility mode; you must use DefineCom3(). Additionally,
Basic X does not support 8-bit plus parity modes nor does it support the “Ignore Parity” mode.
Furthermore, in Basic X characters received in 7-bit/no parity mode are aligned toward the MSB while in
this implementation they are properly alignhed toward the LSB. The 5-bit and 6-bit modes are only
supported for native mode targets.

For mega32-based ZX devices (e.g. the ZX-24), the ability to define the characteristics of Com1 is not
supported nor is half-duplex bussed mode supported. Specifying the same pin for rx and tx on these
devices will produce undefined results.

See Also ComcChannels, ControlCom, OpenCom, StatusCom

ZBasic System Library 101 ZBasic Microcontrollers

DefineCom3

Type Subroutine

Invocation DefineCom3(rxPin, txPin, flags)

Parameter Method Type Description

rxPin ByVval Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.
flags Byval Byte Configuration flags. See the discussion below.
Discussion

This routine is provided solely for Basic X compatibility. It is equivalent to using Cal | Def i neCont 3,
rxPin, txPin, flags). Seethe DefineCom() routine for more information.

ZBasic System Library 102 ZBasic Microcontrollers

DefineSPI

Type Subroutine

Invocation DefineSPI(clkPin, mosiPin, misoPin)

Parameter Method Type Description

clkPin Byval Byte The pin to serve as the SPI clock signal (output).
mosiPin ByVal Byte The pin to serve as the SPI MOSI signal (output).
misoPin ByVal Byte The pin to serve as the SPI MISO signal (input).
Discussion

This subroutine is used to specify the clock and data pins to use for the software driven SPI
implementation (sometimes known as a “bit banged” implementation). If the f | ags parameter to the
OpenSPI subroutine requests software SPI, OpenSP | will initialize the specified pins (cl kPi n and
nosi Pi n as output, m soPi n as input) and set cl kPi n to the idle state specified by the f | ags
parameter to OpenSPI. If software SPIis not requested, OpenSP1 will initialize the hardware SP1
controller according to the f | ags parameter to OpenSPI.

It is important to be aware that the pin values set by DefineSP1 are used by both the OpenSP1 and
SPICmd routines. This fact requires some extra attention if your application uses multiple SPI channels
and two or more of them use the software-driven implementation. In such cases, you must ensure that
the SPI pins have been correctly set by a prior call to DefineSPI before each call to OpenSP1 and
SPICmd. If your application uses just one channel with software SPI, a single call to DefineSP 1 will
suffice and if it does not use software SP1 at all then DefineSPI needn’t be called either.

Compatibility

This subroutine is not supported in Basic X mode nor it is supported on any VM mode ZX device.

See Also CloseSPI, OpenSPI, OpenSPISlave, SPICmd, SPIGetByte, SPIPutByte,
SPIGetData, SPIPutData, SPIStart, SPIStop

ZBasic System Library 103 ZBasic Microcontrollers

DefineX10

Type Subroutine

Invocation DefineX10(channel, rxPin, txPin, flags)
DefineX10(channel, rxPin, txPin, flags, agcResetPin, agcWindowPin)

Parameter Method Type Description

channel Byval Byte The X-10 channel being defined. The valid range is 1-2.
rxPin ByVval Byte The pin which will serve as the receive line.

txPin ByVal Byte The pin which will serve as the transmit line.

flags ByVval Byte Configuration flags. See the discussion below.
agcResetPin ByVal Byte The pin on which to generate the AGC reset signal.
agcWindowPin ByVal Byte The pin on which to generate the AGC window signal.
Discussion

This routine configures an X-10 communication channel, preparing it to be opened using OpenX10() . If
the specified channel is already open, this routine does nothing. Likewise if the specified channel is
invalid or if both the r xPi n and t xPi n parameters are zero or invalid. Note that either r xPi n or t XPi n

may be zero, allowing you to define a transmit-only or a receive-only X-10 channel. If valid, the pins
specified by r xPi n and t xPi n are automatically configured as input and output, respectively.

The f | ags parameter contains several bit fields used to specify some of the details of the operation of
the X-10 channel.

Configuration Flags Bit Values

Function Hex Value Bit Mask

50Hz mode (only used in 3-phase mode) &H40 X1 XX XX XX
60Hz mode (only used in 3-phase mode) &HOO X0 XX XX XX
Three phase mode &H20 XX IX XX XX
Single phase mode &HOO XX 0X XX XX
Attempt to detect transmit/receive collisions &H10 XX X1 XX XX
LSB-first Transmit Bit Order &HO8 XX XX 1X XX
MSB-first Transmit Bit Order &HOO XX XX 0X XX
Inverted Transmit Logic &HO4 XX XX X1 XX
Non-inverted Transmit Logic &HOO XX XX X0 XX
LSB-first Receive Bit Order &HO2 XX XX XX 1x
MSB-first Receive Bit Order &HOO XX XX XX Ox
Inverted Receive Logic &HO1 XX XX XX X1
Non-inverted Receive Logic &HOO XX XX XX X0

The remaining bits are currently undefined but may be employed in the future.

When non-inverted modes are selected, the idle state of the transmit line or receive line will be logic 0.
Whether you should choose the inverted or non-inverted mode depends on the interface circuitry that you
use to connect to your X-10 transmitter/receiver.

When LSB-first modes are selected, the first bit to be sent/received will be the least significant bit of each
byte. This is useful when a Bit array is used to assemble/decompose the data that is sent/received since
the lower-indexed bits in a byte are of lower significance.

The second form with the additional parameters is provided for use with the CM15A and similar modules.

The fifth parameter specifies a pin number on which to generate an active low signal to reset the CM15A
AGC circuitry. The sixth parameter specifies a pin number on which to generate an active high signal

ZBasic System Library 104 ZBasic Microcontrollers

marking the CM15A AGC window, approximately 1mS following each zero crossing. Note that support for
these CM15A AGC functions is disabled in 3 phase mode.

Example

Cal |l DefineX10(1, 0, 12, &HOO)

This call prepares channel 1 for transmit-only using pin 12, non-inverted logic, MSB-first operation.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-
24). The second form is only available on native mode devices. Neither form is available in Basic X
compatibility mode.

Support for 3 phase mode is only available on native mode devices.

See Also CloseX10, OpenX10, SetQueueX10, Status X10

ZBasic System Library 105 ZBasic Microcontrollers

DegToRad

Type Function returning Single

Invocation DegToRad(angle)

Parameter Method Type Description

angle ByVval Single The angle, in degrees, to convert to radian measure.
Discussion

The trigonometric functions in the System Library all use radian angle measure. Depending on the
programming task, it is sometimes more convenient to think of angles in terms of degrees. This function
and its inverse RadToDeg() facilitate the conversion between the two systems.

Depending on optimization settings, if the parameter supplied to this function is known to be constant at

compile time, the compiler converts the value at compile time. Otherwise, code is generated to perform
the conversion (multiplication by a conversion factor) at run time.

Example

Dimf as Single
Dimtheta as Single

the angle in degrees

f = Sin(DegToRad(theta))

Compatibility

This function is not available in Basic X compatibility mode.

See Also RadToDeg

ZBasic System Library 106 ZBasic Microcontrollers

Delay

Type Subroutine

Invocation Delay (time)

Parameter Method Type Description

time ByVval Single The amount of time to delay, in seconds.
Discussion

This routine suspends the current task for a period of time at least as long as specified. The actual delay
depends on what other tasks actually do that may run in the interim. It is possible that the task will be
suspended indefinitely depending on what another task might do. If the RTC is not enabled in your
application, the resolution of the delay period is 1mS. Ifthe RTC is enabled, the resolution is the same as
an RTC tick period, i.e. 1/ F_RTC_TI CK (typically 1.95mS for ZX devices).

Note that if the current task is locked, this call will unlock it.

There is a subtle difference between Del ay() and Sl eep() when the RTC is enabled and the
arguments are non-zero. For Del ay() the specified time is the minimum amount of delay that the task
will experience assuming that no other task is ready to run and the actual delay could be up to 1 unit
longer than the specified delay. For Sl eep(), the specified time is the maximum amount of delay that
the task will experience assuming that no other task is ready to run and the actual delay could be up to 1
unit less than the specified delay.

Example

Do
Cal | Put Pi n(Pi n. RedLED, 0)
Cal | Del ay(0.5)
Cal | Put Pi n(Pin. RedLED, 1)
Call Del ay(0.5)

Loop

This loop causes the red LED to turn on and off alternately for a half second each.

Compatibility
The Basic X documentation specifically indicates that Delay() will unlock a locked task. However, tests

indicate that this only happens if the parameter to Delay() is non-zero. This implementation unlocks a
task on any Delay() call.

See Also DelayMicroseconds, DelayMilliseconds, Delay UntilClockTick, Pause, Sleep,
Register.RTCStopWatch

ZBasic System Library 107 ZBasic Microcontrollers

DelayCycles

Type Subroutine

Invocation Delay Cycles(count)

Parameter Method Type Description

count ByVval constant integral ~ The number of CPU cycles to delay.
Discussion

This routine effects a delay for at least as long as the specified number of cycles. The actual delay may
be longer if interrupts are enabled, i.e. the delay will be extended by the amount of time required to
service any interrupt that occurs. Further, if a task switch occurs (which will occur only if interrupts are
enabled), the delay will be extended further until the task containing the delay resumes execution.

The delay is effected by executing a series of instructions in a loop repeatedly and possibly executing one
or more NOP instructions to consume at least the specified number of cycles.

Example

Do
Call PutPin(pin, 0)
Cal | Del ayCycl es(20)
Call PutPin(pin, 1)
Cal | Del ayCycl es(20)

Loop

This loop causes the pin to go low and then high alternately for approximately 20 cycles each.
Compatibility
This subroutine is only available for native mode devices and is not available in Basic X compatibility

mode.

See Also Delay, DelayMilliseconds, DelayUntilClock Tick, Pause, Sleep, Register. RTCStopWatch

ZBasic System Library 108 ZBasic Microcontrollers

DelayMicroseconds

Type Subroutine

Invocation DelayMicroseconds(us Delay)

Parameter Method Type Description

usDelay ByVal constant integral The amount of time to delay, in microseconds.
Discussion

This routine effects a delay for at least as long as the specified time. The actual delay depends on the
particular processor clock frequency and whether interrupts are enabled. If interrupts are enabled, the
delay will be extended by the amount of time required to service any interrupt that occurs. Further, if a
task switch occurs (which will occur only if interrupts are enabled), the delay will be extended further until
the task containing the delay resumes execution.

The delay is effected by executing a series of instructions in a loop repeatedly and possibly executing one
or more NOP instructions to consume at least the specified delay time. As an example, requesting a 10
microsecond delay on a device running at 14.7456MHz will result in a series of instructions that consume
149 cycles; the actual delay being slightly more than 10.1 microseconds.

The minimum delay incurred by calling this subroutine is 1 CPU cycle. The maximum delay obtainable is
approximately (224 * 5) cycles; slightly more than 5.6 seconds at 14.7MHz.

Example

Do
Cal | Put Pi n(Pi n. RedLED, 0)
Cal | Del ayM croseconds(500000)
Cal | Put Pi n(Pin. RedLED, 1)
Cal | Del ayM croseconds(500000)
Loop

This loop causes the red LED to turn on and off alternately for approximately one half second each.
Compatibility
This subroutine is only available for native mode devices and is not available in Basic X compatibility

mode.

See Also Delay, DelayCycles, DelayMilliseconds, DelayUntilClock Tick, Pause, Sleep,
Register.RTCStopWatch

ZBasic System Library 109 ZBasic Microcontrollers

DelayMilliseconds

Type Subroutine

Invocation DelayMilliseconds(ms Delay)

Parameter Method Type Description

msDelay ByVval constant integral The amount of time to delay, in milliseconds.
Discussion

This routine effects a delay for at least as long as the specified time. The actual delay depends on the
particular processor clock frequency and whether interrupts are enabled. If interrupts are enabled, the
delay will be extended by the amount of time required to service any interrupt that occurs. Further, if a
task switch occurs (which will occur only if interrupts are enabled), the delay will be extended further until
the task containing the delay resumes execution.

The delay is effected by executing a series of instructions in a loop repeatedly and possibly executing one
or more NOP instructions to consume at least the specified delay time. As an example, requesting a 1
millisecond delay on a device running at 14.7456 MHz will result in a series of instructions that consume
14,746 cycles; the actual delay being slightly more than 1.0 miilliseconds.

The minimum delay incurred by calling this subroutine is 1 CPU cycle. The maximum delay obtainable is
approximately (224 * 5) cycles; slightly more than 5.6 seconds at 14.7MHz.

Example

Do
Cal | Put Pi n(Pi n. RedLED, 0)
Call DelayM I Iiseconds(500)
Cal | Put Pi n(Pin. RedLED, 1)
Call DelayM I Iiseconds(500)
Loop

This loop causes the red LED to turn on and off alternately for approximately one half second each.
Compatibility
This subroutine is only available for native mode devices and is not available in Basic X compatibility

mode.

See Also Delay, DelayCycles, DelayMicroseconds, Delay UntilClockTick, Pause, Sleep,
Register.RTCStopWatch

ZBasic System Library 110 ZBasic Microcontrollers

DelayUntilClockTick

Type Subroutine

Invocation Delay UntilClockTick()

Discussion

This routine suspends the current task until at least the next tick of the RTC. The actual delay depends
on what other tasks actually do that may run in the interim. It is possible that the task will be suspended
indefinitely.

If no other tasks are ready to run, the actual delay could be between 0 and 1 RTC tick.

This routine is exactly equivalent to Sl eep(1) . However, the RTC must be enabled in your application in

order to use this subroutine.

See Also Delay, Pause, Sleep

ZBasic System Library 111 ZBasic Microcontrollers

Disablelnt

Type Function returning Byte
Invocation Disablelnt()
Discussion

This routine disables interrupts, preventing any interrupt source from interrupting the current task. Most
commonly, this function is used to temporarily disable interrupts thereby allowing a sequence of
instructions to execute without interruption. Of course, interrupts should be disabled for the shortest
possible time in order to avoid missing important interrupts (e.g. real time clock interrupts). If interrupts
are disabled for longer than one period of the RTC fast tick (i.e. 1/ F_RTC_FAST) you run the risk of
missing an RTC tick which will result in the RTC losing time.

The most common use for Disablelnt() is to implement “atomic access” to variables. This should be done
for any variable that occupies multiple bytes of memory (e.g. | nt eger, Long, etc.) or for a read-modify-
write operation on any variable when there is a possibility that another task or interrupt handler might
attempt to access the same variable.

The value returned by Disablelnt() should be passed to EnableInt(). Doing so will allow proper nesting of
DisableInt() and Enablelnt() calls.

Note

The Atomic block construct (described in the ZBasic Language Reference Manual) is the preferred
method for implementing atomic access.

Example

Dimiflag as Byte

iflag = Disablelnt()

" place code here that must not be interrupted
Cal|l Enablelnt(iflag)

See Also Enablelnt, UpdateRTC, Yield

ZBasic System Library 112 ZBasic Microcontrollers

DrainQueue

Type Subroutine

Invocation DrainQueue(queue, count)

Parameter Method Type Description

queue ByRef array of Byte The queue to be drained.

count ByVal anylntegral The number of bytes to remove.
Discussion

This routine removed up to the specified number of bytes of data from the queue.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

DiminQueue(l to 40) as Byte

Call OpenQueue(inQueue, SizeO (inQueue))

Cal | Put QueueStr (i nQueue, "Hello")

Cal | Drai nQueue(i nQueue, 3)

After the call to DrainQueue() the queue will contain only I and o.

Compatibility

This routine is not available in Basic X mode.

ZBasic System Library 113 ZBasic Microcontrollers

Enablelnt

Type Subroutine

Invocation Enablelnt(flag)

Parameter Method Type Description

flag ByVval Byte The value controlling re-enabling of interrupts.
Discussion

This routine conditionally re-enables interrupts depending on the value of the f | ag parameter. If the
most significant bit of the f | ag parameter is a 1, interrupts will be re-enabled. Otherwise, the state of the
interrupt enabling will not change. Passing the value returned from DisableInt() implements proper

nesting of Disablelnt() and Enablelnt() calls so they are most often used in pairs as shown in the example
below.

Note

The Atomic block construct (described in the ZBasic Language Reference Manual) is the preferred
method for implementing atomic access.

Example

Dimiflag as Byte

iflag = Disablelnt()

' place code here that nust not be interrupted
Cal|l Enablelnt(iflag)

See Also DisableInt, UpdateRTC, Yield

ZBasic System Library 114 ZBasic Microcontrollers

ExitTask

Type Subroutine
Invocation ExitTask(taskStack)
ExitTask()
Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This routine attempts to terminate an active task. If no task stack is explicitly given, the task stack for the
Mai n() routine is assumed.

If this routine is invoked using an array other than one that is or was being used for a task stack the result
is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information
regarding task management.

When a task exits, whether normally or via ExitTask(), that task’s status is first set to 254 indicating that it
is in the process of exiting but that it is still in the task list. The exiting task will remain in the task list until
the task manager runs again. The task manager runs whenever a task switch is called for but you can
force it to run by invoking Sleep() or Yield(). Once the task manager removes an exiting task from the
task list, its status will change to 255 indicating that it is fully terminated.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also ResumeTask, RunTask, StatusTask

ZBasic System Library 115 ZBasic Microcontrollers

EXxp

Type Function returning Single

Invocation Exp(arg)

Parameter Method Type Description

arg ByVal Single The power of e to be computed.
Discussion

This function returns the Si ngl e value corresponding to the value e raised to the specified power. The
transcendental value e, upon which the natural logarithm is based, is approximately 2.718. This function
is the inverse of the Log() function.

See Also Expl10, Log, Log10,Pow

ZBasic System Library 116 ZBasic Microcontrollers

Expl0

Type Function returning Single

Invocation Expl0(arg)

Parameter Method Type Description

arg ByVval Single The power of 10 to be computed.
Discussion

This function returns the Si ngl e value corresponding to the value 10 raised to the specified power. This
function is the inverse of the Log10() function.

See Also Exp, Log, Log10,Pow

ZBasic System Library 117 ZBasic Microcontrollers

FirstTime

Type Function returning Boolean
Invocation FirstTime()
Discussion

When called the first time after downloading a program, this function will return True. Thereatfter, it will
always return False even if the processor is powered down or reset. Subsequently downloading again
will again cause the function to return True on the first call, etc.

ZBasic System Library 118 ZBasic Microcontrollers

Fix

Type Function returning Single

Invocation Fix(arg)

Parameter Method Type Description

arg ByVal Single The value to be “fixed”.
Discussion

This function returns the Si ngl e representation of the integer that is nearest the supplied value, rounding
toward zero.

Example

Dimf as Single

f = Fix(1.5) "'result is 1.0
f = Fix(-1.5) "result is -1.0
See Also Ceiling, Floor, Fraction

ZBasic System Library 119 ZBasic Microcontrollers

FixB

Type Function returning Byte

Invocation FixB(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 8 bits of that value is returned. The result isn’t particularly useful if the provided Si ngl e value is
negative or larger than 255.

Example
Dimb as Byte

b = Fi xB(100.5) " result is 100

ZBasic System Library 120 ZBasic Microcontrollers

Fixl

Type Function returning Integer

Invocation Fixl(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 16 bits of that value is returned. The result isn’t particularly useful if the provided Si ngl e value is
outside the range —32768 to 32767, inclusive.

Example
Dimi as Integer

i = Fixl(-100.5) " result is -100

Compatibility
For compatibility with BasicX; if the provided Si ngl e value is larger than 32767 this function returns

32767. Similarly, if the value is less than —32767 (not —32768 as one would expect) this function returns
-32767.

ZBasic System Library 121 ZBasic Microcontrollers

FixL

Type Function returning Long

Invocation FixL(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is converted to a signed 32-bit integer, rounding toward zero, and that value
is returned. The result isn't particularly useful if the provided Si ngl e value is outside the range —
2,147,485,648 to 2,147,485,647, inclusive.

Example
Dim| as Long

| = Fi xL(-100.5) " result is -100

ZBasic System Library 122 ZBasic Microcontrollers

FixUI

Type Function returning Unsignedinteger

Invocation FixUl(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 16 bits of that value is returned. The result isn’t particularly useful if the provided Si ngl e value is
outside the range 0 to 65535, inclusive.

Example
Di m ui as Unsi gnedl nt eger

ui = Fi xUl (100. 5) " result is 100

ZBasic System Library 123 ZBasic Microcontrollers

FixUL

Type Function returning UnsignedLong

Invocation FixUL(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is converted to a signed 32-bit integer, rounding toward zero, and that value
is returned. The result isn't particularly useful if the provided Si ngl e value is outside the range 0 to
4,294,967,295, inclusive.

Example
Di m ul as Unsi gnedLong

ul = Fi xUL(100. 5) " result is 100

ZBasic System Library 124 ZBasic Microcontrollers

FlipBits

Type Function returning Byte

Invocation FlipBits(arg)

Parameter Method Type Description

arg ByVval Byte The value to be bit-wise reversed.
Discussion

This function reverses the order of the bits in the supplied value and returns the result. This is useful, for
example, if you want to send data using Shi ft Qut () but you want the least significant bit to be sent first.

Example
Dimb as Byte

b
b

&B1011_0110
Fl i pBits(b) " result is &B0110_1101

ZBasic System Library 125 ZBasic Microcontrollers

Floor

Type Function returning Single

Invocation Floor(arg)

Parameter Method Type Description

arg ByVval Single The value of which to compute the floor.

Discussion

This function returns a Si ngl e value that is equal to the largest integer that is less than or equal to the
supplied value, effectively rounding down to the nearest integer.

Example

Dmflr as Single

flr = Floor(1.5) "'result is 1.0
flr = Floor(-1.5) ' result is -2.0
Compatibility

This function is not available in Basic X compatibility mode.

See Also Ceiling, Fix

ZBasic System Library 126 ZBasic Microcontrollers

Fmt

Type Function returning String

Invocation Fmt(val, fracDigits)

Parameter Method Type Description

val ByVal Single The value to convert to a string.
fracDigits ByVval Byte The number of digits to produce following the decimal point.
Discussion

This function returns a St ri ng that represents the value of the val parameter. The string will have a
number of digits following the decimal point as specified by the f racDi gi t s parameter. The maximum
number of digits to the right of the decimal point is 6. If the fracDi gi t s parameter specifies a larger
number, it will be ignored and 6 will be used.

For very large and very small values, the returned string may be in scientific notation form. Also, some
special cases are detected resulting in the strings shown in the table below. See the System Library
function SngCl ass() for more information about the special values.

Special Value Result”
NaN "%] * %1]
tInfinity " & &&"
Denormalized value "H#.##"

“The number of special characters following the decimal
point will be the same as the number of fraction digits that
would have been generated had the value been normal.

Compatibility

In Basic X, the maximum number of fraction digits is 3 and the valid range of the value parameter is —
999.0 to +999.0. If either of those ranges is exceeded, Basic X produces a string containing a single
asterisk. Moreover, no provision is made for detecting special values such as NaN.

ZBasic System Library 127 ZBasic Microcontrollers

Fraction

Type Function returning Single

Invocation Fraction(val)

Parameter Method Type Description

val ByVval Single The value from which the fractional part will be returned.

Discussion

This function returns the fractional portion of the supplied value. The sign of the returned value will be the
same as that of the value provided.

Example

Dimfrac as Single

frac = Fraction(1.5) "result is 0.5
frac = Fraction(-1.5) "'result is -0.5
Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 128 ZBasic Microcontrollers

FreqOut

Type Subroutine

Invocation FreqOut(pin, fregA, fregB, duration)

Parameter Method Type Description

pin ByVval Byte The pin on which the signal will be created.

freqA ByVal Integer The primary frequency, in Hertz.

freqB ByVal Integer The secondary frequency, in Hertz.

duration ByVal Single or Integer The duration of the signal, in seconds or units. See

the discussion below for more details.

Discussion

This routine generates a signal on the specified pin that is a digital approximation of two superimposed
sine waves having the specified frequencies. The method used to produce the signal is a pseudo-PWM
technique similar to that used for DACPi n(). The output signal is actually purely digital, consisting of a
series of precisely timed pulses that have an average value approximating that of two superimposed sine
waves. This signal must be filtered to get an analog approximation. Depending on what you want to do
with the signal, it may need to be amplified as well.

The duration of the signal may be specified in seconds by providing a Single value. Alternately, the time
may be specified in units of approximately 1 millisecond by giving duration as an Integer or
Unsignedinteger value. In either case, the valid range is approximately 1ms to 32 seconds.

Before beginning the frequency generation, the specified pin will be made an output. When the routine
returns, the pin will still be an output.

If the pin is invalid, or both frequencies are zero, or the duration is zero, this routine does nothing. The
maximum frequency that can be produced is approximately 14.4KHz. Requesting higher frequencies will
produce undefined results.

Resource Usage

This routine uses the /O Timer and disables interrupts until the signal generation is completed. RTC ticks
are accumulated during the process so long signal durations should not cause a loss in RTC accuracy.
Example

Call FreqQut(pin, 440, 880, 5.0) ' play middle Chigh C for 5 seconds

Because of the high frequency nature of the pulse train used to synthesize the waveform some filtering is
required. The example circuit below may be used to couple the output to a high impedance speaker (>

40Q) or an amplifier. Note, however, that the signal is too large to be fed to the microphone input of an
amplifier. Instead, the Auxiliary or Line input should be used.

ZBasic System Library 129 ZBasic Microcontrollers

1AuF
From O "I (' O

I-0 Pin To amplifier ar
high impedance

18uF i O speaker

Compatibility

In Basic X, the RTC will lose time if the duration is longer than 1 millisecond. Also, the duration is
documented as being limited to about 2.5 seconds

ZBasic System Library 130 ZBasic Microcontrollers

GetlWire

Type Function returning Byte

Invocation Get1Wire(pin)

Parameter Method Type

Description

pin ByVval Byte

The pin to be used for 1-Wire I/O.

Discussion

This function retrieves a single bit using the 1-Wire protocol. To perform a 1-Wire operation, this function
along with related 1-Wire routines must be used in the proper sequence. See the specifications of your 1-

Wire device for more information.

The value returned will be either 0 or 1.

Resource Usage

This routine uses the I/O Timer and disables interrupts for approximately 100y S.

Example
Dimb as Byte

b = Get1lWre(12)

See Also GetlWireByte, GetlWireData, PutlWire,
PutlWireByte, PutlWireData, ResetlWire

ZBasic System Library

131

ZBasic Microcontrollers

Get1lWireByte

Type Function returning Byte

Invocation Get1WireByte(pin)

Parameter Method Type Description
pin ByVval Byte The pin to be used for 1-Wire I/O.
Discussion

This function reads a byte value (LSB first) using the 1-Wire protocol. It may be used instead of a series
of calls to Get 1W r e() in order to read a byte at a time. To perform a 1-Wire operation, this function
along with related 1-Wire routines must be used in the proper sequence. See the specifications of your 1-
Wire device for more information.

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100y S for each bit received.

Example
Dimb as Byte

b = Get IWreByte(12)

Compatibility

This routine is not available in Basic X compatibility mode.

See Also GetlWire, GetlWireData, Put1lWire,
PutlWireByte, PutlWireData, ResetlWire

ZBasic System Library 132 ZBasic Microcontrollers

GetlWireData

Type Subroutine

Invocation GetlWireData(pin, data, count)

Parameter Method Type Description

pin ByVval Byte The pin to be used for 1-Wire I/O.
data ByRef any type The variable to receive the bytes read.
count ByVal Byte The number of bytes to read.
Discussion

This function retrieves 1 or more bytes (each LSB first) using the 1-Wire protocol and writes them to the
given variable. To perform a 1-Wire operation, this function along with related 1-Wire routines must be
used in the proper sequence. See the specifications of your 1-Wire device for more information.
Caution

If the variable provided has fewer bytes than the given count, subsequent memory locations will be
altered, usually with undesirable consequences.

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100y S for each bit received.

Example
Dimba(l to 10) as Byte

Call Getl1lWreData(1l2, ba, SizeO (ba))

See Also GetlWire, GetlWireByte, PutlWire,
PutlWireByte, PutlWireData, ResetlWire

ZBasic System Library 133 ZBasic Microcontrollers

GetADC (subroutine form)

Type Subroutine

Invocation GetADC(pin, val)
GetADC(pin, val, fullScale)
GetADC(pin, val, fullScale, offset)

Parameter Method Type Description

pin ByVval Byte The pin from which to read an analog voltage.
Val ByRef Single The variable in which to return the result.
fullScale ByVval Single The full-scale voltage value.

offset ByVal Integral The offset to apply before scaling.
Discussion

This function performs an analog-to-digital conversion on the signal present on the specified pin that must
be one of the analog port pins (see Resource Usage below). The return value will be a 10-bit (for
ATmega-based and ATtiny-based devices) or 12-bit (for ATxmega-based devices) digital approximation
of the input voltage with a range from zero to the reference voltage (see below). For the first form, the
returned value is scaled to the range 0.0 to 1.0 and for the remaining forms it is scaled to the range 0.0 to
value of the fullScale parameter. For the third form, the value of the offset parameter (which could be
negative) is added to the ADC value before scaling. This is useful, for example, for removing the effect of
a non-zero offset voltage of the ADC.

You must make the pin an input before calling this routine.

For ATtiny and ATmega target devices, the conversion is performed using the AVcc reference voltage
(connected internally to Vcc on the ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t, ZX-24e, ZX-
24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-328nu, ZX-128e, ZX-128ne, ZX-
1281e and ZX-1281ne). For ATxmega target devices, the conversion is performed using a reference
voltage of Vcc/1.6.

Resource Usage

Only analog port pins may be used to perform an analog-to-digital conversion. The number and location
of analog port pins vary depending on the ZBasic target device. See the section Analog-to-Digital
Converters for more information.

Most ZBasic target devices contain a single analog-to-digital converter thus allowing only one conversion
to be performed at a time (some have none at all). The conversion process takes approximately 220uS
during which time the calling task will be awaiting conversion completion.

Compatibility
Although the Basic X manual indicates that that it is not necessary to configure the pin to be an input
before calling, tests indicate that it is, in fact, necessary to do so. Consequently, the behavior of this

implementation matches the actual behavior of the Basic X platform. The second and third forms are not
available in Basic X mode.

ZBasic System Library 134 ZBasic Microcontrollers

GetADC (function form)

Type Function returning Integer

Invocation GetADC(pin)

Parameter Method Type Description
pin ByVval Byte The pin from which to read an analog voltage.
Discussion

This function performs an analog-to-digital conversion of the voltage present on the specified pin which
must be one of the analog port pins (see Resource Usage below). The return value will be a 10-bit (for
ATmega-based and ATtiny-based devices) or 12-bit (for ATxmega-based devices) digital approximation
of the input voltage with a range from zero to the reference voltage (see below). The return value
represents the measured voltage voltage according to the formula Vier * adcVal / FSwhere Vier is
the reference wltage, adcVal is the value returned by GetADC(), and FS is 1024 for ATmega and
ATtiny-based devices and 4096 for ATxmega-based devices.

You must make the specified pin an input before calling this routine.

For ATtiny and ATmega target devices, the conversion is performed using the AVcc reference voltage
(connected internally to Vcc on the ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-24r, ZX-24s, ZX-24t, ZX-24e, ZX-
24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, ZX-24ru, ZX-24su, ZX-328nu, ZX-128e, ZX-128ne, ZX-
1281e and ZX-1281ne). For ATxmega target devices, the conversion is performed using a reference
voltage of Vcc/1.6.

Resource Usage

Only analog port pins may be used to perform an analog-to-digital conversion. The number and location
of analog port pins vary depending on the ZBasic target device. See the section Analog-to-Digital
Converters for more information.

Most ZBasic target devices contain a single analog-to-digital converter thus allowing only one conversion
to be performed at a time (some have none at all). The conversion process takes approximately 220uS
during which time the calling task will be awaiting conversion completion.

Compatibility

Although the Basic X manual indicates that that it is not necessary to configure the pin to be an input

before calling, tests indicate that it is, in fact, necessary to do so. Consequently, the behavior of this
implementation matches the actual behavior of the Basic X platform.

ZBasic System Library 135 ZBasic Microcontrollers

GetBit

Type Function returning Byte

Invocation GetBit(var, bitNumber)

Parameter Method Type

Description

var ByRef any type

The variable from which the bit will be read.

bitNumber ByVal int8/16

The bit number to read.

Discussion

This function extracts a single bit from memory beginning at the location of the specified variable. Bit
numbers 0-7 are taken from the byte at the specified location, bit numbers 8-15 are taken from the
subsequent byte, etc. In each case, the lower bit number corresponds to the least significant bit of the

byte while the higher bit number corresponds to the most significant bit.

The return value will always be 0 or 1.

Compatibility

In Basic X compatibility mode the second parameter must be a Byt e type.

See Also PutBit

ZBasic System Library

136

ZBasic Microcontrollers

GetDate

Type Subroutine

Invocation GetDate(year, month, day)
GetDate(year, month, day, dayNum)

Parameter Method Type Description

year ByRef int16 The variable in which to place the year value (1999-2177).
month ByRef Byte The variable in which to place the month value (1-12).

day ByRef Byte The variable in which to place the day value (1-31).
dayNum ByVal integral The day number to convert to year, month, day.
Discussion

This routine decomposes a day number into the corresponding year, month and day components. The
month value of 1 corresponds to January while 12 corresponds to December. If the day number is
omitted, the value of Regi st er. RTCDay is used.

Note that Regi st er. RTCDay is initialized to zero on power-up or reset. This day number corresponds to
January 1, 1999.

Compatibility
This subroutine is not available if the RTC is not enabled in your application. Also, the second form of

this subroutine is not available in Basic X compatibility mode.

See Also GetDateValue, GetDayNumber, GetDayOfWeek, GetDayOfY ear, PutDate

ZBasic System Library 137 ZBasic Microcontrollers

GetDateValue

Type Function returning Unsignedinteger
Invocation GetDateValue()
GetDateValue(dayNum)
Parameter Method Type Description
dayNum ByVval integral The day number to convert to year, month, day.
Discussion

This function decomposes a day number into the corresponding year, month and day components and
packs them into a 16-bit value as shown in the table below. If the day number is omitted, the value of
Regi st er . RTCDay is used.

Note that Regi st er . RTCDay is initialized to zero on power-up or reset. This day number corresponds to
January 1, 1999.

Date Value Fields

Bits Position Mask Description

15-9 &Hf e00 Year relative to 1999 (0 to 127)
8-5 &HO1e0 Month (1 to 12)

40 &HOO1f Day (1 to 31)

Compatibility
This subroutine is not available if the RTC is not enabled in your application. Also, the second form of
this subroutine is not available in Basic X compatibility mode.

See Also GetDate, GetTime, GetTimeValue

ZBasic System Library 138 ZBasic Microcontrollers

GetDayNumber

Type Function returning Unsignedinteger

Invocation GetDayNumber(dayOfYear, year)
GetDayNumber(year, month, day)

Parameter Method Type Description

dayofyear ByVal integral The ordinal day number of the year (Jan 1 = 1).
year ByVal integral The year (1999 to 2178).

month ByVval integral The month (1 to 12).

day ByVval integral The day (1 to 31).

Discussion

This routine computes the day number corresponding to the day of the year specified by the parameters.
Day number 0 is January 1, 1999. The first form is used when you have a day number and year. (The
days in a year are numbered beginning with 1.) The second form is used when you have the year, month
and day.

Examples

Di m dayNum as Unsi gnedl nt eger

dayNum = Get DayNunber (59, 2005)
dayNum = Get DayNunber (2006, 3, 20)
Compatibility

This function is not available if the RTC is not enabled in your application. Also, it is not available in
Basic X compatibility mode.

See Also GetDate, GetDayOfWeek, GetDay OfY ear, PutDate

ZBasic System Library 139 ZBasic Microcontrollers

GetDay OfWeek

Type Function returning Byte
Invocation GetDayOfWeek()
GetDayOfWeek(dayNum)
Parameter Method Type Description
dayNum ByVval integral The day number to convert to year, month, day.

Discussion

This routine computes the day of the week corresponding to a day number. If the day number is omitted,
the value of Regi st er. RTCDay is used.. A return value of 1 corresponds to Sunday and a value of 7
corresponds to Saturday with the remaining days falling in order in between. There are built-in constants
that represent the day numbers as shown in the table below.

Day of Week Constants
Constant Value
zxSunday
zxMonday
zxTuesday
zxWednesday
zxThur sday
zxFri day
zxSat ur day

N[O O AW N

Note that Regi st er . RTCDay is initialized to zero on power-up or reset. This day number corresponds to
Friday, January 1, 1999.

Compatibility

This function is not available if the RTC is not enabled in your application.

See Also GetDate, GetDayNumber, GetDayOfY ear

ZBasic System Library 140 ZBasic Microcontrollers

GetDayOfYear

Type Function returning Unsignedinteger

Invocation GetDayOfY ear(dayNum)
GetDayOfY ear(dayNum, year)

Parameter Method Type Description

dayNum ByVval integral The day number to convert to day of year and year.
year ByRef int16 The variable in which the year will be stored.
Discussion

This routine computes the day of the year and the year corresponding to a day number (such as
represented by Regi st er. RTCDay). The first day of the year is numbered 1. If the second parameter is

present, the variable to which it refers will receive the year value.
Example

Di m dayOf Year as Unsi gnedl nt eger
Di m year as Unsi gnedl nt eger

dayOf Year = Cet DayOf Year (Regi st er. RTCDay, year)
Compatibility
This function is not available if the RTC is not enabled in your application. Also, it is not available

in Basic X compatibility mode.

See Also GetDate, GetDayNumber, GetDayOfWeek

ZBasic System Library 141 ZBasic Microcontrollers

GetEEPROM

Type Subroutine

Invocation GetEEPROM (addr, var, count)

Parameter Method Type Description

addr ByVval Long The Program Memory address from which to begin reading.
var ByRef any type The variable in which to place the data read.

count ByVval int16 The number of bytes to read.

Discussion

This routine is provided for compatibility with BasicX The more aptly named GetProgMem() should be
used by new applications.

See Also GetProgMem, PutProgMem

ZBasic System Library 142 ZBasic Microcontrollers

GetElapsedMicroTime

Type Function returning UnsignedLong

Invocation GetElapsedMicroTime(timeBuf)
GetElapsedMicroTime(timeBuf, timeBuf2)

Parameter Method Type Description

timeBuf ByRef Microtime_t structure or array of Byte The earlier time data.

timeBuf2 ByRef Microtime_t structure or array of Byte The later time data.

Discussion

This function is useful for implementing higher precision timing than can be obtained using
Register.RTCTick. It calculates the elapsed time between an earlier instant in time (as captured by

Get M croTi me()) and a later instant in time. If the second parameter is not provided, the later instant is
represented by the RTC time data at the time of the call.

The pre-defined structure, Microtime_t, can be incorporated in your application using the directive
Option Include Mcrotinme_t. Using this structure instead of an array of bytes is preferable not

least because it automatically adapts if you change the target device.

The return value has units of the period of the frequency at which the TCNT register of the RTC timer
changes, i.e. 1/ F_RTC_TI MER (typically about 4.34uS for ZX devices). The value of
Regi st er. RTCTi mer Fr equency may be useful for converting the return value to seconds.

The array must contain at least 5 bytes (6 bytes for xmega devices), populated by a previous call to
Get M croTi me(). The return value will range from 0 to the equivalent of about 15,000 seconds. A
return value of & HFFFFFFFF indicates that an overflow has occurred, i.e. an elapsed time that is too
large to represent.

Although this function does not take into account the value of the “day” counter of the RTC, it does
properly handle an elapsed time that spans one midnight rollover.

Example

DmtO(1 to 5) as Byte ' nust be 6 bytes for xmega devices

Call GetM croTinme(to0)
<ot her code>

Di m delta as Unsi gnedLong

delta = CetEl apsedM croTi me(t0)

Compatibility

This function is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-24)

nor is it available if the RTC is not enabled in your application. Moreover, it is not available in Basic X
compatibility mode.

See Also GetMicroTime

ZBasic System Library 143 ZBasic Microcontrollers

GetMicroTime

Type Subroutine

Invocation GetMicroTime(timeB uf)

Parameter Method Type Description

timeBuf ByRef Microtime_t structure or A buffer to be populated with time data.

array of Byte

Discussion

This routine populates the provided buffer, which must be at least 5 bytes long (6 bytes for xmega
devices), with high resolution timing data. This information is most useful in conjunction with a
subsequent call to Get El apsedM croTi ne() to compute an elapsed time.

The data in the time buffer comprises of the value of the TCNT register of the RTC Timer at the moment
of the call followed by the RTC tick value converted to “fast ticks” (that typically occur at 1024Hz for ZX
devices).

The pre-defined structure, Microtime_t, can be incorporated in your application using the directive
Option Include Mcrotinme_t. Using this structure instead of an array of bytes is preferable not
least because it automatically adapts if you change the target device.

Example
Dimstart(1l to 5) as Byte ' nust be 6 bytes for xnega devices
Dmnt0O as Mcrotine_t

Call GetMcroTine(start)
Call GetM croTi ne(ntO0)

Compatibility
This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24) nor is it available if the RTC is not enabled in your application. Moreover, it is not available in Basic X
compatibility mode.

See Also GetElapsedMicroTime

ZBasic System Library 144 ZBasic Microcontrollers

GetNibble

Type Function returning Nibble

Invocation GetNibble(var, nibbleNumber)

Parameter Method Type Description

var ByRef any type The variable from which the nibble will be read.
nibbleNumber ByVal int8/16 The nibble number to read.

Discussion

This function extracts a nibble value from memory beginning at the location of the specified variable.
Nibble numbers 0-1 are taken from the byte at the specified location, nibble numbers 2-3 are taken from
the subsequent byte, etc. In each case, the lower nibble number corresponds to the least significant four
bits of the byte while the higher nibble number corresponds to the most significant four bits of the byte.

The return value will always be in the range 0 to 15.

Compatibility

This function is not available in Basic X compatibility mode.

See Also PutNibble

ZBasic System Library 145 ZBasic Microcontrollers

GetPersistent

Type Subroutine

Invocation GetPersistent(addr, var, count)

Parameter Method Type Description

addr ByVval int16 The address in Persistent Memory from which to read.
var ByRef any type The variable in which to place the data read.

count ByVval int8/16 The number of bytes to read.

Discussion

This routine reads one or more bytes from Persistent Memory and places them in RAM beginning at the
location of the specified variable. Note that if a number of bytes is specified that is larger than the given
variable, adjacent memory will be overwritten, possibly with detrimental results.

The DataAddress property is useful to get the address of a Persistent Memory data item.

Example

Dimpvar(1l to 10) as PersistentByte
Dimvar(1l to 10) as Byte
Cal | Get Persistent(pvar. Dat aAddress, var, SizeOf(pvar))

Compatibility

This routine is not available in Basic X compatibility mode.

See Also PutPersistent

ZBasic System Library 146 ZBasic Microcontrollers

GetPin

Type Function returning Byte
Invocation GetPin(pin)

Parameter Method Type Description
pin ByVval Byte The pin to read.
Discussion

If the specified pin is configured to be an input, this function reads the state of the pin and returns the
value 0 or 1 corresponding to logic zero and logic one. If the pin number is invalid the result is undefined.
If the pin is configured to be an output, it is reconfigured to be an input in tri-state mode before reading
the input value.

Compatibility

The Basic X documentation says that the result is undefined if Get Pi n() is called for a pin that is

configured as an output. Tests show that the pin is actually reconfigured to be an input in tri-state mode.
The ZBasic implementation of Get Pi n() does the same.

See Also PinRead, PutPin

ZBasic System Library 147 ZBasic Microcontrollers

GetProgMem

Type Subroutine

Invocation GetProgMem (addr, var, count)

Parameter Method Type Description

addr ByVval Long The Program Memory address from which to begin reading.
var ByRef any type The variable in which to place the data read.

count ByVal int16 The number of bytes to read.

Discussion

This routine reads one or more bytes from Program Memory (where the user program is stored) and
places them in RAM beginning at the location of the specified variable. Note that if a number of bytes is
specified that is larger than the given variable, adjacent memory will be overwritten, possibly with
detrimental results.

See Also PutProgMem

ZBasic System Library 148 ZBasic Microcontrollers

GetQueue

Type Subroutine

Invocation GetQueue(queue, var, count)
GetQueue(queue, var, count, timeLimit, timeoutFlag)

Parameter Method Type Description

queue ByRef array of Byte The queue from which to read data.

var ByRef any type The variable to which to write the data from the queue.
count ByVal int16 The number of bytes to read from the queue.

timeLimit ByVval Single The amount of time to wait for data availability, in seconds.
timeoutFlag ByRef Boolean A variable to indicate if the call timed out.

Discussion

This routine has two forms. The first form simply attempts to read the given number of bytes from the
specified queue and place them in RAM beginning at the location of the given variable. In this case, the
routine will not return until requested number of bytes is available. If not enough data is placed in the
queue, the routine will never return. Note that if the calling task is locked and the queue contains
insufficient space for the data to be written data when this routine is called, the task will be unlocked to
allow other tasks to run.

The second form specifies, additionally, ati meLi mt and afl ag variable. In this case, if the requested
number of bytes does not become available within the specified time, the routine will return, having
transferred zero bytes, and the f | ag variable will be set to Tr ue indicating that the routine timed out. If
the requested number of bytes does become available before the specified time expires, that number of
bytes will be removed from the queue and transferred to the specified memory location and the f | ag
variable will be set to Fal se indicating that the transfer did not time out. The resolution of the timeout
value is the same as the RTC tick, approximately 1.95mS.

In either case, if data is removed from the queue it is written to RAM beginning at the location of the
specified variable. Note that if the count specifies a number of bytes larger than the variable, the
additional bytes will be written to subsequent RAM locations. This may have exactly the effect that you
intended but depending on the function of those subsequent bytes it may have a deleterious effect on
your program.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to retrieve data from a queue that has

been assigned to a Com port as the transmit queue will produce undefined results.

Although this subroutine will accept a String variable as the second parameter it is generally not useful to
do so because the control bytes at the beginning of the string will be overwritten. If you want to populate
a string using data from a queue the alternatives are:

1) Build up the string by retrieving individual characters one by one and appending them to a string.
2) Retrieve a group of bytes to a Byte array and use the MakeSt ri ng() function to create a string
from the constituent bytes.

3) Use the Get QueueStr () function to obtain a string containing characters from the queue.
Example

DiminQueue(l to 40) as Byte
Dimlval as Long

Call OpenQueue(inQueue, SizeO (inQueue))

ZBasic System Library 149 ZBasic Microcontrollers

Cal | Get Queue(inQueue, lval, SizeO(lval))
Alternately,

DiminQueue(l to 40) as Byte

Dimlval as Long

DimtinmeQut as Bool ean

Call OpenQueue(inQueue, SizeO (inQueue))
Cal | Get Queue(inQueue, lval, SizeCO(lval),

Compatibility

1.0,

ti meQut)

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of

Byt e.

The Basic X manual indicates that the range of values for the timeLimit parameter is 0.0 to 65.536
seconds implying a 1ms resolution. This implementation has a 1.95ms resolution and a range of 0.0 to

about 127.0 seconds.

See Also GetQueueStr, OpenQueue

ZBasic System Library 150

ZBasic Microcontrollers

GetQueueBufferSize

Type Function returning Integer

Invocation GetQueueBufferSize(queue)

Parameter Method Type Description

queue ByRef array of Byte The queue of interest.
Discussion

This function returns the number of bytes of data space in a queue that has been properly initialized using
OpenQueue() . Note that the data space in a queue is somewhat less than the number of bytes in the
byte array comprising the queue due to space required for gueue management information. See
OpenQueue() for more details.

Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of

Byt e.

See Also GetQueueCount, GetQueueSpace

ZBasic System Library 151 ZBasic Microcontrollers

GetQueueCount

Type Function returning Integer

Invocation GetQueueCount(queue)

Parameter Method Type Description

queue ByRef array of Byte The queue of interest.
Discussion

This function returns the number of bytes of data currently in the specified queue. It is useful to note that
this value subtracted from that returned by Get QueueBuf f er Si ze() indicates the remaining available

data space in the queue.

Note that before any queue operations are performed, the queue data structure must be initialized. See

the discussion of OpenQueue() for more details.

Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of

Byt e.

See Also GetQueueBufferSize, GetQueueSpace

ZBasic System Library 152 ZBasic Microcontrollers

GetQueueSpace

Type Function returning Integer

Invocation GetQueueSpace(queue)

Parameter Method Type Description

queue ByRef array of Byte The queue of interest.
Discussion

This function returns the number of bytes of space remaining in the specified queue, effectively the same
result as the expression Get QueueBuf fer Si ze() — Cet QueueCount ().

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Compatibility
This function is not available in Basic X compatibility mode.

See Also GetQueueBufferSize, GetQueueCount

ZBasic System Library 153 ZBasic Microcontrollers

GetQueueStr

Type Function returning String

Invocation GetQueueStr(queue) or
GetQueueStr(queue, maxChars)

Parameter Method Type Description

queue ByRef array of Byte The queue of interest.

maxChars ByVal integral The maximum number of characters to retrieve.
Discussion

This function extracts a number of characters from the specified queue and returns a string populated
with those characters. The number of characters is limited to the lesser of 1) the number of characters in
the queue at the time of the call, 2) the value of maxChar s (if specified), and 3) the maximum number of
characters allowed in a string.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to retrieve data from a queue that has

been assigned to a Com port as the transmit queue will produce undefined results.

Compatibility

This function is not available in Basic X compatibility mode.

See Also GetQueue, OpenQueue

ZBasic System Library 154 ZBasic Microcontrollers

GetTime

Type Subroutine

Invocation GetTime(hour, minute, seconds)
GetTime(hour, minute, seconds, tick)

Parameter Method Type Description

hour ByRef Byte The variable in which to place the hour value (0-23).
minute ByRef Byte The variable in which to place the minutes value (0-59).
seconds ByRef Single The variable in which to place the seconds value.

tick ByVal integral The tick count to decompose.

Discussion

This routine decomposes a tick count into the equivalent hour, minute and second components. [f the tick
count is omitted, the value of Regi st er. RTCTi ck is used. The resolution of the seconds value is

1/ F_RTC _TI CK (typically 1.95ms for ZX devices).

Note that Regi st er . RTCTi ck is initialized to zero on power-up or reset. This corresponds to 0:00:00.

Compatibility

This subroutine is not available if the RTC is not enabled in your application. Also, explicitly specifying
the tick count to use (fourth parameter) is not supported in Basic X compatibility mode.

See Also GetDate, GetTimestamp, GetTimeValue

ZBasic System Library 155 ZBasic Microcontrollers

GetTimestamp

Type Subroutine

Invocation GetTimestamp(year, month, day, hour, minute, seconds)

Parameter Method Type Description

year ByRef int16 The variable in which to place the year value (1999-2177).
month ByRef Byte The variable in which to place the month value (1-12).

day ByRef Byte The variable in which to place the day value (1-31).

hour ByRef Byte The variable in which to place the hour value (0-23).
minute ByRef Byte The variable in which to place the minutes value (0-59).
seconds ByRef Single The variable in which to place the seconds value.
Discussion

This routine decomposes the value of Regi st er. RTCDay and Regi st er. RTCTi ck into year, month,
day, hour, minute and second components. See Cet Dat e() and Get Ti me() for more details.

Compatibility

This subroutine is not available if the RTC is not enabled in your application.

ZBasic System Library 156 ZBasic Microcontrollers

GetTimeValue

Type Function returning UnsignedLong

Invocation GetTimeValue()
GetTimeValue(tick)

Parameter Method Type Description
tick ByVval integral The tick count to decompose.
Discussion

This function decomposes a tick count into the equivalent hour, minute, second and fractional second
components and packs them into a 32-bit value as shown below. If the tick count is omitted, the value of
Regi st er . RTCTi ck is used.

Note that Regi st er . RTCTi ck is initialized to zero on power-up or reset. This corresponds to 0:00:00.

Time Value Fields
Bits Position Description
Mask
31-27 &Hf 8000000 Hour (0 to 23)
26-21 &HO7e00000 Minute (O to 59)
20-15 &HO01f 8000 Second (0 to 59)
14-0 &HO0007fff Fractional Second (0to F_RTC_TICK-1)

The 'fractional second' field represents the accumulation of RTC ticks between each second. The floating
point equivalent of the seconds value represented by the converted time value can be calculated using
code like that shown in the example below.

Example

Dimtime as Unsi gnedlLong
Di m seconds as Single

' conpute the equivalent full and fractional seconds val ue
time = GetTi neVal ue()

seconds = CSng(Shr(tinme, 15) And &H3f) + _
Csng(tine And &H7fff) / CSng(Regi ster. RTCTi ckFrequency)

Compatibility
The first form of the function is not available if the RTC is not enabled in your application. Neither form is

supported in Basic X compatibility mode or on VM mode ZX devices.

See Also GetDate, GetDateValue, GetTime, GetTimestamp

ZBasic System Library 157 ZBasic Microcontrollers

HiByte

Type Function returning Byte

Invocation HiByte(val)

Parameter Method Type Description

val ByVal numeric The value of which the high byte is desired.
Discussion

This function returns the most significant byte of the specified value except that if the specified value is a
Byte value, the result will be zero.

Compatibility

This function is not available in Basic X compatibility mode.

See Also HiWord, LoByte, LoWord, MidWord

ZBasic System Library 158 ZBasic Microcontrollers

HiWord

Type Function returning Unsignedinteger

Invocation HiwWord(val)

Parameter Method Type Description

val ByVval numeric The value of which the high word is desired.
Discussion

This function returns the most significant word of the specified value except that if the specified value is a
Byte, Integer or Unsignedinteger value, the result will be zero.

Compatibility

This function is not available in Basic X compatibility mode.

See Also HiByte, LoByte, LoWord, MidWord

ZBasic System Library 159 ZBasic Microcontrollers

12CCmd

Type Function returning Integer

Invocation I2CCmd(channel, slavelD, writeCnt, write Data, readCnt, readData)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).

slavelD ByVal Byte The identifier of the 12C slave device (in the 7 high order bits).

writeCnt ByVal integral The number of bytes to write (0 — 65535).

write Data ByRef any type The variable containing the data to write.

readCnt ByVal integral The number of bytes to read (0 — 65535).

readData ByRef any type The variable in which to place the data read.

Discussion

The routine allows you to send and/or receive data from an I12C device. The specified channel must have
been previously opened with a call to Openl 2C() . If the channel has not been opened, the results are
undefined. If an invalid channel is specified or if both wri t eCnt and r eadCnt are zero, the function
returns immediately without doing anything and the return value is zero. You may specify the value O for
wri t eDat a or r eadDat a if no data is being provided for writing or reading, respectively. If you do this,
the corresponding data count parameter must also be zero or the compiler will issue an error message.

The execution of the 12C command sequence begins by issuing an 12C start condition on the SDA and
SCL lines. Next, ifwri t eCnt is non-zero the given sl avel D value is transmitted (with the least
significant bit being zero) followed by the specified number of bytes taken from wri t eDat a. Then, if

r eadCnt is non-zero the sl avel D value is transmitted again but with the least significant bit being one
and the specified number of bytes is read from the slave and placed in r eadDat a. Finally, an 12C stop
condition is issued followed by both the SDA and SCL lines returning to the idle state.

The return value may be negative, zero or positive. [f the return value is negative it signifies that the
slave failed to positively acknowledge one of the transmitted bytes. The value is the negative of the
number of bytes that were not successfully transmitted. If the slave fails to positively acknowledge either
the slave ID or the first data byte, the return value will be the negative of the wri t eCnt parameter value.
If the return value is non-negative it represents the number of data bytes read from the slave and placed
inr eadDat a.

Example

Dimodata(l to 2) as Byte, idata(l to 10) as Byte
Dimival as |nteger

Call Openl2C (1, 12, 13)

odata(1l) = &HO6

odata(2) = &HOO

ival = l2CCnd(1, &H7e, 2, odata(l), 10, idata(l))

Resource Usage

This function uses the I/O Timer for channels 1 to 4. If the timer is already in use, the result and the
return value are both undefined. Interrupts are disabled for periods of about 9 times the selected 12C bit
time plus additional amounts due to slave clock stretching for each byte sent and received (interrupts are
reenabled between bytes). However, RTC ticks are accumulated during the process so the RTC should
not lose time.

ZBasic System Library 160 ZBasic Microcontrollers

Compatibility

This function is not available in Basic X compatibility mode.

See Also Openl2C, 12CGetByte, I2CPutByte, 12CStart, 12CStop, Closel2C

ZBasic System Library 161 ZBasic Microcontrollers

I2CGetByte

Type Function returning Byte

Invocation 12CGetByte(channel, ackValue)

Parameter Method Type Description

channel Byval Byte The 12C channel number (0-4).

ackValue ByVal Boolean The value to send to the slave in acknowledgement of the data byte.
Discussion

This function retrieves a data value from an I2C slave and responds to the receipt of that data by sending
back the specified acknowledgement value. The value returned by this function is the data byte received
from the slave.

This function can be used in conjunction with | 2CSt art () ,l 2CPut Byt e() and | 2CSt op() to perform
a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the specifications of
the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Resource Usage

This function uses the I/O Timer for channels 1 to 4. If the timer is already in use, the function will do
nothing and the return value is undefined. Interrupts are disabled for about 9 times the selected 12C bit
time plus additional amounts due to slave clock stretching. However, RTC ticks are accumulated during
the process so the RTC should not lose time.

Compatibility

This function is not available in Basic X compatibility mode.

See Also Openl2C, Closel2C, I2CPutByte, I2CStart, 12CStop, 12CCmd

ZBasic System Library 162 ZBasic Microcontrollers

I2CPutByte

Type Function return Boolean

Invocation I2CPutByte(channel, dataVal)

Parameter Method Type Description

channel Byval Byte The 12C channel number (0-4).
dataVal ByVal Byte The data byte to send to the slave.
Discussion

This function transmits a data value to an 12C slave and reads the acknowledgement bit returned by the
slave. The value returned by this function is the value of the acknowledge bit received from the slave
device — a positive acknowledgement results in a True value being returned.

This function can be used in conjunction with | 2CSt art (), | 2CGet Byt e() and | 2CSt op() to perform
a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the specifications of
the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Resource Usage

This function uses the for channels 1to 4. Ifthe timer is already in use, the function will do nothing and
the return value is undefined. Interrupts are disabled for about 9 times the selected 12C bit time plus
additional amounts due to slave clock stretching. However, RTC ticks are accumulated during the
process so the RTC should not lose time.

Compatibility

This function is not available in Basic X compatibility mode.

See Also Openl2C, Closel2C, 12CGetByte, 12CStart, I12CStop, 12CCmd

ZBasic System Library 163 ZBasic Microcontrollers

|2CStart

Type Subroutine

Invocation I2CStart(channel)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
Discussion

This subroutine initiates an 12C bus cycle by implementing the proper sequence of transitions on the SDA
and SCL lines.

This subroutine can be used in conjunction with | 2CGet Byt e(), | 2CPut Byt e() and | 2CSt op() to
perform a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the
specifications of the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C() , the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also Openl2C, Closel2C, 12CGetByte, 12CP utByte, 12CStop, 12CCmd

ZBasic System Library 164 ZBasic Microcontrollers

12CStop

Type Subroutine

Invocation 12CStop(channel)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
Discussion

This subroutine terminates an 12C bus cycle by implementing the proper sequence of transitions on the
SDA and SCL lines.

This subroutine can be used in conjunction with 1 2CSt art (), | 2CGet Byt e() and | 2CPut Byt e() to
perform a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the
specifications of the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C() , the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also Openl2C, Closel2C, I2CGetByte, 12CP utByte, 12CStart, I2CCmd

ZBasic System Library 165 ZBasic Microcontrollers

|If

Type Function returning the same type as the second parameter

Invocation lIf(testExpr, trueExpr, falseExpr)

Parameter Method Type Description

testExpr ByVal Boolean The expression to evaluate, the result of which
determine which expression value will be returned.

trueExpr ByVval any type The value to return if testExpr evaluates to True.

falseExpr ByVval any type The value to return if testExpr evaluates to False.

Discussion

This function is adapted from VB6 where it is sometimes called “Immediate If". It is used to select one of
two values based on the result of a test. Employing this function will generally result in less code than an
equivalent If-Then-Else structure. On the other hand, the execution of this function does use more stack
space than an equivalent If-Then-Else structure. Also, it is important to note that using this function is not
exactly the same as an If-Then-Else because both the trueExpr and the falseExpr are always evaluated.

This difference is only significant if the evaluation of one or both of these expressions has side effects.

Note that trueExpr and falseE xpr must have the same type or be of compatible types.

Examples

Dima as Byte
Di m b as Unsi gnedl nt eger
Di m u as Unsi gnedl nt eger

u=1IIf(a >3, 5 b)

Debug. Print IIf(a = 5, "Hello", "Goodbye")

Compatibility

This function is not available in Basic X compatibility mode. Also, it is only supported by ZX firmware
v1.1.0 or later.

ZBasic System Library 166 ZBasic Microcontrollers

InputCapture

Type Subroutine

Invocation InputCapture(data, count, flags)
InputCapture(data, count, flags, timeout)

Parameter Method Type Description
data ByRef array of The array in which pulse width information will be stored.
Unsignedinteger
count ByVal int16 The number of pulse widths to store. This should be no
larger than the number of entries in the passed array.
flags ByVal Byte A value of zero requests that a falling edge begin the

capture process while a value of 1 indicates a rising edge.
All other values are reserved.

timeout ByVal Integral If non-zero, this parameter specifies a timeout value that, if
exceeded, will terminate the input capture process.

Discussion

Invoking this routine is equivalent to the call | nput Capt ur eEx(pi n, data, count, flags) or

| nput Capt ureEx(pin, data, count, flags, timeout) where pin is the default input capture
pin for the device as shown in the table below. See the description of InputCaptureEx() for more detailed
information. Also, see the section Input Capture Timers for information on the default input capture pin
used by this subroutine.

The stored values represent the number of I/O Timer ticks (i.e. 1/ F_CPU or about 67.8ns for 14.7MHz
devices) measured for each segment of the pulse train. However, the value of

Regi st er. Ti mer Speedl may be changed to allow longer pulse widths to be measured. See the
section on Timers for more information.

Example

Dimpd(1 to 5) as Unsi gnedl nteger

Call PutPin(12, zxInputTri State)

Cal | I nputCapture(pd, UBound(pd), 1)

Compatibility

The Basic X compiler erroneously allows any variable for the first parameter. This implementation
requires the data type to be Unsi gnedl nt eger or | nt eger although it needn’t be an array. For
practical purposes, an array will almost always be used.

In Basic X compatibility mode, the use of the optional fourth parameter is not supported. Also, because

the processor runs at twice the speed of the BX-24 processor, the default time unit is one half of that
provided for by BasicX

ZBasic System Library 167 ZBasic Microcontrollers

InputCaptureEx

Type Subroutine

Invocation InputCaptureEx(pin, data, count, flags)
InputCaptureEx(pin, data, count, flags, timeout)

Parameter Method Type Description
pin Byval Byte The input capture pin to use.
data ByRef array of The array in which pulse width information will be stored.
Unsignedinteger
count ByVal int16 The number of pulse widths to store. This should be no
larger than the number of entries in the passed array.
flags ByVal Byte A value of zero requests that a falling edge begin the

capture process while a value of 1 indicates a rising edge.
All other values are reserved.

timeout ByVal integral If non-zero, this parameter specifies a timeout value that, if
exceeded, will terminate the input capture process.

Discussion

This routine collects timing data from a pulse train applied to the specified input capture pin and stores it
in the specified array. The stored data reflects the width of the successive high and low portions of the
pulse train. If any segment is longer than can be represented in a 16-bit value, the stored value will be
65535 (& Hffff) and the immediately following value, if any, will be meaningless.

Prior to commencing the input capture process all of the elements of the data array are initialized with the
value 65534 (&Hfffe). This fact can be used to determine the actual number of timing data stored in the
array during input capture.

The stored values represent the number of I/O Timer ticks (i.e. 1/ F_CPU or about 67.8ns for 14.7MHz
devices) measured for each segment of the pulse train. However, the value of

Regi st er. Ti ner Speedl may be changed to allow longer pulse widths to be measured. See the
section on Timers for more information.

Due to the overhead of servicing the input capture interrupt and possible RTC interrupts the shortest
interval (high or low segment) that can be reliably measured corresponds to about 300 CPU cycles (about
21y s for 14.7MHz devices). If an input waveform had a 50% duty cycle this would correspond to about
24KHz. Additional interrupt sources may increase the minimum interval that can be measured reliably.

If the optional t i meout parameter is specified and is non-zero, the Input Capture process will be
terminated if N * 65536 I/O Timer ticks occur (where N is the value of the t i meout parameter) before the
specified number of datapoints has been stored. This gives a range of possible timeout values from
about 4.5mS to 290 seconds with a resolution of 4.5mS (using the default value of

Regi st er. Ti nmer Speed1l) for 14.7MHz devices.

The calling task will be suspended until the specified number of datapoints has been stored, the timeout
value is exceeded or the task is resumed using ResumeTask(). Other tasks will be allowed to run but you
must be careful to not call any routines that may disable interrupts for long periods of time because that
could interfere with the accuracy of the input capture timing.

Resource Usage
This routine utilizes a timer to collect the timing information of the pulse train. See the section Input
Capture Timers for information on the valid input capture pins and the timer associated with each and the

ISRs utilized for native mode devices.

ZBasic System Library 168 ZBasic Microcontrollers

Example

Dim pd(1 to 5) as Unsignedl nteger

Call PutPin(D.6, zxlnputTriState)
Cal |l I nputCaptureEx(D. 6, pd, UBound(pd), 1)

Compatibility

This routine is not available in Basic X compatibility mode.

ZBasic System Library 169 ZBasic Microcontrollers

LBound

Type Function returning an integral value

Invocation LBound(array) or

LBound(array, dimension)

Parameter Method Type

Description

array ByRef any array

The array about which the bound information is desired.

dimension ByVval int16

The dimension of interest. See the description for more
details.

Discussion

This function returns the lower bound of a dimension of the specified array. There are two forms. The
first requires only the array to be specified. In this case, the lower bound of the first dimension of the
array is returned. The second form specifies a dimension number (which must be a constant value), the
valid range of which is 1 to the number of dimensions of the array. The array may be located in RAM,

Program Memory or Persistent Memory.

Note that the use of this function instead of hard-coding values makes your code easier to maintain

because it automatically adapts if the definition of an array changes.

Example

Dimba(l to 20) as Byte

Dmm(3 to 5, -6 to 7) as Byte

Dimi as Integer

LBound(ba) '
LBound(m) '
LBound(ma, 1) '
LBound(ma, 2) '

Compatibility

This function is not available in Basic X compatibility mode.

See Also UBound, Span

ZBasic System Library

t he
t he
t he
t he

resul t
resul t
resul t
resul t

is 1
is 3
is 3
is -6

170

ZBasic Microcontrollers

L Case

Type Function returning String

Invocation LCase(str)

Parameter Method Type Description

str ByVval String The string to be changed to lower case.
Discussion

This function returns a new string containing the same characters as the passed string except that all
upper case characters will be replaced with lower case characters.

Example

Dims as String, sl as String

s = "Hello, world!"
s2 = LCase(s) " the result will be "hello, world!"
See Also UCase

ZBasic System Library 171 ZBasic Microcontrollers

L eft

Type Function returning String

Invocation Left(str, length)

Parameter Method Type Description

Str Byval String The string from which to extract characters.

length ByVal int8/16 The number of characters to extract from the string.
Discussion

This function returns a string consisting of the leftmost characters of the given string. The maximum
number of characters in the returned string is the smaller of 1) the number of characters in the string
passed as the first parameter and 2) the value of the second parameter. Internally, the length is
interpereted as a 16-bit signed value and negative values are treated as zero.

This function produces the same result as M d(str, 1, length).

Example

Dims as String, s2 as String

s = "Hello, world!"
s2 = Left(s, 5) " the result will be "Hello"
See Also Mid, Right, Trim

ZBasic System Library 172 ZBasic Microcontrollers

Len

Type Function returning Integer

Invocation Len(str)

Parameter Method Type Description

str ByVval String The string of which the length is to be determined.
Discussion

This function returns the length of the given string, in bytes. Note that the length may be zero.

Example

Dims as String
Dimi as |nteger

s = "Hello, world!"
i = Len(s) " the result will be 13

ZBasic System Library 173 ZBasic Microcontrollers

LoByte

Type Function returning Byte

Invocation LoByte(val)

Parameter Method Type Description

val ByVval numeric The value of which the low byte is desired.
Discussion

This function returns the least significant byte of the specified value.

Compatibility

This function is not available in Basic X compatibility mode.

See Also HiByte, Hiword, LoWword, MidWord

ZBasic System Library 174 ZBasic Microcontrollers

LockTask

Type Subroutine
Invocation LockTask()
Discussion

This routine causes the running task to become locked so that no other task can run. The one exception
to this is atask that is awaiting an external interrupt or an interval interrupt. Note that a task may explicitly
unlock itself by calling Unl ockTask() . A task will also become unlocked if it calls any of the sleep or

delay routines.

Note that multiple calls to LockTask() have the same effect as a single call to LockTask() assuming
that no other calls are made that implicitly unlock the task.

Compatibility
The Basic X documentation indicates that a locked task will yield to a task that is awaiting an interrupt

when the interrupt occurs. However, testing indicates that this is, in fact, not the case. This
implementation allows an interrupt task to have priority over a locked task.

See Also Unlock Task, Delay, Sleep, WaitForinterrupt, WaitForlnterval

ZBasic System Library 175 ZBasic Microcontrollers

Log

Type Function returning Single

Invocation Log(arg)

Parameter Method Type Description

arg ByVval Single The value of which the natural log is to be computed.
Discussion

This function returns the Si ngl e value corresponding to natural logarithm (base e) of the value provided.
The transcendental value e, upon which the natural logarithm is based, is approximately 2.71828. This
function is the inverse of the Exp() function.

If the value of the argument provided is zero, the result is positive infinity. If the argument value is
negative, the result is NaN.

See Also Exp, Expl0, Logl0

ZBasic System Library 176 ZBasic Microcontrollers

Logl0

Type Function returning Single

Invocation Logl0O(arg)

Parameter Method Type Description

arg ByVval Single The value of which the common log is to be computed.
Discussion

This function returns the Si ngl e value corresponding to the common logarithm (base 10) of the value
provided. This function is the inverse of the Exp10() function.

If the value of the argument provided is zero, the result is positive infinity. If the argument value is

negative, the result is NaN.

See Also Exp, Expl0, Log

ZBasic System Library 177 ZBasic Microcontrollers

LongJmp

Type Subroutine

Invocation LongJmp(jmpbuf, val)

Parameter Method Type Description

jmpbuf ByRef Array of Byte A buffer holding the return context, see description below.
val ByVal int16 The value to be returned to the original SetJmp() caller.
Discussion

This subroutine, in conjunction with Set Jnp() , provides a way to circumvent the normal call-return
structure and return directly to a distant caller. It is the equivalent of a non-local Goto function and can be
used, among other purposes, to handle exceptions in your programs. The first parameter specifies a

Byt e array that has been previously initialized by a call to Set Jnp() . The second parameter specifies a
value that will be seen by the original Set Jnp() caller as the return value. This value, which should be
non-zero, can indicate the nature of the condition that led to the LongJnp() call. See the section on
Exception Handling in the ZBasic Reference Manual for more details.

Caution

Passing a jump buffer that has not been prepared by a call to Set Jnp() , one that has been modified
after the Set Jnp() call, or one that was prepared by a subroutine/function that is no longer active will
have unpredictable and almost certainly undesirable effects.

Compatibility

This routine is not available in Basic X compatibility mode. Also, this routine should not be used in

applications that use ZBasic objects because it bypasses the execution of destructors that are necessary
for proper object management.

See Also Setdmp

ZBasic System Library 178 ZBasic Microcontrollers

LoWord

Type Function returning Unsignedinteger

Invocation LoWord(val)

Parameter Method Type Description

val ByVval numeric The value of which the low word is desired.
Discussion

This function returns the least significant word of the specified value. If the specified value is a Byte the
return value will have zero in the high byte.

Compatibility

This function is not available in Basic X compatibility mode.

See Also HiByte, HiwWord, LoByte, MidWord

ZBasic System Library 179 ZBasic Microcontrollers

MakeDword

Type Function returning UnsignedLong

Invocation MakeDword(loWord, hiword)

Parameter Method Type Description

loword Byval int16 The value for the low word of the double word value.
hiword Byval int16 The value for the high word of the double word value.
Discussion

This function returns a value composed of the two word values.
Example

Dimwl as Unsignedlnteger, w2 as Unsignedl nt eger
Di mul as UnsignedLong

ul = MakeDword(wl, w2)

Compatibility

This function is not available in Basic X compatibility mode.

See Also MakeWord

ZBasic System Library 180 ZBasic Microcontrollers

MakeString

Type Function returning String

Invocation MakeString(address, length)

Parameter Method Type Description

address ByVval integral The address of bytes with which to populate the string.
length ByVval int8/16 The number of characters to place in the string.
Discussion

This function populates a string with an arbitrary byte stream. It is most useful for composing or modifying
strings but may have other uses as well.

Example
Dimba(l to 10) as Byte
Dimi as Integer
Dims as String
For i = LBound(ba) to UBound(ba)
ba(i) = &H60 + CByte(i)
Next i
s = MakeString(MemAddress(ba), SizeO(ba))

Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 181 ZBasic Microcontrollers

MakeWord

Type Function returning Unsignedinteger

Invocation MakeWord(loByte, hiByte)

Parameter Method Type Description

loByte ByVal Byte The value for the low byte of the word value.
hiByte Byval Byte The value for the high byte of the word value.
Discussion

This function returns a value composed of the two byte values.
Example

Dim bl as Byte, b2 as Byte

Di m u as Unsi gnedl nt eger

u = MakeWsrd(bl, b2)

Compatibility

This function is not available in Basic X compatibility mode.

See Also MakeDword

ZBasic System Library 182 ZBasic Microcontrollers

Max

Type Function (see discussion for the return type)

Invocation Max(vall, val2)

Parameter Method Type Description

vall Byval numeric One of two values of which the largest is desired.
val2 Byval numeric One of two values of which the largest is desired.
Discussion

This function returns the larger of the two supplied values, both of which must be of the same type. If the
supplied values are signed, the determination of which is largest takes the sign of the values into account.
The return value is the same type as the parameters.

Compatibility

This function is not available in Basic X compatibility mode.

See Also Min

ZBasic System Library 183 ZBasic Microcontrollers

MemAddress

Type Function returning Integer

Invocation MemAddress(var)

Parameter Method Type Description

var ByRef any variable The variable of which the address is desired.
Discussion

This function returns the | nt eger representation of the RAM address of the specified variable. Note that
for arrays, you may also specify subscript expressions for all of the array dimensions to yield the address
of an individual array element. Without the subscript expressions, the resulting value will be the address
of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. Bi t Copy() , RamPeek (), RanPoke(), etc.

The address of any variable can also be obtained using the Dat aAddr ess property. For RAM-based
variables, the Dat aAddr ess property is of type Unsi gnedl nt eger .

Example

Di m addr as | nteger
Dimba(l to 20) as Byte
Dim fval as Single

addr = MemAddress(fval)
addr = MemAddress(ba)
addr = MemAddress(ba(2))
addr = fval . Dat aAddr ess
addr = ba. Dat aAddr ess
addr = ba. Dat aAddr ess(2)
Compatibility

Basic X only supports the DataAddress property for Program Memory data items.

See Also MemAddressU, VarPtr

ZBasic System Library 184 ZBasic Microcontrollers

MemAddressU

Type Function returning Unsignedinteger

Invocation MemAddressU(var)

Parameter Method Type Description

var ByRef any variable The variable of which the address is desired.
Discussion

This function returns the Unsi gnedl nt eger representation of the RAM address of the specified
variable. Note that for arrays, you may also specify subscript expressions for all of the array dimensions
to yield the address of an individual array element. Without the subscript expressions, the resulting value
will be the address of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. Bi t Copy() , RamPeek (), RanPoke(), etc.

The Dat aAddr ess property may also be used to determine the address of a variable (except in Basic X
compatibility mode). The type of the resulting value is Unsi gnedl nt eger. See the examples below.

Examples

Di m addr as Unsi gnedl nt eger
Dimba(l to 20) as Byte
Dim fval as Single

addr = MemAddressU(fval)
addr = MemAddr essU(ba)

addr = MemAddressU(ba(2))
addr = ba. Dat aAddr ess

addr = ba. Dat aAddress(2)
See Also MemAddress, VarPtr

ZBasic System Library 185 ZBasic Microcontrollers

MemCmp

Type Function returning Integer

Invocation MemCmp(addrl, addr2, count)

Parameter Method Type Description

addrl ByVal integral The address of the first block of memory to be compared.
addr2 ByVal integral The address of the second block of memory to be compared.
count ByVal integral The number of bytes to compare.

Discussion

This function can be used to compare two arbitrary sequences of data in RAM. If all of the bytes in the
two blocks are the same (over the given number of bytes to compare) the value zero is returned.
Otherwise, the return value will be greater than zero if at the position of the first mismatch the byte in the
first block is greater than the corresponding byte in the second block. If the converse is true, the return

value will be less than zero.

All three parameters are converted internally to Unsi gnedlI nt eger.

Example

Dimal(l to 10) as Byte
Dima2(1 to 10) as Byte
Dimival as |nteger

ival = MenCnp(al. Dat aAddress, a2. Dat aAddress,

Compatibility

This function is not available in Basic X compatibility mode.

See Also MemCopy, MemSet

ZBasic System Library 186

Si zeOf (al))

ZBasic Microcontrollers

MemCopy

Type Subroutine

Invocation MemCopy(destination, source, count)

Parameter Method Type Description

destination ByVal integral The address to which to begin copying.
source ByVval integral The address from which to begin copying.
count ByVal integral The number of bytes to copy.
Discussion

This subroutine can be used to copy a block of data from one location in RAM to another location. An
overlapping copy (when the destination is in the midst of the data being copied) is handled correctly so
that the data to be copied is not overwritten.

All three parameters are converted internally to Unsi gnedl nt eger . Note that MenCopy() has the
same functionality as Bl ockMove() but has a different parameter order; one that you may be
accustomed to.

Caution

This subroutine should be used with care because it is possible to overwrite important data on the stack
or other areas of memory which may cause your program to malfunction.

Example

Dimba(l to 10) as Byte
Dimival as |nteger

ba(3) &HA8
ba(4) &H55
Cal | MentCopy(ival . Dat aAddress, ba(3).DataAddress, SizeO (ival))

After execution, i val will have the value &H5548. Note the use of the Si zeOf () function. This is a
better programming practice than using a specific value because it makes the code easier to maintain.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also BitCopy, MemCmp, MemSet

ZBasic System Library 187 ZBasic Microcontrollers

MemFind

Type Function returning Unsignedinteger

Invocation MemFind(dataAddr, dataLen, val)
MemFind(dataAddr, datalLen, val, ignoreCase)

Parameter Method Type Description

dataAddr ByVal integral The address in RAM of the block to search.

dataLen ByVal integral The length of the block to search.

val ByVval Byte The byte value for which to search.

ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.
Discussion

This function attempts to find the first occurrence of the byte specified by the val parameter in a block of
RAM beginning at the specified address. If it is found, the return value gives the 1-based index where the
sought byte was found within the block. If the sought byte is not found, zero is returned. If the optional

i gnor eCase parameter is not given, the search is performed observing alphabetic case differences,

otherwise alphabetic case differences are significant or not depending on the value specified for
i gnor eCase. For the purposes of this parameter only the characters A-Z and a-z (&H41 to &H5a and
&H61 to &H7a) are considered to be alphabetic.

Example

Dimbuf(1l to 40) as Byte
Dimidx as Unsi gnedl nt eger

search for a carriage return
i dx = MenFi nd(buf. Dat aAddr ess, Ubound(buf), &HOd)

Compatibility

This function is not available in Basic X compatibility mode.

See Also ProgMemFind, StrFind

ZBasic System Library 188 ZBasic Microcontrollers

MemSet

Type Subroutine

Invocation MemSet(addr, count, val)

Parameter Method Type Description

addr ByVal integral The address of a block to initialize.
count Byval int8/16 The number of bytes to initialize.
val ByVval Byte The initialization value.
Discussion

This routine is useful for initializing arrays, buffers, etc. that reside in RAM.

Example

Dimba(l to 20) as Byte

Cal | MenSet (MemAddress(ba), Sizeof(ba), &H55)
Cal | MenSet (ba. Dat aAddress, Sizeof(ba), 0)

Caution

Using this routine to initialize data other than your own program variables may have detrimental effects.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also MemCmp, MemCopy

ZBasic System Library 189

ZBasic Microcontrollers

Mid

Type Function returning String

Invocation Mid(str, pos, length) or
Mid(str, pos)

Parameter Method Type Description

str ByVval* String The string from which to extract or modify a substring.
pos ByVal int8/16 The position of the first character of the substring.
length ByVal int8/16 The length of the substring to extract or modify.

* When used on the left hand side of an assignment, this parameter is passed ByRef.

Discussion

This function can be used to extract a portion of a string or to modify a portion of a string, depending on
how it is used. When it appears in the context of a function call, it returns a new string extracted from the
string provided. The first character of the extracted substring will be the character at the position given by
pos (where the first character of the string is position 1). The length of the returned string will be the
number of characters in the source string beginning at the starting index through the end of the string or
the specified length (if present), whichever is less. If the starting position is beyond the end of the string
or if the specified length is less than or equal to zero, the returned string will be of zero length.

When used on the left hand side of an assignment operator, the M d() function replaces a sequence of
characters in a string with characters from the string value on the right hand side of the assignment
operator.

Dims as String
s = "abcdef"
Md(str, 3) = "##" " result is "ab##ef"

Note that when used in this way the first parameter is passed by reference so it cannot be a literal string
or any other entity than cannot be passed by reference. Also, the length of the target string will never be
changed. The number of characters overwritten in the destination string will be the lesser of a) the
number of characters in the string on the right hand side of the assignment, b) the number of characters
specified in the third parameter (if present), and c) the number of characters in the target string beginning
at the position specified by the second parameter through the end of the string.

Compatibility

In BasicX, the first parameter is pass-by-reference. This disallows any use of a string literal for the first
parameter. Also, in BasicX the third parameter must always be provided.

The Basic X documentation suggests that using M d() on the left hand side of an assignment might result

in a change in the string length. Tests indicate that this is not the case. Moreover, execution of the code
fragment below actually results in a garbage character being placed in the third character position.

Dims as String
s = "abc"
Md(s, 2, 2) ="I" "'result is "al@ (@is an indeternmi nate character)

See Also Left, Right, Trim

ZBasic System Library 190 ZBasic Microcontrollers

MidWord

Type Function returning Unsignedinteger

Invocation MidWord (val)

Parameter Method Type Description

val ByVval numeric The value of which the middle word is desired.
Discussion

This function returns the middle two bytes of a 4-byte value. If the specified value is a Byte the return
value will be zero. If the specified value is contained in two bytes, the return value will have zero in the
high byte.

Compatibility

This function is not available in Basic X compatibility mode.

See Also HiByte, HiwWord, LoByte, LoWord

ZBasic System Library 191 ZBasic Microcontrollers

Min

Type Function (see discussion for the return type)

Invocation Min(vall, val2)

Parameter Method Type Description

vall Byval numeric One of two values of which the smallest is desired.
val2 Byval numeric One of two values of which the smallest is desired.
Discussion

This function returns the smaller of the two supplied values, both of which must be of the same type. If
the supplied values are signed, the determination of which is smallest takes the sign of the values into
account. The return value is the same type as the parameters.

Compatibility

This function is not available in Basic X compatibility mode.

See Also Max

ZBasic System Library 192 ZBasic Microcontrollers

NoOp

Type Subroutine
Invocation NoOp()
Discussion

This subroutine implements a delay of one CPU cycle, typically about 68nS.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

ZBasic System Library 193 ZBasic Microcontrollers

OpenCom

Type Subroutine

Invocation OpenCom(channel, baud, inQueue, outQueue)

Parameter Method Type Description

channel ByVal Byte The serial channel to open.

baud ByVal Long The desired baud rate.

inQueue ByRef array of Byte The queue for incoming characters.
outQueue ByRef array of Byte The queue for outgoing characters.
Discussion

This subroutine prepares a serial channel for use. If the specified channel number is invalid, the call has
no effect. Serial channels are either implemented in hardware (using an onboard UART) or in software.
Depending on the device one, two or four hardware-based serial channels are supported, denoted by the
channel numbers 1, 2, 7, 8, etc. (Com1, Com2, Com7, Com8, etc., respectively). All ZBasic devices can
support as many as four software-based serial channels, denoted by the channel numbers 3-6 (Com3,
Com4, Com5 and Com®6). Note, however, that you must have previously called ConChannel s() in

order to use channels 4-6.

The supported baud rates for the hardware-based channels are the standard rates from 300 to 460,800.
Tthe supported baud rates for software-based channels are listed in the table below. However, if
ContChannel s() has been invoked, the maximum rate for channels 3-6 will be limited to that specified in
the description of ContChannel s() . Moreover, for channels 3-6 the baud rate for any given channel
must be an integral divisor of the maximum rate. Also, for ZX devices running at 7.37MHz, the maximum
software-based channel baud rate is 9600. For generic target devices, the set of desired software-based
channel baud rates must be explicitly specified as part of the device configuration and will be a subset of
the rates in the table below; the baud rates that are attainable with a specified accuracy are dependent on
the operating frequency.

Supported Baud Rates for Channels 3-6
300 600 1200 2400 4800 9600 19200

The transmit and receive queues specified for the channel each must have been previously initialized by
calling OpenQueue() . Ifyou set up a transmit-only or receive-only serial channel you may use the value
0 for the unused queue. If you provide the value O for both queues, the channel will not be opened.

After opening the channel, flow control may be configured for either the transmit side, the receive side or
both. See the description of the ControlCom() subroutine for more information.

Example

Di m out Queue(1 to 40) as Byte

Cal |l OpenQueue(out Queue, SizeO (outQueue))

Cal | ContChannel s(2, 9600)

Cal | DefineCom(4, 0, 12, &H08)

Call OpenCon(4, 9600, 0, outQueue)

The code above prepares Com4 as a transmit-only serial channel. If you wanted reception as well, you
would have to declare and initialize a second queue and define the receive pin.

ZBasic System Library 194 ZBasic Microcontrollers

Resource Usage

See the resource usage sub-section UARTSs for information on which UART is assigned to each available
serial channel, the transmit and receive pins, and the ISRs utilized for native mode devices.

The software-based serial channels are implemented using the Serial Timer. See the resource usage
sub-section Timers for information on which timer is used for a particular target device

Compatibility

In Basic X, the supported channel numbers are 1 to 3, depending on the particular target chip. Also,

Basic X doesn’t support the use of zero to indicate that no queue is being supplied.

See Also ComcChannels, CloseCom, ControlCom, DefineCom, StatusCom

ZBasic System Library 195 ZBasic Microcontrollers

OpenDAC

Type Subroutine

Invocation OpenDAC(channel, mode)
OpenDAC(channel, mode, stat)

Parameter Method Type Description

channel ByVal Byte The channel to use for DAC generation.

mode ByVal integral The desired DAC mode (see discussion below).
stat ByRef Boolean The variable to receive the status code.
Discussion

This subroutine prepares a DAC channel for generating an analog voltage level. The pins on which an
analog level may be generated depends on the target device. See the Resource Usage sub-section
Digital-to-Analog Converters for details on the available analog output pins.

DAC Mode Constituent Values

Function Hex Value Bit Mask

Dual Output &H8000 IX XX XX XX XX XX XX XX
Single Output &H0000 0X XX XX XX XX XX XX XX
Automatic Refresh &HA000 X1 XX XX XX XX XX XX XX
Manual Refresh &HO0000 X0 XX XX XX XX XX XX XX
Internal 1-volt Reference &HO000 XX XX XX XX XX XX Xxx 00
AVcc Reference &H0001 XX XX XX XX XX XX XX 01
PortA Aref Reference &H0002 XX XX XX XX XX XX XX 10
PortB Aref Reference &HO0003 XX XX XX XX XX XX XX 11

It is important to note that the node parameter value is only used for the first OpenDAC() call for each
channel pair. That is to say, if one channel of a pair is already open when OpenDAC() is called, the node
parameter is ignored.

The shaded portion of the table above applies only to non-USB xmega devices. For these devices, to
used dual output mode, the DAC values must be updated at least every 30uS. This will be done
automatically if the Automatic Refresh bit is set in the node parameter. Otherwise, your application will
need to ensure that the DAC values are updated frequently enough to prevent drooping of the DAC
output.

The analog value output by the DAC will be approximately equal to the 12-bit digital value set for each
channel (see the DAC() subroutine) divided by 4095 and multiplied by the reference voltage. The choice
of four reference voltages available is made by the least significant two bits of the node parameter value.
For the PortA and PortB Aref Reference, the table below indicates the pin to which the desired reference
voltage should be applied.

DAC Reference Voltage Pins

ZBasic Target Aref A Aref B
ZX-24x, ZX-24u 20, A.0 7,B.0
ZX-32a4 40, A.0 4.B.0
ZX-128al 95, A.0 5,B.0
ZX-24xu 36, A.0 28, B.0
xmegaAl, xmegaAlU 95, A.0 5, B.0
xmegaA3, xmegaA3U, xmegaA3B, xmegaA3BU, 62, A.0 6. B.0
xmegaD3

xmegaA4, xmegaA4U 40, A.0 4.B.0
xmegaD4 40, A.0 -

ZBasic System Library 196 ZBasic Microcontrollers

The st at us parameter, if supplied, receives a value to indicate success or failure of the call.
Example

Cal |l OpenDAC(1, &HO1l) ' prepare for DAC output using AVcc reference

Cal | DAC(1, 300) ' set the DAC |l evel to 300/4095*AVcc

Compatibility

This subroutine is only available for xmega target devices and is not available in Basic X compatibility

mode.

See Also CloseDAC, DAC

ZBasic System Library 197 ZBasic Microcontrollers

Openl2C

Type Subroutine

Invocation Openl2C(channel, sdaPin, sclPin) or
Openl2C(channel, sdaPin, sclPin, bitRate)

Parameter Method Type Description

channel Byval Byte The 12C channel to open (0-4).

sdaPin ByVval Byte The pin for the I12C data (SDA) signal.

sclPin ByVval Byte The pin for the 12C clock (SCL) signal.

bitRate ByVal integral The optional clock speed designation, see discussion.
Discussion

This subroutine prepares an 12C channel for use. Five channels are supported, numbered 0 through 4.
Channel zero uses the onboard hardware 12C controller (if available) while channels 1 through 4 are
generally implemented in software. However, on devices with multiple 12C controllers (e.g. xmega-based
devices) channels 1 to 4 can be used for the additional hardware 12C controllers by specifying the SCL
and SDA pins as zero. The 12C implementation does not support multi-master arbitration when operating
in Master mode. Slave clock stretching is supported on both hardware and software channels.

For channel 0, the sdaPi n and scl Pi n parameters are ignored since the hardware uses specific pins for

the SDA and SCL signals (e.g. Port C, hits 1 and 0, respectively). For channels 1-4 in software mode, the
sdaPi n and scl Pi n parameters specify the pins to use for the data and clock signals, respectively. In

both cases, the clock and data pins are automatically configured for 12C operation. The 12C protocol
requires pullup resistors on both of the lines, the value of which depends on characteristics of your
system. A typical value is in the range of 1.5K to 4.7K.

The optional bi t Rat e parameter allows you to control the speed of the data interchange. If the
parameter is not given, the default speed is 100KHz. Each I2C device has a maximum clock rate at
which it will operate reliably; check the datasheet of your selected device to determine the maximum rate.

The interpretation of the value of the bi t Rat e parameter differs for channel 0 and channels 1-4. The
tables below specify the values to use for several common clock speeds.

I2C Hardware Channel Clock Speeds

bitRate Approximate
Value Clock Speed Notes
140 50KHz
66 100K Hz Standard Low Speed, default speed
29 200K Hz
11 388K Hz Closest to Standard High Speed (400K Hz)
10 410K Hz Highest supported speed

I12C Software Channel Clock Speeds1

bitRate Approximate
Value Clock Speed Notes
295 50KHz
148 100K Hz Standard Low Speed, default speed
74 200K Hz
59 250K Hz Highest supported speed

~ The values given assume the default setting of Regi st er . Ti mer Speed]1.

For hardware channels, the bi t Rat e parameter controls the hardware bit rate. For ATmega-based
devices, the parameter is a composite of two values: the value in the lower 8 bits is known as BR and is

ZBasic System Library 198 ZBasic Microcontrollers

written to the TWBR register of the 12C controller. The low two bits of the high byte select a clock divisor
according to the table below. The clock speed of the hardware channel is given by the formula F_CPU /
(16 + 2 * BR * Divisor) where F_CPU is the device’'s operating frequency. Ifthe bi t Rat e parameter is
omitted or is zero the value of 66 is used by default.

Channel 0 Prescaler Selector Value

Value Divisor
0 1
1 4
2 16
3 64

For ATxmega-based devices, the 12C bit rate is given by the formulaF_CPU / 2 / (5 + rateVal)
where r at eVal is the low 8 hits of the bi t Rat e parameter. Rearranging this formula gives an equation
for the bi t Rat e parameter: bitRate = (F_CPU/ 2 / F_12C - 5 whereF_I| 2Cis the desired
I2C clock frequency.

For software channels the bi t Rat e parameter is interpreted as the number of I/O Timer ticks per bit.
For 12C operations, the I/O Timer uses the prescaler specified by Regi st er. Ti mer Speed1. With the
default prescaler of 1, each I/O Timer tick represents approximately 68nS with a main clock frequency of
14.7MHz. If the bi t Rat e parameter is omitted or is zero the value of 74 is used by default. Due to
processing overhead, the minimum attainable bit time is approximately 60 CPU cycles (44 S at 14.7MHz).

See the Resource Usage subsection "I2C Controllers" for information on the available 12C hardware
channels and the corresponding clock and data pins.

Examples

Call Openl2C(0, 0, 0) ' open the hardware channel at 100KHz
Call Openl2C(2, 19, 20) ' open channel 2 using pins 19, 20
Call Openl2C(1l, C. 3, Al, 74) ' open channel 1 at 200KHz

Resource Usage
The 12C routines utilize the I/O Timer to regulate the bit timing for the software channels. While sending

or receiving 12C data, the corresponding timer busy flag will be True indicating that the I/O Timer is in use.

Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also Closel2C, 12CGetByte, 12CP utByte, I2CStart, 12CStop, 12CCmd, Openl2CSlave

ZBasic System Library 199 ZBasic Microcontrollers

Openl2CSlave

Type Subroutine

Invocation Openl2CSlave(slaveAddr)
Openl2CSlave(slaveAddr, channel)

Parameter Method Type Description

slaveAddr ByVal Byte The 12C slave address to which to respond.
channel ByVval Byte The 12C channel to open (0-4).

Discussion

This subroutine immediately activates the 12C controller in slave mode. If the optional channel

parameter is not given, channel 0 is assumed. Note that use of channels 1-4 are supported only on
devices that have multiple 12C controllers (e.g. ATxmega devices). See the description of Openl 2C for

more details about the correspondence between channel numbers and hardware controllers.

If you activate slave mode, you must also provide an interrupt handler for the TW vector (aka the | 2C

vector). While slave mode is active, calls to CmdI2C() and the low level I2C commands are ineffective for
the 12C channel in use. Slave mode can be canceled by calling Cl osel 2C() , specifying the channel

number specified or implied in the call to Openl 2Csl ave().

While slave mode is active, the device will respond to reads and writes on the 12C bus referring to its
slave address which is the value of the s| aveAddr parameter with the least significant bit set to zero. If
the least significant bit of the sl aveAddr parameter is set, the slave can respond also to “general call”
traffic on the bus.

See the Resource Usage subsection I2C Controllers for information on the available 12C hardware

channels and the corresponding clock and data pins.

Example

Call Openl 2CSl ave(&H50) ' activate 12C slave node with address &H50

Resource Usage

The 12C hardware channel in use cannot be opened by Openl2C() while slave mode is active. On the
ZX-24n, ZX-24s, and ZX-24t, 12C slave mode cannot be used while Com2 is open since pin 11 is shared
by the SDA signal and TxD for Com?2.

Compatibility

This subroutine is only available for native mode devices.

See Also Closel2C, Openl2C

ZBasic System Library 200 ZBasic Microcontrollers

OpenPWM

Type Subroutine

Invocation OpenPWM(channel, frequency, mode)
OpenPWM(channel, frequency, mode, stat)

Parameter Method Type Description

channel ByVal Byte The channel to use for PWM generation.
frequency ByVal Single The desired PWM frequency.

mode ByVal Byte The desired PWM mode (see discussion below).
stat ByRef Boolean The variable to receive the status code.
Discussion

This subroutine prepares a PWM channel for generating a pulse width modulated (PWM) signal. PWM
generation is performed using one of the CPU's 16-hit timers, the number of which varies depending on
the ZBasic device. See the Resource Usage sub-section 16-Bit PWM Timers for details of the available
channels and the corresponding timer and output pin used. See the description of PWM() for additional
details on the PWM channels.

The f r equency parameter specifies the PWM base frequency in Hertz. Since the same frequency and
generation mode will be used for all PWM channels based on the same timer, it is only necessary to call
OpenPWM) once to prepare the timer for all of the PWM channels that are based on a given timer.

The node parameter specifies the PWM generation mode. Two modes are supported: Fast PWM mode
and Phase/Frequency Correct mode. The constants zxFast PMWMand zxCor r ect PWM having the values
0 and 1 respectiwvely, may be used to specify the mode. The Fast PWM mode has a maximum frequency
of one-half of the CP U clock frequency and is intended for fixed-frequency applications. The
Phase/Frequency Correct PWM mode has a maximum frequency of one-quarter of the CP U clock
frequency and may be used when the PWM frequency will be changed in the midst of PWM signal
generation. Frequency changes are effected by making additional calls to OQpenPWM) and the change is
synchronized so that it takes effect at the beginning of a cycle.

The st at us parameter, if supplied, receives a value to indicate success or failure of the call.

A side effect of calling OpenPWW) is that the timer busy flag for the underlying timer (e.g.

Regi st er. Ti mer 1Busy) will be set to Tr ue irrespective of its prior state. It is recommended that the
initial call to OpenPWM) be preceded by a call to acquire the semaphore for the timer. This will ensure
that an existing timer operation will not be disturbed.

It is important to note that the call to OpenPWM() doesn't affect the configuration the PWM output pin.
When a call is eventually made to PWM(), the PWM pin will be made an output and be actively driven. If

your application needs to have the PWM pin in a particular state prior to PWM beginning you must
configure the pin in your code.

Example

Call OpenPWM 1, 50.0, zxFastPWW) 'prepare for 50Hz Fast PWM using channel 1

Compatibility
This subroutine is not available in Basic X com patibility mode.

See Also ClosePWM, PWM

ZBasic System Library 201 ZBasic Microcontrollers

OpenPWMS8

Type Subroutine

Invocation OpenPWMB8(channel, frequency, mode)
OpenPWM8(channel, frequency, mode, stat)

Parameter Method Type Description

channel ByVal Byte The channel to use for PWM generation.
frequency ByVal Single The desired PWM frequency.

mode ByVal Byte The desired PWM mode (see discussion below).
stat ByRef Boolean The variable to receive the status code.
Discussion

This subroutine prepares a PWM channel for generating a pulse width modulated (PWM) signal using
one of the CPU’s 8-bit timers. The table below indicates the available channels and the corresponding
timer used. See the Resource Usage sub-section 8-Bit PWM Timers for details of the available channels
and the corresponding timer and output pin used. See the description of PWM8() for additional details on
the PWM channels. Note that ZBasic devices based on ATxmega processors don't have any 8-bit timers
so 8-hit PWM is not supported on those devices.

It is important to note that the timer used for 8-bit PWM generation is the same one used for generating
the timing for the software UARTs (Com3-Com6). Consequently, these two features cannot be used at

the same time.

The f r equency parameter specifies the desired PWM base frequency in Hertz. Since the same

frequency and generation mode will be used for all PWM channels based on the same timer, it is only
necessary to call OpenPWMB() once to prepare the timer for all of the PWM channels that are based on a

that timer.

The node parameter specifies the PWM generation mode. Two modes are supported: Fast PWM mode
and Phase/Frequency Correct mode. The constants zxFast PMWMand zxCor r ect PWM having the values
0 and 1 respectively, may be used to specify the mode

The st at us parameter, if supplied, receives a value to indicate success or failure of the call.

A side effect of calling OpenPWWB() is that the timer busy flag for the underlying timer (e.qg.

Regi st er. Ti mer 2Busy) will be set to Tr ue irrespective of its prior state. It is recommended that the
initial call to OpenPWM) be preceded by a call to acquire the semaphore for the timer. This will ensure
that an existing timer operation will not be disturbed.

It is important to note that the call to OpenPWMS8() doesn't affect the configuration the PWM output pin.
When a call is eventually made to PWM8(), the PWM pin will be made an output and be actively driven. If
your application needs to have the PWM pin in a particular state prior to PWM beginning you must
configure the pin in your code.

The actual PWM frequency used will be the closest of the available frequencies as shown in the table
below for ZBasic devices operating at 14.7MHz. For ZBasic devices operating at a different frequency,
the available PWM frequencies will be proportionally higher or lower and can be computed by the
formulae given in the table headings

ZBasic System Library

202 ZBasic Microcontrollers

Available 8-bit PWM Frequencies at 14.7MHz

Fast PWM Phase Correct PWM
Prescaler Frequency Frequency
Divisor F _CPU/ Div / 256 F _CPU/ Div /510
1 57,600.0 28,912.9
2 28,800.0 14,156.8
4 1.440 7,228.2
8 7,200.0 3,614.1
16 3.600.0 1,807.1
32 1,800.0 903.5
64 900.0 451.8
128 450.0 225.9
256 225.0 112.9
1024 56.3 28.2

In the table above, the frequencies in the shaded rows are not available on some ZBasic devices due to
the set of available prescaler divisors on the 8-bit PWM timer. The table below gives the set of prescaler
divisors for each target device.

Available Prescaler Divisors for the 8-bit PWM Timer
Target Devices Prescaler Divisors

tiny48, tiny88, tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441, 1, 8, 64, 256, 1024
tiny841

tiny87, tiny167, tiny1634 , 64, 128, 256, 1024

1, 8, 32,
tiny2313, tiny2313A, tiny4313, tiny828 1, 8, 64, 256, 1024
mega48, mega48A, megad48P, mega48PA, mega48PB, mega88, 1, 8, 32, 64, 128, 256, 1024
mega88A, mega88P, mega88PA, mega88PB, megal68, megal68A,
megal68P, megal68PA, megal68PB, mega328, mega328P,
mega328PB

megal6, megal6A, mega32, mega32A , megab644, megab44A, 1, 8, 32, 64, 128, 256, 1024
megal64A, megal64P, megal64PA, mega324P, mega324PA,
mega644P, mega644PA, megal284P

mega8515, mega64, mega64A, megal28, megal28A, AT90OCAN32, 1, 8, 64, 256, 1024
AT90CANG64, AT90CAN128

megal281, mega2561, mega640, megal280, mega2560 1, 8, 64, 256, 1024
mega8U2, megal6U2, mega32U2, AT9OUSB82, AT90USB162, 1, 8, 64, 256, 1024
ATI0USB646, AT90USB647, ATO0USB 1286, ATO0USB1287

megal6U4, mega32U4 , 8, 16, 32, 64, 128, 256, 1024

64, 128, 256, 1024

1, 2, 4,
mega8535, megal6l, megal62, megal63, mega323 1, 8, 32
megal65, megal65A, megal65P, megal65PA, mega325, mega325P, 1, 8, 32
mega645, mega645A, mega645P, megal69, megal69A, megal6oP,
megal69PA, mega329, mega329P, mega329PA, mega649,
mega649A, mega649P

, 64, 128, 256, 1024

mega3250, mega3250P, mega6450, mega6450A, mega6450P, 1, 8, 32, 64, 128, 256, 1024
mega3290, mega3290P, mega6490, mega6490A, mega6490P
all xmega n/a

Example

Call OpenPWWB(1, 50.0, zxFastPWM 'prepare for 50Hz Fast PWM usi ng channel 1
Compatibility

This subroutine is not available in Basic X com patibility mode nor is it available on ATxmega-based
ZBasic devices.

ZBasic System Library 203 ZBasic Microcontrollers

See Also ClosePWM8, PWM8

ZBasic System Library 204 ZBasic Microcontrollers

OpenQueue

Type Subroutine
Invocation OpenQueue(queue, size)

OpenQueue(queue)
Parameter Method Type Description
queue ByRef array of Byte The queue to be initialized.
size ByVal int16 The size of the array, in bytes.
Discussion

This routine prepares a queue for use by initializing the management information contained in the queue
data structure. The number of bytes of space available for data in a queue is the specified size less the
gueue management overhead (9 bytes). It may be convenient to use the built-in constant

Syst em M nQueueSi ze in the definition of an array intended to hold a queue.

If the compiler can deduce the size of the array element, e.g. an explicitly dimensioned Byte array is
specified, the second parameter may be omitted. In this case, the compiler utilizes the size of the array
as the size parameter. Otherwise, the compiler will issue an error message indicating that the size must
be explicitly specified.

Caution

If you specify a size parameter that is larger than the actual size of the array, data following the array may
be overwritten, usually with undesirable consequences. For this reason, it is recommended that you use
the Si zeOF () function to specify the queue size so that it will automatically track any changes that you
make to the actual queue size. See the example below.

OpenQueue() should only be called for a queue that is not in use. Invoking it for a queue that is in use
has undefined results.

Example
DiminQueue(l to System M nQueueSi ze + 20) as Byte

Call OpenQueue(inQueue, SizeO (inQueue))

After the call to OpenQueue() the queue will ready to be used.

Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byt e. The second parameter must always be supplied in Basic X mode.

ZBasic System Library 205 ZBasic Microcontrollers

OpenSPI

Type Subroutine

Invocation OpenSPI(channel, flags, csPin)
OpenSPI(channel, flags, csPin, rxDelay)

Parameter Method Type Description

channel Byval Byte The SPI channel to open (1-4).

flags ByVal integral Flags controlling the SPI communication.
csPin ByVval Byte The pin for the chip select signal to the device.
rxDelay ByVal Byte The delay time prior to each received byte.
Discussion

This subroutine prepares an SPI channel for use as a master. By default, the hardware SP1 controller is
used to implement the SPI protocol but on some devices, a bit-bang implementation can be enabled (see
DefineSPlI).

Four channels are supported, numbered 1 through 4. It does not matter if the particular channel has
been previously opened. The f | ags parameter specifies the characteristics of the SPI communication
as shown in the table below. They must be set to be compatible with the device with which you want to
communicate. See the table below for details. The csPi n parameter specifies the pin number that you
wish to control the device’s chip select input. The pin will be made an output and set to the inactive state
(as specified by bit 6 of the f | ags parameter). Any general purpose I/O pin of the device may be used
as the slave select pin. Note, however, that if the pin dedicated SS pin is not used to select remote
slaves, it must be configured as an output or remain at the logic high state for the duration of an SPI
operation. Also, for ZX devices that use an external SPI EEPROM for program storage (e.g. ZX-24, ZX-
24a), the SS pin is used to select the SPI EEPROM and therefore cannot be used for any other purpose.

The table below describes the function of the bits of the flags parameter. The shaded entries do not
apply to the software SPI implementation.

SPI Channel Control Bits

Function Hex Value Binary Value
Bit Rate /4 &HO0 XX XX xx 00
Bit Rate /16 &HO1 XX XX Xx 01
Bit Rate /64 &HO2 XX XX xx 10
Bit Rate /128 &HO3 XX Xx xx 11
Clock Phase False &HOO XX XX X0 xx
Clock Phase True &HO4 XX XX X1 XX
Clock Low at Idle &HOO XX XX 0X XX
Clock High at Idle &HO8 XX XX 1X XX
Use Hardware SPI &HOO XX X0 XX XX
Use Software SPI &H10 XX X1 XX XX
Bit Order — MSB first &HOO XX 0X XX XX
Bit Order — LSB first &H20 XX 1X XX XX
Active Low Chip Select &HOO0 X0 XX XX XX
Active High Chip Select &H40 X1 XX XX XX
Double Speed &H80 IX XX XX XX

The remaining bits are currently undefined but they may be employed in the future. Because of this
possibility, the undefined flag bits should be zero. Bits 3 and 2 taken together specify the SPI mode 0-3,
e.g. xx xx 00 xx specifies mode 0. When using the hardware SPI controller, if the Double Speed bit is set,
the SPI channel will run at twice the frequency specified by the two low order flag bits. The value of f for

ZBasic System Library 206 ZBasic Microcontrollers

the bit rate selector is the CPU frequency (F_CPU, typically 14.7456MHz for ZX devices). For the
software SP | implementation, the number of cycles per bit is a minimum of about 50 so the
implementation runs at full speed with either the f/4 or f/16 speed settings.

For devices that have multiple SPI controllers (e.g. xmega-based devices), the most significant byte of the
f 1 ags parameter specifies the index of the SPI controller to use (0=PortD, 1=PortC, 2=PortE, 3=PortF).
See the Resource Usage sub-section SPI Controllers for information about the available hardware SPI
controllers for the various ZBasic devices and the control and data pins for each.

The r xDel ay parameter, which defaults to zero if not present, specifies the amount of time to delay
before beginning the SPI cycle for each byte received, if any, during the second half of the SPI Cnd()

process. See the description of SPI Cnd() for more details.
Caution
For ZX devices that use an external SPI EEPROM for user program storage, you must avoid doing

anything that will interfere with the SPI commands to that device. SPI communication by direct

manipulation of the processor SPI control registers is not supported and may cause your program to
malfunction.

Compatibility
Basic X does not support the double speed option, the active high chip select, the optional rxDelay

parameter, or the bit-bang mode. The same is true for ZX devices based on the ATmega32 processor.

See Also CloseSPI, DefineSPI, OpenSPISlave, SPICmd, SPIGetByte, SPIPutByte,
SPIGetData, SPIPutData, SPIStart, SPIStop

ZBasic System Library 207 ZBasic Microcontrollers

OpenSPISlave

Type Subroutine

Invocation OpenSPISlave(flags)

Parameter Method Type Description

flags ByVal integral Flags controlling the SPI communication.
Discussion

This subroutine, available only for native mode devices, immediately activates the hardware SPI
controller in slave mode. The f | ags parameter specifies the characteristics of the SPI communication.
They must be set to be compatible with the SPI master with which you want to communicate. See the
table below for details.

SPI Slave Mode Configuration Bits

Function Hex Value Bit Mask

Clock Phase False &HOO XX XX X0 Xxx
Clock Phase True &HO4 XX XX X1 XX
Clock Low at Idle &HOO XX XX 0X XX
Clock High at Idle &HO8 XX XX 1X XX
Bit Order — MSB first &HOO XX 0X XX XX
Bit Order — LSB first &H20 XX 1X XX XX

For devices that have multiple SPI controllers (e.g. xmega-based devices), the most significant byte of the
f | ags parameter specifies the index of the SPI controller to use (0=PortD, 1=PortC, 2=PortE, 3=PortF).
See the tables below for information about which pins of each port are used for the SPI control/data pins.

The chip select pin for an SPI slave is a dedicated pin. See the Resource Usage sub-section SPI
Controllers for information about the available hardware SP1 controllers for the various ZBasic devices
and the chip select, control and data pins for each. If you activate slave mode, you must also provide an
interrupt handler for the corresponding interrupt vector. While slave mode is active, SPI Cnd() calls are
ineffective for that channel. Slave mode can be canceled by calling Cl oseSPI () .

See OpenSPI() for information about which pins are used for the data and control signals for each SPI
controller.

Note that the SPI master sets the SPI clock speed. The highest SPI clock speed that can be used
reliably is one quarter of the CPU clock speed of a ZX slave device. Depending on how much
computation the slave must perform to prepare data for sending back to the master, a substantially slower

SPI clock may need to be used. If a ZBasic device is being used as the master, it may be useful to set
the r xDel ay parameter on calls to OpenSPI () on the master to allow additional processing time.

Compatibility

This subroutine is only supported for native mode devices.

See Also CloseSPI, OpenSPI

ZBasic System Library 208 ZBasic Microcontrollers

OpenWatchDog

Type Subroutine

Invocation OpenWatchDog(timeout)

Parameter Method Type Description

timeout ByVal Byte Specifies a timeout value (see discussion).
Discussion

This subroutine prepares the watchdog timer for use. Once it is opened, the Wat chDog() routine must
be called from time to time. If the period between WAt chDog() calls exceeds the timeout value, the
system will be reset.

The approximate timeout value is T times 2 to the power N where T is the Timeout Base value and N is
the value of the t i meout parameter limited to the range shown in the table below. Note that the timeout
value varies with processor voltage, being slightly longer at a lower operating voltage. Consult the Atmel
documentation for more specific information.

WatchDog Timeout Parameter Range For ZX Devices

Timeout Value Max.

ZX Devices Base Range Time
ZX-24, ZX-40, ZX-44 16mS 0-7 2 sec
ZX-24a, ZX-40a, ZX-44a, ZX-24p, ZX-40p, ZX-44p, 16mS 0-9 8 sec

ZX-24n, ZX-40n, ZX-44n, ZX-24r, ZX-40r, ZX-44r,
ZX-24s, ZX-24t, ZX-40s, ZX-44s, ZX-40t, ZX-44t

ZX-24x, ZX-24u, ZX-32a4, ZX-128al, ZX-24xu 8msS 0-10 8 sec
ZX-328n, ZX-328l, ZX-32n, ZX-32l, ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 16mS 0-9 8 sec
ZX-24e, ZX-128e, ZX-128ne 16mS 0-7 2 sec
ZX-24ae, ZX-24ne, ZX-24pe, ZX-24nu, ZX-24pu, 16mS 0-9 8 sec

ZX-24ru, ZX-24su, ZX-1281e, ZX-1281ne, ZX-328nu

WatchDog Timeout Parameter Range For Generic Devices

Timeout Value Max.
Target Device Base Range Time

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441, tiny841, tiny48, tiny88, 16mS 0-9 8 sec
tiny87, tiny167, tiny2313, tiny2313A, tiny4313, tiny828, tiny1634

mega48, mega48A, megad8P, megad48PA, megad8PB, mega88, mega88A, 16mS 0-9 8 sec
mega88P, mega88PA, mega88PB, megal68, megal68A, megal6sP,
megal68PA, megal68PB, mega328, mega328P, mega328PB, megal64A,
megal64P, megal64PA, mega324P, mega324PA, mega644, mega644A,
mega644P, mega644PA, megal284P

mega8, mega8A, megal6, megalbA, mega32, mega32A, mega8515, 16mS 0-7 2 sec
mega8535, megal62
mega64, mega64A, megal28, megal28A 14mS 0-7 2 sec

ZBasic System Library 209 ZBasic Microcontrollers

megal6l, megal63, mega323, megal65, megal65A, megal65P, megal65PA 15mS 0-7 2 sec

mega325, mega325P, mega645, mega645A, megab645P, megal69, megal69A, 16mS 0-7 2 sec
megal69P, megal69PA, mega329, mega329P, mega329PA, mega649,

mega649A, mega649P, mega3250, mega3250P, mega6450, mega6450A,

mega6450P, mega3290, mega3290P, mega6490, mega6490A, mega6490P

megal281, mega2561, mega640, megal280, mega2560 16mS 0-9 8 sec
mega8U2, megal6U2, mega32U2, ATO0OUSB82, AT90USB162 32mS 0-9 16 sec
megal6U4, mega32U4, AT90CAN32, AT90CANG4, AT90OCAN128, 16mS 0-7 2 sec
ATO0USB646, ATO0USB647, ATOOUSB 1286, ATO0USB1287

all xmega 8mS 0-10 8 sec

When the processor is reset, the register value Regi st er . Reset Fl ags contains bit flags indicating the

source of the reset. It is important to note that the occurrence of a system fault (e.g. a stack overflow) will
also cause a WatchDog reset as will calling Reset Processor (). See the section on Run Time Stack
Checking in the ZBasic Reference Manual for more information on stack overflow detection.

The watchdog timer can be turned off using Cl oseWat chDog.

Compatibility

Basic X doesn’t support Regi st er. Reset Fl ags or Cl oseWat chDog.

See Also WatchDog, CloseWatchDog, ResetProcessor

ZBasic System Library 210 ZBasic Microcontrollers

OpenX10

Type Subroutine

Invocation OpenX10(channel, inQueue, outQueue)

Parameter Method Type Description

channel ByVal Byte The X-10 communication channel to open.
inQueue ByRef array of Byte The queue for incoming X-10 data.

outQueue ByRef array of Byte The queue for outgoing X-10 data.

Discussion

This subroutine prepares an X-10 communication channel for use. After the channel is opened you can
send arbitrary X-10 command bit streams, which you must create in low-level form, by simply adding the
constitutent bytes to the outgoing queue. Similarly, the incoming queue will receive raw X-10 data which
you must decode. Each X-10 command begins with the bit sequence 1110 which is followed by
additional bit pairs. The bit pair 01 represents a logic zero while the bit pair 10 represents a logic one.
The bit pair 11 is invalid and the bit pair 00 signifies the end of a command bit stream and also represents
the idle condition. Additional information on X-10 commands may be found in various places on the
Internet.

If the specified channel is already open or if the channel number is invalid, the call has no effect. The
supported channel numbers are 1-2. The channel must have been previously configured by a call to

Def i neX10() . Also, the queues specified for the receive and transmit channels each must have been
previously initialized by calling OpenQueue() . If you set up a transmit-only or receive-only serial channel
you may use the value 0 for the unused queue. If you provide the value 0 for both queues, the channel
will not be opened.

For three phase mode, additional queues may be specified for the transmit and receive operations on
phases 2 and 3 using SetQueueX10().

Example
Di m out Queue(1l to 40) as Byte

Call OpenQueue(out Queue, SizeOf (outQueue))
Cal | DefineX10(1, 0, 12, &HO08)
Call OpenX10(1l, 0, outQueue)

The code above prepares channel 1 for transmit-only operation. If you wanted reception as well, you
would have to declare and initialize a second queue and define the receive pin.

Resource Usage

X-10 communication requires the use of a zero-crossing signal input to the ZX as noted in the table
below. When one or more of the X-10 channels are open the zero-crossing input pin may not be used for
any other purpose. When all X-10 channels are closed, zero-crossing input pin will again be available for
other uses. Note, however, that the ability to await an external interrupt (e.g. INTO) on the zero-crossing
pin is unavailable when the low-level X-10 functionality is included in an application, even if the X-10
channel is closed.

For devices based on the ATtiny and ATmega chips, the default zero-crossing interrupt is INTO. If

desired, an alternate interrupt may be specified using the Option X10Interrupt directive described in the
ZBasic Language Reference Manual.

ZBasic System Library 211 ZBasic Microcontrollers

For native mode devices, the ISRs noted in the table below are automatically included. The notation

| NT# in that table indicates the default or specified zero-crossing interrupt input, e.g. INTO, INT1, etc.
The timing for the X-10 signaling is derived from the RTC timer using a second output compare register
(OCRnNB). Target devices that do not have a second compare register consequently do not support the
low-level X-10 functionality. Further, an application must include the RTC functionality (present by default
in ZX devices, not so in generic target devices) in order to support the low-level X-10 functionality.

Resources Required for Low-level X-10 Functionality

Zero-Crossing

Target Device Input ISRs Included
tiny87, tiny167 n/ a n/ a

tiny24, tiny24A, tiny44, tiny44A, tiny84, tiny84A, tiny441, I NT# Ti mer 0_ConpB, | NT#
tiny841, tiny48, tiny88, tiny2313, tiny2313A, tiny4313, tiny828,

tiny1634

mega8, mega8A, megal6, megalbA, mega32, mega32A, n/ a n/a

megab4, mega64A, megal28, megal28A, mega8515,
mega8535, megal6l, megal62, megal63, mega323,
megal65, megal65, megal65A, megal65P, megal65PA,
mega325, mega325P, mega645, megab645A, mega645P,
megal69, megal69A, megal69P, megal69PA, mega329,
mega329P, mega329PA, mega649, mega649A, mega649P,
mega3250, mega3250P, mega6450, mega6450A,
mega6450P, mega3290, mega3290P, mega6490,
mega6490A, mega6490P, ATOOCAN32, AT90CANG4,
AT90CAN128

mega48, megad48A, megad48P, megad8PA, mega48PB, I NT# Ti mer 0_ConpB, | NT#
mega88, mega88A, mega88P, mega88PA, mega88PB,

megal68, megal68A, megal68P, megal68PA, megal68PB,

mega328, mega328P, mega328PB

megal64A, megal64P, megal64PA, mega324P, I NT# Ti mer 0_ConpB, | NT#

mega324PA, mega644, megab44A, megab44P, megab44PA,

megal284P

mega640, megal280, mega2560, megal281, mega2561 I NT# Ti mer 2_ConpB, | NT#

mega8U2, megal6U2, mega32U2, AT90USB82, I NT# Ti mer 0_ConpB, | NT#

ATI0USB162

ATI0USB162, AT90USB 646, ATO0USB647, ATO0USB 1286, I NT# Ti mer 2_ConpB, | NT#

ATI0USB1287

all xmega A5 TCC1_CCB, ACA _ACO
Compatibility

If the RTC is not enabled in your application or if the target device does not have a second output
compare register on the RTC timer, this routine will not be available. Moreover, it is not available in
Basic X compatibility mode.

See Also CloseX10, DefineX10, SetQueueX10, Status X10

ZBasic System Library 212 ZBasic Microcontrollers

OutputCapture

Type Subroutine

Invocation OutputCapture(intevals, count, flags)

Parameter Method Type Description

intervals ByRef array of int16 The lengths of successive segments of the output waveform.
count Byval int16 The number of entries in the value array.

flags ByVal Byte Configuration bits controlling the generation process.
Discussion

This subroutine produces a series of precisely timed logic levels on the OutputCapture pin (see table
below) allowing you to produce an arbitrary waveform. Each entry in the i nt er val s array specifies a
time interval, in units of the I/O Timer period (i.e. 1/ F_CPU, about 67.8ns for devices running at
14.7MHz), for each segment of the waveform. When called, the OutputCapture pin will be made an
output and will be set to its initial state (the complement of the least significant bit of the f | ags
parameter).

When waveform generation is begun, the OutputCapture pin will be changed to the opposite state for the
interval specified by the first i nt er val s element, changed to the opposite state again for the interval
specified by the second i nt er val s element, etc. for as many elements as specified. The final state of
OutputCapture pin depends on whether the count parameter is odd or even. If it is odd the final state
will be the complement of the least significant bit of the f | ags parameter; if it is even the final state will
be the same as the least significant bit of the f | ags parameter.

The calling task will be suspended during the waveform generation process. If another task disables
interrupts the accuracy of the generated waveform may suffer.

Due to processing overhead, the smallest pulse width that can be accommodated is about 90 CPU cycles
(64 S at 14.7MHz). This corresponds to a value of about 88 in the data array at the default timer speed. If
the system has a heaw interrupt load (e.g. serial channels 3-6 are open) the minimum pulse width for
reliable operation may be significantly larger. The maximum pulse width using the default timer speed is
about 4.4mS at 14.7MHz. If you need to generate longer pulse widths, you may set the value of

Regi st er. Ti ner Speedl so that a slower clock rate is used.

To avoid unwanted logic transitions on the OutputCapture pin during preparation for waveform
generation, the OutputCapture pin should be configured as an input prior to the call. You'll probably need
to employ a pullup or pulldown resistor on the pin to guarantee the desired logic state prior to the
commencement of waveform generation.

Resource Usage

See the Resource Usage sub-section Output Capture Timers for information about the output pin and, for
native mode devices, the ISRs that will be included in the application.

Compatibility
For ZX devices running at 14.7MHz, since the CPU runs at twice the rate as the Basic X CPU, the units of

the pulse width are half as long. If you need to generate longer pulse widths, you may set the value of
Regi st er. Ti mer Speed1l so that a slower timer clock rate is used. Also, the BasicX documentation

indicates that if the I/O Timer is already in use, that use will be terminated and the waveform generation
will be performed.

See Also OutputCaptureEx

ZBasic System Library 213 ZBasic Microcontrollers

OutputCaptureEx

Type Subroutine

Invocation OutputCaptureEx(pin, intervals, count, flags)
OutputCaptureEx(pin, intervals, count, flags, repeatCount)

Parameter Method Type Description

pin ByVval Byte Specifies the waveform output pin.

intervals ByRef array of int16 The lengths of successive segments of the output waveform.
count ByVval any int The number of entries in the i nt er val s array (1-65535).
flags ByVal Byte Configuration bits controlling the generation process.
repeatCount ByVal any int The number of times to repeat the pattern (1-65535).
Discussion

This subroutine produces a series of precisely timed logic levels on the specified pin allowing you to
produce an arbitrary waveform. Each entry inthe i nt er val s array specifies a time interval, in units of
the /O Timer clock period using the TimerSpeed 1 prescaler setting (i.e. 1/ F_TS1, by default about
67.8ns for devices running at 14.7MHz), for each segment of the waveform. When called, the specified
pin will be made an output and will be set to its initial state (the complement of the least significant bit of
the f | ags parameter).

When waveform generation is begun, the specified pin will be changed to the opposite state for the
interval specified by the first i nt er val s element, changed to the opposite state again for the interval
specified by the second i nt er val s element, etc. for as many elements as specified. The final state of
the output pin depends on whether the count parameter is odd or even. If it is odd the final state will be
the complement of the least significant bit of the f | ags parameter; if it is even the final state will be the
same as the least significant bit of the f | ags parameter.

If the optional r epeat Count parameter is not given a repeat count of 1 is assumed. If the repeat count
is 1the i nt erval s array should generally have an odd number of values. This allows the output to end
in the same state as it started. If the repeat count is greater than one the i nt er val s array should
generally have an even number of values. This allows the output waveform to repeat at the same logic
lewvels. Also, when the waveform is repeated the last interval of the last cycle is omitted so that the output
ends up in the same state as it started.

The calling task will be suspended during the waveform generation process. If another task disables
interrupts, the accuracy of the generated waveform will suffer.

Due to processing overhead, the smallest pulse width that can be accommodated is equivalent to about
100 CPU cycles (6.81'S at 14.7MHz). This corresponds to a value of about 100 in the data array at the
default timer speed. If the system has a heavy interrupt load (e.g. serial channels 3-6 are open) the
minimum pulse width for reliable operation may be significantly larger. The maximum pulse width using
the default timer speed is about 4.4mS. If you need to generate longer pulse widths, you may set the
value of Regi st er. Ti ner Speedl so that a slower clock rate is used.

To avoid unwanted logic transitions on the output pin during preparation for waveform generation, the
output pin should either be configured as an input or as an output in the desired starting state prior to the
call. If you configure it as an input you'll probably need to employ a pullup or pulldown resistor on the pin
to guarantee the desired logic state prior to the commencement of waveform generation.

Although this subroutine can be invoked specifying a specific hardware OutputCapture pin (see the tables
in the Resource Usage sub-section Output Capture Timers) or a general I/O pin, the behavior when using
a general /O pin may be slightly different than when using the specific hardware OutputCapture pin. The
hardware OutputCapture pin uses features of the hardware to toggle the I/O pin while for general I/O pins

ZBasic System Library 214 ZBasic Microcontrollers

the pin is toggled in software by directly setting the corresponding PORTX bit. During periods of high
interrupt load the hardware toggling will be more accurate.

Some ZBasic target devices support ability to use the output capture waveform to modulate a carrier
waveform produced by the Serial Timer; such devices are listed in the table below and also in the
Resource Usage sub-section Output Capture Timers where a second output capture pin for Timerl is
shown.

Output Capture Modulation Carrier Timer and Output Pin
Serial Timer Output

Target Device Compare Output Pin

ZX-1281, ZX-1281n OCOA 17, B.7
ZX-1280, ZX-1280n OCOA 26, B.7
ZX-128e, ZX-128ne 0cC2 21, B.7
ZX-1281e, ZX-1281ne OCOA 21, B.7
mega640, megal280, mega2560 OCOA 26, B.7
mega64, mega64A, megal28, megal28A 0oC2 17, B.7
megal281, mega2561, AT90CAN32, AT90CANG64, ATO0OCAN128, OCOA 17, B.7

ATI90USB646, ATO0USB647, ATO0USB 1286, ATO0USB1287

To implement Output Capture modulation, the Serial Timer must be set up to generate the desired carrier
frequency and duty cycle prior to calling OutputCaptureEx. Note, however, that the actual output from the
serial timer should not be enabled — this will be done automatically when OutputCaptureEx is called.
Further, the TimerBusy flag for the Serial Timer must be set to indicate that it is active. Finally, when
calling OutputCaptureEx, the value &H02 should be added to the f | ags parameter to request output
capture modulation.

Resource Usage

See the Resource Usage sub-section Output Capture Timers for information about the timers, output pins
and (for native mode devices) the ISRs that will be included in the application. If the timer is already in
use the routine will return immediately without performing the waveform generation. Note that when
performing an output capture on a general I/O pin, any available 16-bit timer may be used to generate the
required timing.

Compatibility

This routine is not available in Basic X compatibility mode.

ZBasic System Library 215 ZBasic Microcontrollers

ParityCheck

Type Function returning Boolean

Invocation ParityCheck(data, oddParity)

Parameter Method Type Description

data ByVal Byte The data value for which to check the parity.

oddP arity ByVal Boolean The desired parity: True -> odd parity, False -> even parity
Discussion

This function computes the parity over the eight bits of the provided data value and compares that result
to the desired result indicated by the oddPar i ty parameter. The return value is a pass/fail indicator

where True means that the parity matched the desired parity.

The data value has even parity if the number of one bits in the value is even.

Example
Dimb as Byte
If Not ParityCheck(b, False) Then
Debug. Print "Even parity check failed"
End If
Compatibility

This routine is not available in Basic X compatibility mode.

ZBasic System Library 216 ZBasic Microcontrollers

Pause

Type Subroutine

Invocation Pause(time)

Parameter Method Type Description

time Byval Single or int16 The amount of time to pause, in seconds
(Single) or ticks (int16)

Discussion

This routine suspends execution of the current task for approximately the period of time specified. When
provided with an Int16 parameter, the units will be will be the period of the rate of change RTC timer

(1/ F_RTC_TI MER or 4.34) S for most ZX devices) if the RTC is included in the application. Ifthe RTC is
not included the units are 1uS intervals. The maximum pause duration is 65535 units

No other task is allowed to run during the pause period. Note that the accuracy of the pause may be
affected by the time required for the processor to service interrupts (RTC, serial channel, etc.). Also note
that the resolution of the pause is similar to the minimum execution time for user instructions. This means
that timing using Pause() calls of less than 20 to 50 units or so will be affected significantly by the
succeeding instructions.

This routine should be used instead of S| eep() or Del ay() when higher resolution timing is required or
you don’t want a task switch to occur. If you need longer pauses than can be produced by this routine,
you can implement them using Regi st er . RTCSt opWat ch.

Example
Do
Call PutPin(12, 0)
Cal | Pause(0.010) ' a 10 nillisecond del ay
Call PutPin(12, 1)
Cal | Pause(2304) ' a 10 mllisecond del ay

Loop
This loop produces a square wave signal on pin 12 at approximately 50Hz (with some jitter due to

handling interrupts).

Compatibility

This routine is not available in Basic X compatibility mode.

See Also Delay, DelayUntilClock Tick, Sleep, WaitForinterval

ZBasic System Library 217 ZBasic Microcontrollers

PeekQueue

Type Subroutine

Invocation PeekQueue(queue, var, count)

Parameter Method Type Description

queue ByRef array of Byte The queue from which to retrieve data.
var ByRef any type The variable to receive the retrieved data.
count ByVval int16 The number of bytes to retrieve.
Discussion

This routine will copy the specified number of bytes from the queue to the indicated variable but it does
not remove them from the queue. The routine will not return until it can copy the entire number of bytes
specified. Because of this, you should usually check the number of bytes available in the queue using
Get QueueCount () before calling PeekQueue() .

Note that if the calling task is locked and the queue contains insufficient data when this routine is called,
the task will be unlocked to allow other tasks to run.

Caution
If the requested number of bytes is larger than the queue capacity, the routine will never return. Likewise,
if not enough data is placed in the queue, the routine will never return. Also, if the variable to receive the

data is smaller than the number of bytes indicated, adjacent memory will be overwritten, usually with
undesirable results.

Example

Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of
Byt e.

ZBasic System Library 218 ZBasic Microcontrollers

PersistentPeek

Type Function returning Byte

Invocation PersistentPeek(address)

Parameter Method Type Description

address ByVval int16 The persistent memory address from which to read.
Discussion

This function will return the content of the specified persistent memory address.

The address of any persistent variable can also be obtained using the Dat aAddr ess property. For
persistent variables, the Dat aAddr ess property is of type Unsi gnedl nt eger .

Example

Dim pi as Persistentlnteger

Dimb as Byte

b Per si st ent Peek(1000)

b Per si st ent Peek(pi . Dat aAddress + 1)

The second use of Per si st ent Peek() demonstrates how you can use the Dat aAddr ess property to
read a byte value from any part of a persistent variable of any type.

Compatibility

Basic X does not support the use of the Dat aAddr ess property for persistent items.

The Basic X system has only 512 bytes of persistent memory. In ZBasic, the amount of persistent

memory available depends on the particular target device; the first 32 bytes of persistent memory are
reserved for system use.

See Also PersistentPoke

ZBasic System Library 219 ZBasic Microcontrollers

PersistentPoke

Type Subroutine

Invocation PersistentPoke(value, address)

Parameter Method Type Description

value ByVval Byte The to write to persistent memory.

address ByVal int16 The persistent memory address to which to write.
Discussion

This routine will write the given value to the specified persistent memory address.

The address of any persistent variable can also be obtained using the Dat aAddr ess property. For
persistent variables, the Dat aAddr ess property is of type Unsi gnedl nt eger .

Caution

The first 32 bytes of persistent memory are reserved for the system. Modifying any of them may produce
unpredictable results.

The persistent memory (on-board EEPROM) has a limit specified by the manufacturer of a million write
cycles. When this limit is exceeded the memory may become unreliable.

Example

Dim pi as Persistentlnteger

Cal | Persi st ent Poke(&H55, 1000)

Cal | Persistent Poke(&H55, pi.DataAddress + 1)

The second use of Per si st ent Poke() demonstrates how you can use the Dat aAddr ess property to
write a byte value to any part of a persistent variable of any type.

Compatibility

Basic X does not support the use of the Dat aAddr ess property for persistent items.

The Basic X system has only 512 bytes of persistent memory. In ZBasic, the amount of persistent

memory available depends on the particular target device; the first 32 bytes of persistent memory are
reserved for system use.

See Also PersistentPeek

ZBasic System Library 220 ZBasic Microcontrollers

PinHigh

Type Subroutine

Invocation PinHigh(pin)

Parameter Method Type Description
pin ByVval integral A pin nhumber (value must be known at compile time).
Discussion

This subroutine sets an output pin to the high state. If the value of the pi n parameter is not known at
compile time (e.g. a constant) a compile error will result. If the pin has not been previously configured to
be an output, the effect of invoking PinHigh on that pin is undefined (varies by target device).

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not

available in Basic X compatibility mode.

See Also PinLow, PinOutput, PinToggle, PutPin

ZBasic System Library 221 ZBasic Microcontrollers

Pinlnput

Type Subroutine

Invocation PinIinput(pin, flags)
PinInput(pin)

Parameter Method Type Description

pin ByVval integral A pin number (must be known at compile time).
flags ByVal integral Flag bits giving additional configuration information.
Discussion

This subroutine configures a pin as an input. If the value of the pi n parameter is not known at compile

time (e.g. a constant) a compile error will result. The second form of invocation is equivalent to the first
form with f | ags set to zero. The f| ags parameter gives additional configuration information as shown

in the table below.

Flags Bits Description
XxxX Xxx0 Pullup disabled.
xxxx xxx1 Pullup enabled.

All other bits are reserved for future use and should be set to zero for compatibility with such changes.
The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not

available in Basic X compatibility mode.

See Also PinOutput, PutPin

ZBasic System Library 222 ZBasic Microcontrollers

PinLow

Type Subroutine

Invocation PinLow(pin)

Parameter Method Type Description

pin ByVval integral A pin nhumber (value must be known at compile time).
Discussion

This subroutine sets an output pin to the low state. If the value of the pi n parameter is not known at
compile time (e.g. a constant) a compile error will result. If the pin has not been previously configured to
be an output, the effect of invoking PinLow on that pin is undefined (varies by target device).

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not

available in Basic X compatibility mode.

See Also PinHigh, PinOutput, PinToggle, PutPin

ZBasic System Library 223 ZBasic Microcontrollers

PinOutput

Type Subroutine

Invocation PinOutput(pin, flags)
PinOutput(pin)

Parameter Method Type Description

pin ByVval integral A pin number (value must be known at compile time).
flags ByVal integral Flag bits giving additional configuration information.
Discussion

This subroutine configures a pin as an output. If the value of the pi n parameter is not known at compile

time (e.g. a constant) a compile error will result. The second form of invocation is equivalent to the first
form with f | ags set to zero. The f| ags parameter gives additional configuration information as shown

in the table below.

Flags Bits Description
XXXX Xxxx0 Initial state is low.
xxxx xxx1 Initial state is high.

All other bits are reserved for future use and should be set to zero for compatibility with such changes.
The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not

available in Basic X compatibility mode.

See Also PinHigh, Pininput, PinLow, PinToggle, PutPin

ZBasic System Library 224 ZBasic Microcontrollers

PinRead

Type Function returning Byte

Invocation PinRead(pin)

Parameter Method Type Description

pin ByVval integral A pin nhumber (value must be known at compile time).
Discussion

This function returns an indicator of the logic level present on the specified pin. A return value of zero
indicates a logic low and a non-zero return value indicates a logic high. If the value of the pi n parameter

is not known at compile time (e.g. a constant) a compile error will result. Note that the specified pin may
have previously been configured as either an input or an ouput.

The advantage of using this function instead of using GetPin() to achieve the same result is that the call
to this function results in much smaller/faster code and that this function does not reconfigure the pin to
be an input. The disadvantage is that the pin number must be known at compile time.

Compatibility
This function is only available for native mode devices (ZX or generic target devices) and is not available

in Basic X compatibility mode.

See Also GetPin

ZBasic System Library 225 ZBasic Microcontrollers

PinToggle

Type Subroutine

Invocation PinToggle(pin)

Parameter Method Type Description

pin ByVval integral A pin nhumber (value must be known at compile time).
Discussion

This subroutine changes the state of an output pin to the opposite of its current state. If the value of the
pi n parameter is not known at compile time (e.g. a constant) a compile error will result. If the pin has not
been previously configured to be an output, the effect of invoking PinToggle on that pin is undefined
(varies by target device).

The advantage of using this subroutine instead of using PutPin() to achieve the same result is that the call
to this subroutine results in much smaller/faster code. The disadvantage is that the pin number must be
known at compile time.

Compatibility

This subroutine is only available for native mode devices (ZX or generic target devices) and is not

available in Basic X compatibility mode.

See Also PinHigh, PinLow, PinOutput, PutPin

ZBasic System Library 226 ZBasic Microcontrollers

PlaySound

Type Subroutine

Invocation PlaySound(pin, address, length, rate, repeat)

Parameter Method Type Description

pin ByVval Byte The output pin.

address ByVal int16 The Program Memory address of the sound data.
length ByVal int16 The number of bytes of sound data.

rate ByVal int16 The sample rate for the sound data.

repeat ByVal int16 The number of times to repeat the sound.
Discussion

This routine uses a pseudo-PWM technique to create an approximation to a sine wave on the specified
output pin. The frequency of the sine wave is given by successive bytes in Program Memory beginning at
the specified address and continuing for the given length. The r at e parameter specifies the rate at
which the data elements will be utilized. It is equivalent to the sampling rate at which an original analog
sound might have been digitized. Lastly, the repeat parameter tells how many times to repeat the
production of the output using the supplied data. If zero is specified, the sound will be repeated 65,536
times.

The minimum supported sample rate is 250Hz. If a smaller value is specified, 250Hz will be used instead.

The actual output will be a pulse stream that has an average value that approximates the target analog
signal. Because of the high frequency nature of the pulse train used to synthesize the waveform some
filtering is required. The example circuit below may be used to couple the output to a high impedance
speaker (> 40Q) or an amplifier. Note, however, that the signal is too large to be fed to the microphone
input of an amplifier. Instead, the Auxiliary or Line input should be used.

lauF
Frao o
[/UrLin O A O Ta amplifier ar
s high impedance
1auF speaker

Resource Usage

This routine uses the I/O Timer and disables interrupts during the generation process. In particular, this
means that serial input that arrives during the generation will likely be missed and serial output on
channels 3-6 will be disrupted.

Task switching is suspended and other interrupts are disabled while the sound is being produced.

However, RTC ticks are accumulated during the process and the RTC is updated when the process has
completed so that the RTC does not lose time.

ZBasic System Library 227 ZBasic Microcontrollers

Example

Di m nmusi ¢ as ByteVectorData("sound.txt")

Call PlaySound(12, LoWbrd(nusic. DataAddress), UBound(nusic), 11025, 1)

This example assumes that you have prepared the file “sound.txt” to contain the digitized music, sampled
at 11025Hz.

Compatibility

The Basic X documentation for Pl aySound() does not explicitly indicate that a zero repeat count will
result in 65,536 iterations. However, experimental evidence indicates that it does.

In the Basic X implementation the RTC will lose time if the duration is too long. It is not known if the
Basic X implementation has a minimum sample rate.

ZBasic System Library 228 ZBasic Microcontrollers

PortBit

Type Function returning Byte
Invocation PortBit(portldx, bitldx)
PortBit(pin)
Parameter Method Type Description
portldx ByVval integral The I/O port designator (A=0, B=1, etc.)
bitldx ByVval integral The bit designator (0-7)
pin ByVval integral A pin number

Discussion

This function returns a composite value that describes a specific bit in a specific /O port. The fields of the
Byte value are as shown in the table below.

Bit(s) Description

7 Always 1
6-3 The I/O port designator (A=0, B=1, etc.)
2-0 The bit designator (0-7)

When invoked in the first form with the parameter values 2 and 6 (representing Port C, bit 6) the return
value will have the bit pattern &810010110.

The second form of invocation converts a physical pin number to the composite value representing the
port and bit corresponding to that pin. When passed an invalid pin, the return value is zero.

Values returned by the PortBit() function may be used anywhere that a pin number may be used, e.g. as
the first parameter to PutPin(). The primary advantage to using the composite port/bit designator is that
the same value may be used unchanged on any ZBasic device having the referenced pin.

Note that the special port/bit designators like C. 2 are converted by the compiler to the same type of
composite port/bit designator described here if the compiler directive Opt i on Port Pi nEncodi ng On is
specified.

Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 229 ZBasic Microcontrollers

PortMask

Type Function returning Byte
Invocation PortMask(pin)

Parameter Method Type Description
pin ByVval integral A pin humber
Discussion

This function returns a bit mask for the port with which the specified pin is associated. The resulting bit
mask will have at most one bit set if the pin is valid and will be zero for an invalid pin. The bit mask can
be used for directly manipulating the I/O registers associated with a pin.

Note that the value of this function is a compile-time constant if the compiler can determine the value of
the pin parameter at compile-time.

For further information about how to use this function, see the discussion of Regi st er. Port () in the

ZBasic Reference Manual.

Example

Di m mask as Byte

mask = Port Mask(C. 2) " the result will be &H04

Compatibility

This function is not available in Basic X compatibility mode.

ZBasic System Library 230 ZBasic Microcontrollers

Pow

Type Function returning Single

Invocation Pow(mantissa, exponent)

Parameter Method Type Description

mantissa ByVval Single The value to be raised to the power given by the exponent.
exponent ByVal Single The exponent value.

Discussion

This function returns the value of the first parameter raised to the power given by the second parameter.
This is the same functionality as provided by the exponentiation operator .

Certain special cases are detected as shown in the table below.

Mantissa Exponent Result
any value 0.0 1.0
negative non-integral value NaN
0.0 Negative +Infinity

Example

Dimr as Single, f as Single

f = 10.0
r = Pow(f, 2.0) " result is 100.0
See Also Exp, Expl0

ZBasic System Library 231 ZBasic Microcontrollers

ProgMemFind

Type Function returning Unsignedinteger

Invocation ProgMemFind(dataAddr, dataLen, val)
ProgMemFind(dataAddr, dataLen, val, ignoreCase)

Parameter Method Type Description

dataAddr Byval Long The address in Program Memory of the block to search.
dataLen ByVal integral The length of the block to search.

val ByVval Byte The byte value for which to search.

ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.
Discussion

This function attempts to find the first occurrence of the byte specified by the val parameter in a block of
data in Program Memory beginning at the specified address. Ifit is found, the return value gives the 1-
based index where the sought byte was found within the block. If the sought byte is not found, zero is
returned. Ifthe optional i gnor eCase parameter is not given, the search is performed observing

alphabetic case differences, otherwise alphabetic case differences are significant or not depending on the
value specified for i gnor eCase. For the purposes of this parameter only the characters A-Z and a-z
(&H41 to &H5a and &H61 to &H74a) are considered to be alphabetic.

Example

Di m charSet as ByteVectorData ({ ".$%-_@ ! (){}"#&" })
Di m i nChar Set as Bool ean

I f (ProgMentind(char Set. Dat aAddress, SizeOf (charSet), c) <> 0) Then
i nChar Set = True
End | f

Compatibility

This function is not available in Basic X compatibility mode.

See Also MemFind, StrFind

ZBasic System Library 232 ZBasic Microcontrollers

Pulseln (subroutine form)

Type Subroutine

Invocation Pulseln(pin, level, var)

Parameter Method Type Description

pin ByVval Byte The pin on which a pulse width will be measured.
level ByVval Byte The expected pulse logic value (high = 1).

var ByRef Single The variable to receive the pulse width value.
Discussion

This routine waits for the input pin to be in the idle state (the opposite of that specified by the | evel

parameter), waits for it to change to the specified logic level and then measures the time that it stays at
that level. The pulse width is stored in the specified variable and has units of seconds with a default
resolution as shown in the table below.

Pulseln Resolution

Target I/0 Scaling Resolution

ZX devices running at 14.7456MHz True 1.085 1S
False 0.542 S

all other targets n/a 1/F_TS2

The pin is made an input if it is not already so. If the awaited logic transition never occurs or if the pulse
width exceeds the maximum representable width the stored result will be zero.

The timing resolution may be adjusted using Regi st er . Ti mer Speed2. However, if this is done, the
resulting pulse width value will need to be scaled proportionally.

Resource Usage

This routine uses the I/O Timer and interrupts are disabled during the pulse measurement. However,
RTC ticks will be accumulated during the pulse measurement and the RTC will be updated when the
process is complete.

Example

Dimw dth as Single

Call Pulseln(12, 1,w dth) ' neasure a positive-going pulse

Compatibility

The Basic X implementation does not support adjustable timing resolution.

ZBasic System Library 233 ZBasic Microcontrollers

Pulseln (function form)

Type Function returning Integer

Invocation Pulseln(pin, level)

Parameter Method Type Description

pin ByVval Byte The pin on which a pulse width will be measured.
level ByVval Byte The expected pulse logic value (high = 1).
Discussion

This routine waits for the input pin to be in the idle state (the opposite of that specified by the | evel
parameter), waits for it to change to the specified logic level and then measures the time that it stays at
that level. The width of the pulse is returned by the function, the units of which are shown in the table
below.

Pulseln Units

Target I/0 Scaling Resolution

ZX devices running at 14.7456MHz True 1.085 S
False 0.542 S

all other targets n/a 1/F_TS2

The pin is made an input if it is not already so. If the awaited logic transition never occurs or if the pulse
width exceeds the maximum representable width the returned value will be zero.

The timing resolution may be adjusted using Regi st er. Ti mer Speed2.

Resource Usage
This routine uses the I/O Timer and interrupts are disabled during the pulse measurement. However,

RTC ticks will be accumulated during the pulse measurement and the RTC will be updated when the
process is complete.

Example
Dimw dth as Integer

i = Pulseln(12, 1) ' measure a positive pul se

Compatibility

The Basic X implementation does not support adjustable timing resolution.

ZBasic System Library 234 ZBasic Microcontrollers

PulseOut

Type Subroutine

Invocation PulseOut(pin, duration, level)

Parameter Method Type Description

pin ByVval Byte The pin on which a pulse width will be generated.
duration ByVval intl6 or Single The width of the generated pulse.

level ByVval Byte The desired pulse logic value (low = 0, high = 1).
Discussion

This routine first makes the specified pin an output. (However, for practical purposes, you should
generally make the pin an output and set it to the desired state before calling this routine.) Then it sets
the pin to the active state (as indicated by the | evel parameter), waits the specified time and then sets
the pin back to the inactive state. The pin will be left configured as an output.

The pulse width may be specified by a Single value with units of seconds and a resolution as shown in
the table below. Note, however, that due to processing overhead, the shortest pulse that can be
generated is approximately 200 CPU cycles (13us at 14.7MHz). Alternately, the pulse width may be
specified by an Integer or Unsignedinteger value with units as shown in the table below. Note, however,
that Register.TimerSpeed2 may be modified to adjust the I/O Timer tick rate. If this is done, the Single
value will have to be scaled proportionally.

PulseOut Resolution

Target I/0 Scaling Resolution

ZX devices running at 14.7456MHz True 1.085 S
False 0.542 S

all other targets n/a 1/F_TS2

If the output pin is specified as zero, this routine does not generate a pulse but will delay for
approximately the specified period of time. This may be useful for generating a delay with better
precision than can be obtained by using Del ay() or Sl eep() . Moreover, generating a delay in this
manner does not cause the task to lose control.

Resource Usage

This routine uses the I/O Timer and interrupts are disabled during the pulse generation. However, RTC
ticks will be accumulated during the pulse generation and the RTC will be updated when the process is
complete. If the pulse is too long characters being sent or received on serial channels 3-6 may be
garbled.

Example

Dimw dth as Integer

Cal | PutPin(12, zxCQutputLow)

Call PulseOut(12, 2, 1) " generate a positive pulse about 2uS long

Call Pul seCut (0, le-5, 0) " generate a delay of about 10upS

Compatibility

In the Basic X implementation, the RTC will lose time if the pulse is too long. Also, the BasicX
implementation does not support adjustable timing resolution.

ZBasic System Library 235 ZBasic Microcontrollers

PutlWire

Type Subroutine

Invocation Put1Wire(pin, value)

Parameter Method Type Description

pin ByVval Byte The pin to be used for 1-Wire I/O.
value ByVal Byte The bit value to write.
Discussion

This routine sends the LSB of the given value using the 1-Wire protocol. To perform a 1-Wire operation,
this function along with related 1-Wire routines must be used in the proper sequence. See the
specifications of your 1-Wire device for more information.

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100y S.

Example

Call PutlWre(12, 1)

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWireByte, PutlWireData, ResetlWire

ZBasic System Library 236 ZBasic Microcontrollers

PutlWireByte

Type Subroutine

Invocation PutlWireByte(pin, value)

Parameter Method Type Description

pin ByVval Byte The pin to be used for 1-Wire I/O.
value ByVal Byte The value to write.

Discussion

This routine sends a byte (LSB first) using the 1-Wire protocol. To perform a 1-Wire operation, this
function along with related 1-Wire routines must be used in the proper sequence. See the specifications
of your 1-Wire device for more information.

Example

Call Put1WreByte(12, &H55)

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100y S for each bit sent.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWire, PutlWireData, Reset1lWire

ZBasic System Library 237 ZBasic Microcontrollers

PutlWireData

Type Subroutine

Invocation PutlWireData(pin, data, count)

Parameter Method Type Description

pin ByVval Byte The pin to be used for 1-Wire I/O.
data ByRef any type A variable holding the bytes to write.
count ByVal Byte The number of bytes to write.
Discussion

This routine sends 1 or more bytes of data (each LSB first) using the 1-Wire protocol. To perform a 1-
Wire operation, this function along with related 1-Wire routines must be used in the proper sequence.
See the specifications of your 1-Wire device for more information.

Example
Dimd(1 to 10) As Byte

Call Putl1lWreData(12, d, 5)

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100y S for each bit sent.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWire, PutlWireByte, ResetlWire

ZBasic System Library 238 ZBasic Microcontrollers

PutBit

Type Subroutine

Invocation PutBit(var, bitNumber, val)

Parameter Method Type Description

var ByRef any type The variable to which the bit will be written.
bitNumber ByVal int8/16 The bit number to write.

val ByVval Byte The bit value.

Discussion

This routine writes a single bit to memory beginning at the location of the specified variable. Bit numbers
0-7 are written to the byte at the specified location, bit numbers 8-15 are written to the subsequent byte,
etc. In each case, the lower bit number corresponds to the least significant bit of the byte while the
highest bit number corresponds to the most significant bit of a byte.

Only the least significant bit of the val parameter is used; the remaining bits are ignored.
Caution
If you specify a bit number beyond the number of bits in the specified variable, a byte in memory following

the variable will be modified, perhaps with undesirable results.

Compatibility

In Basic X compatibility mode, the bi t Nunber parameter may only be specified using a Byt e value.

See Also GetBit

ZBasic System Library 239 ZBasic Microcontrollers

PutDAC

Type Subroutine

Invocation PutDAC (pin, dacValue, dacAccumulator)
PutDAC (pin, dacValue, dacAccumulator, cycles)

Parameter Method Type Description

pin ByVal Byte The output pin.

dacValue ByVal numeric The desired output value. See discussion below.

dacAccumulator ByRef Byte A value used in the DAC process. See the
discussion below.

cycles ByVal Byte The number of PWM cycles to perform.

Discussion

This routine creates a digital approximation of an analog signal on the specified pin using a pseudo-PWM
techniqgue. When called, the specified pin is made an output, a pulse train is generated having an
average value equal to the dacVal ue parameter and then, after a fixed number of iterations, the pin is
placed in the high impedance input state. Ifthe output is filtered with a low pass filter, the woltage will,
immediately after the process is completed, be at a level between zero and the processor voltage (usually
+5 wolts). However, the woltage will begin to decay at a rate dependent on the load presented to the filter.
The voltage can be refreshed from time to time by calling Put DAC() again.

The dacVal ue parameter may be specified by a Si ngl e value or an integral value. Ifa Si ngl e value is
supplied, it should be in the range 0.0 to 1.0 corresponding to the output range of O to the processor
voltage (usually +5 wolts). If an integral value is supplied, it should be in the range of 0 to 255
corresponding to the same output voltage range as above.

The dacAccunul at or parameter is required to ensure continuity between successive calls to

Put DAC() . The value of the parameter after the call should not be modified and the same parameter
should be supplied on the next call. The initial value of the parameter is of no consequence. If your
application uses Put DAC() to create an analog voltage on more than one pin at a time, a separate
accumulator value must be used for each one.

If the cycl es parameter is not specified, a single PWM cycle is performed. Each cycle will generate a
burst of pulses for about 3000 CPU cycles (200p S at 14.7MHz) during which time interrupts will be
disabled. At the end of each cycle, the pin is put in high impedance mode and interrupts are re-enabled.
The process is then repeated if the cycle count is greater than one. A cycle count of zero causes no
cycles to be performed.

The selection of components for the required filter depends on several factors. A larger capacitor will
allow the woltage to hold longer but also takes longer to bring up to the proper voltage. As a rule of
thumb, the product of the resistance (in ohms) and the capacitance (in farads) should be on the order of
the number of cycles times one-fourth of the cycle time specified above. For example, with a 100Q
resistor and a 1} F capacitor, the cycle count should probably be 2 in order to bring the capacitor up to the
desired voltage level.

For best results, you should probably follow the filter with a high impedance buffer such as a unity gain op
amp circuit, an example of which is shown below. The op amp chosen is not particularly critical, nearly
any will do the job.

For ZBasic devices based on the ATxmega, a hardware DAC is available. In most applications requiring
a DAC, using the hardware DAC will produce much better results.

ZBasic System Library 240 ZBasic Microcontrollers

LM338 aut

Examples
Di m acc as Byte
Cal | Put DAC(12, 0.5, acc)

Cal | Put DAC(12, 128, acc, 5)

Compatibility

In Basic X compatibility mode, the dacVal ue parameter may only be specified using a Si ngl e value.
Also, the fourth parameter is not supported.

Resource Usage

This routine disables interrupts for about 3000 CPU cycles (200 S at 14.7MHz) during the generation

process. Interrupts are reenabled between each successive cycle.

See Also DAC, DACPin, OpenDAC

ZBasic System Library 241 ZBasic Microcontrollers

PutDate

Type Subroutine

Invocation PutDate (year, month, day)

Parameter Method Type Description

year ByVval int16 The year value (1999-2177).
month ByVval Byte The month value (1-12).
day ByVval Byte The day value (1-31).
Discussion

This routine composes a new value for Regi st er . RTCDay using the provided parameters. The month
value of 1 corresponds to January while 12 corresponds to December. If the year or month is invalid or if
the day number is invalid for the specified month and year, Regi st er . RTCDay will be set to zero.

Note that Regi st er . RTCDay is initialized to zero on power-up or reset. This corresponds to January 1,
1999.

Compatibility

This subroutine is not available if the RTC is not enabled in your application.

See Also GetDate

ZBasic System Library 242 ZBasic Microcontrollers

PuteEPROM

Type Subroutine

Invocation PutEEPROM(addr, var, count)

Parameter Method Type Description

addr ByVal Long The Program Memory address at which to begin writing.
var ByRef any type The variable from which the data to be written will be taken.
count ByVval int16 The number of bytes to write.

Discussion

This routine is provided for compatibility with BasicX The more aptly named PutProgMem() should be
used by new applications.

See Also GetProgMem, PutProgMem

ZBasic System Library 243 ZBasic Microcontrollers

PutNibble

Type Subroutine

Invocation PutNibble(var, nibbleNumber, val)

Parameter Method Type Description

var ByRef any type The variable to which the nibble will be written.
nibbleNumber ByVal int8/16 The nibble number to write.

val ByVal Byte The nibble value.

Discussion

This routine writes a single nibble (four bits) to memory beginning at the location of the specified variable.
Nibble numbers 0-1 are written to the byte at the specified location, nibble numbers 2-3 are written to the
subsequent byte, etc. In each case, the lower nibble number corresponds to the least significant four bits
of the byte while the higher nibble number corresponds to the most significant four bits of the byte.

Only the least significant four bits of the val parameter is used; the remaining bits are ignored.

Caution

If you specify a nibble number beyond the number of nibbles in the specified variable, a byte in memory
following the variable will be modified, perhaps with undesirable results.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also GetNibble

ZBasic System Library 244 ZBasic Microcontrollers

PutPersistent

Type Subroutine

Invocation PutPersistent(addr, var, count)

Parameter Method Type Description

addr ByVval int16 The Persistent Memory address to which to write.
var ByRef any type The variable from which data will be taken.

count ByVval int8/16 The number of bytes to write.

Discussion

This routine reads one or more bytes from RAM and writes them to Persistent Memory beginning at the
address given.

Caution

Persistent Memory has a write cycle limit of approximately a million writes. Writing to a particular address
in excess of this limit may cause the memory to become unreliable.

A block of Persistent Memory starting at address zero is reserved for system use. When the compiler
assigns addresses to persistent variables defined in your program, the lowest address used is the first
address above this reserved block. The .map file generated by the compiler contains a section indicating

the addresses assigned to persistent variables defined in your program. The built-in values
Regi ster. Persi stent Start, Regi ster. Persi stentSi ze and Regi st er. Persi stent Used

may be useful for determining the allocated an unallocated portions of Persistent Memory.
This routine will write to any address in Persistent Memory. Generally, you should avoid writing to the
reserved area of Persistent Memory.

Example

Dimpvar(1l to 10) as PersistentByte
Dimvar(1l to 10) as Byte
Cal | Put Persi stent (pvar. Dat aAddress, var, SizeOf (pvar))

Compatibility

This routine is not available in Basic X compatibility mode.

See Also GetPersistent

ZBasic System Library 245 ZBasic Microcontrollers

PutPin

Type Subroutine

Invocation PutPin(pin, mode)

Parameter Method Type Description

pin ByVval Byte The pin to configure.

mode ByVal Byte The configuration mode (see below).
Discussion

This routine is used to configure a pin to be an input or an output or to effect a change in the output logic
lewvel. If the pinis configured as an input, it may be configured to be in “tri-state” mode or “pull-up” mode.
If the pin is configured to be an output, the output level may be set to zero or 1. The table below gives the
values for each of the possible modes. If an invalid mode is specified or an invalid pin is specified, the
routine has no effect.

Values for the node Parameter

Value Built-in Constant Description

0 zxQut put Low The pin is an output at logic zero.

1 zxQut put Hi gh The pin is an output at logic one.

2 zxI nput Tri State The pin is an input with the pull-up/pull-down resistors disabled.
3 zx| nput Pul | Up The pin is an input with the pull-up resistor enabled.

4 zxQut put Toggl e Change the logic level of the output.

5 zxQut put Pul se Pulse the output.

6 zx| nput Pul | Down The pin is an input with the pull-down resistor enabled.

7 zxlnvertl O Input and output levels are inverted.

8 zxNormal I O Input and output levels are normal (non-inverted).

Note that for modes 4 and 5 to be useful, the pin must have been previously set to be an output. Mode 4
(zxCut put Toggl e) will change the output to the opposite logic level. Mode 5 (zxQut put Pul se) will
change the output to the opposite level for a short period of time and then change it back to the original
level. The duration of the pulse will be about 8 CPU cycles (approximately 0.5uS at 14.7456MHz).

Modes 6, 7 and 8 are only supported on xmega targets. Modes 7 and 8 are to be used in conjunction
with the other modes (in separate calls, of course) to achieve the desired configuration.

Example
Call PutPin(12, zxQutputLow) ' pin 12 will be at logic zero
Compatibility

In Basic X compatibility mode, mode values higher than 3 are not supported.

See Also GetPin, PinHigh, Pininput, PinLow, PinOutput, PinToggle, PutPin

ZBasic System Library 246 ZBasic Microcontrollers

PutProgMem

Type Subroutine

Invocation PutProgMem(addr, var, count)

Parameter Method Type Description

addr ByVval Long The Program Memory address to which to begin writing.
var ByRef any type The variable from which the data to be written will be taken.
count ByVal int16 The number of bytes to write.

Discussion

This routine writes one or more bytes to Program Memory (where the user program is stored) taking the
data from RAM beginning at the location of the specified variable. Note that if a number of bytes is
specified that is larger than the given variable, adjacent memory will be read.

Caution
Program Memory has a write cycle limit specified by the manufacturer of a million cycles. Writing to a

particular address in excess of this limit may result in unreliable operation.

See Also GetProgMem

ZBasic System Library 247 ZBasic Microcontrollers

PutQueue

Type Subroutine

Invocation PutQueue(queue, var, count)

Parameter Method Type Description

queue ByRef array of Byte The queue to which to write data.

var ByRef any type The variable from which to read data to be written to
the queue.

count ByVal int16 The number of bytes to write to the queue.

Discussion

This routine reads data from the variable and writes it to the specified queue. If there is insufficient space
in the queue, the calling task will suspend until space becomes available. Note, particularly, that no data
will be written until there is room for all the data to be written. This has two important ramifications.
Firstly, if the number of bytes to be written is larger than the data capacity of the queue, the write will
never complete. Secondly, if data is never taken out of the queue thus making room for the additional
data, the write will also never complete.

Note that the number of bytes to write may be larger than the named variable. |If this is the case, data will
be taken from subsequent memory locations until the write count is satisfied. This may or may not be
what you intended to occur.

Note, also, that before any queue operations are performed, the queue data structure must be initialized.
See the discussion of OpenQueue() for more details. Also, attempting to put data in a queue that has
been assigned to a Com port as the receive queue will produce undefined results.

Example

Di m out Queue(1l to 40) as Byte
Dimlval as Long

Call OpenQueue(out Queue, SizeO (outQueue))

I val = &H55aa

Cal | Put Queue(out Queue, lval, SizeO (lval))

Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of

Byt e.

See Also PutQueueByte, PutQueueStr

ZBasic System Library 248 ZBasic Microcontrollers

PutQueueByte

Type Subroutine

Invocation PutQueueByte(queue, val)

Parameter Method Type Description

queue ByRef array of Byte The queue to which to write data.

val Byval Byte The byte value to be written to the queue.
Discussion

This routine writes the given byte value to the specified queue. If there is insufficient space in the queue,
the calling task will suspend until space becomes available. This means that if data is never taken out of
the queue thus making room for additional data, the process will never complete.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to put data in a queue that has been
assigned to a Com port as the receive queue will produce undefined results.

Example

Di m out Queue(1l to 40) as Byte

Call OpenQueue(out Queue, SizeOf (outQueue))

Cal | Put QueueByt e(out Queue, &H55)

Compatibility

This routine is not available in Basic X compatibility mode.

See Also OpenQueue, PutQueue, PutQueueStr

ZBasic System Library 249 ZBasic Microcontrollers

PutQueueStr

Type Subroutine

Invocation PutQueueStr(queue, str)

Parameter Method Type Description

queue ByRef array of Byte The queue to which to write data.

str Byval String The string to be written to the queue.
Discussion

This routine writes the characters from the string to the specified queue. If there is insufficient space in
the queue, the calling task will suspend until space becomes available. Note, particularly, that no data
will be written until there is room for all the data to be written. This has two important ramifications.
Firstly, if the number of bytes to be written is larger than the data capacity of the queue, the write will
never complete. Secondly, if data is never taken out of the queue thus making room for the additional
data, the write will also never complete.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details. Also, attempting to put data in a queue that has been
assigned to a Com port as the receive queue will produce undefined results.

Example

Di m out Queue(1l to 40) as Byte

Call OpenQueue(out Queue, SizeOf (outQueue))

Cal | Put QueueStr (out Queue, "Hello, world!")

Compatibility

Basic X allows any type for the first parameter. The ZBasic implementation requires that it be an array of

Byt e.

See Also PutQueueByte, PutQueue, OpenQueue

ZBasic System Library 250 ZBasic Microcontrollers

PutTime

Type Subroutine

Invocation PutTime(hour, minute, seconds)

Parameter Method Type Description

hour ByVal Byte The hour value (0-23).
minute ByVval Byte The minutes value (0-59).

seconds ByVal Single The seconds value (0.0 to 59.999)

Discussion

This routine combines the given values into the corresponding RTC tick count and stores the result in
Regi st er. RTCTi ck. Each parameter that is outside its corresponding legal range is considered to be
zero.

Note that Regi st er. RTCTi ck is initialized to zero on power-up or reset. This corresponds to 0:00:00.

See Also GetTime

ZBasic System Library 251 ZBasic Microcontrollers

PutTimeStamp

Type Subroutine

Invocation PutTimeStamp(year, month, day, hour, minute, seconds)
Parameter Method Type Description

year ByVval int16 The year value (1999-2177).

month ByVval Byte The month value (1-12).

day ByVal Byte The day value (1-31).

hour ByVal Byte The hour value (0-23).

minute ByVal Byte The minutes value (0-59).

seconds ByVal Single The seconds value.

Discussion

This routine combines the given date values into the corresponding Regi st er . RTCDay value and

combines the given time values into the corresponding RTC tick count and stores the result in
Regi st er . RTCTi ck. The effect is the same as if Put Dat e() and Put Ti me() had been called with

their respective parameters.

Note that Regi st er . RTCDay and Regi st er . RTCTi ck are initialized to zero on power-up or reset.

ZBasic System Library

252

ZBasic Microcontrollers

PWM

Type Subroutine

Invocation PWM(channel, dutyCycle)
PWM(channel, dutyCycle, status)

Parameter Method Type Description

channel ByVal Byte The channel to use for PWM generation.
dutyCycle ByVal Single or integral The desired duty cycle.

status ByRef Boolean The variable to receive the status value.
Discussion

This subroutine begins or modifies the generation of a 16-bit PWM signal on the specified channel. The
channel must have been previously prepared for PWM generation by calling OpenPWM). PWM
generation is performed using one of the CPU's 16-hit timers, the number of which varies depending on
the ZBasic device. See the Resource Usage sub-section 16-Bit PWM Timers for details of the available
channels and the corresponding timer and output pin used.

The dut yCycl e parameter specifies the desired duty cycle of the generated signal, expressing the
percentage of time that the PWM signal will be at the logic 1 state. If the supplied parameter is of type

Si ngl e, the value is in percent with a resolution of 0.01%. If the supplied parameter is integral, the units
are percent, i.e., the value 100 means 100%. Specifying a Si ngl e value that is negative or any value
greater than 100 will have an undefined effect.

The st at us parameter, if supplied, receives a value to indicate success or failure of the call.

If this subroutine is called without a preceding call to OpenPWM) to prepare the timer, the call will have

no effect. This subroutine may be called multiple times to effect changes to the PWM signal’s duty cycle
while the signal is being generated. The change in duty cycle is synchronized so that it takes effect at the
beginning of the next PWM pulse.

Example

Call OpenPWM 2, 50.0, zxFastPWM' prepare for 50Hz Fast PWM usi ng channel 2

Call PWM2, 7.5) ' generate PWMwith 7.5% duty cycle (1.5n5)
Call Delay(1.0)

Call PWM 2, 6.25) ' generate PWMwith 6.25% duty cycle (1.25n5)
Compatibility

This subroutine is not available in Basic X com patibility mode.

See Also ClosePWM, OpenPWM

ZBasic System Library 253 ZBasic Microcontrollers

PWM8

Type Subroutine

Invocation PWM8(channel, dutyCycle)
PWM8(channel, dutyCycle, status)

Parameter Method Type Description

channel ByVal Byte The channel to use for 8-bit PWM generation.
dutyCycle ByVal Single or integral The desired duty cycle.

status ByRef Boolean The variable to receive the status value.
Discussion

This subroutine begins or modifies the generation of an 8-bit PWM signal on the specified channel. The
channel must have been previously prepared for PWM generation by calling OpenPWVB() . Eight-bit
PWM generation is performed using one of the CPU’s 8-bit timers, the number of which varies depending
on the ZBasic device. See the Resource Usage sub-section 8-Bit PWM Timers for details of the available
channels and the corresponding timer and output pin used. Note that ZBasic devices based on ATxmega
processors don't have any 8-hit timers so 8-bit PWM is not supported on those devices. The table below
indicates the output pin for each PWM supported channel.

The dut yCycl e parameter specifies the desired duty cycle of the generated signal, expressing the

percentage of time that the PWM signal will be at the logic 1 state. If the supplied parameter is of type
Si ngl e, the value is in percent with a resolution of 0.01%. If the supplied parameter is integral, the units

are percent, i.e., the value 100 means 100%. Specifying a Si ngl e value that is negative or any value
greater than 100 will have an undefined effect.

The st at us parameter, if supplied, receives a value to indicate success or failure of the call.

If this subroutine is called without a preceding call to OQpenPWMB(') to prepare the timer, the call will have
no effect. This subroutine may be called multiple times to effect changes to the PWM signal’s duty cycle
while the signal is being generated. The change in duty cycle is synchronized so that it takes effect at the
beginning of the next PWM pulse.

Example

Call OpenPWWB(1, 50.0, zxFastPWW ' prepare for 50Hz Fast PWM

Call PWWB(1, 50.0) ' generate PWMwith 50% duty cycle
Compatibility

This subroutine is not available in Basic X com patibility mode nor is it available on ATxmega-based

ZBasic devices.

See Also ClosePWM8, OpenPWM8

ZBasic System Library 254 ZBasic Microcontrollers

RadToDeg

Type Function returning Single

Invocation RadToDeg(angle)

Parameter Method Type Description

angle ByVval Single The angle, in radians, to convert to degrees.
Discussion

The trigonometric functions in the System Library all use radian angle measure. Depending on the
programming task, it is sometimes more convenient to think of angles in terms of degrees. This function
and its inverst DegToRad() facilitate the conversion between the two systems.

Depending on optimization settings, if the parameter supplied to this function is known to be constant at

compile time, the compiler will convert the value at compile time. Otherwise, code is generated to
perform the conversion (multiplication by a conversion factor) at run time.

Example

Dimf as Single
Dimtheta as Single

the angle in degrees

theta = RadToDeg(Asin(f))

Compatibility

This function is not available in Basic X compatibility mode.

See Also DegToRad

ZBasic System Library 255 ZBasic Microcontrollers

RamPeek

Type Function returning Byte

Invocation RamPeek(address)

Parameter Method Type Description

address ByVal integral The RAM address from which to read.
Discussion

This function will return the content of the specified RAM address.

Example

Dimb as Byte
Dimi as |nteger

b = RanPeek(MemAddress(i))
b = RanPeek(i . Dat aAddress)
See Also RamPeekDword, RamPeekWord

ZBasic System Library

256

ZBasic Microcontrollers

RamPeekDword

Type Function returning UnsignedLong

Invocation RamPeekDword(address)

Parameter Method Type Description

address ByVal integral The RAM address from which to read.
Discussion

This function will return the 4-byte value at the specified RAM address. The first byte will be the low order
byte and the last will be the high order byte.

Example
Di m ul as Unsi gnedLong

ul = RanPeekDWor d(200)

Compatibility

This function is not available in Basic X compatibility mode.

See Also RamPeek, RamPeekWord

ZBasic System Library 257 ZBasic Microcontrollers

RamPeekWord

Type Function returning Unsignedinteger

Invocation RamPeekWord(address)

Parameter Method Type Description

address ByVal integral The RAM address from which to read.
Discussion

This function will return the 2-byte value at the specified RAM address. The first byte will be the low order
byte and the following will be the high order byte.

Example
Di m u as Unsi gnedl nt eger

u = RanmPeekWor d(200)

Compatibility

This function is not available in Basic X compatibility mode.

See Also RamPeek, RamPeekDword

ZBasic System Library 258 ZBasic Microcontrollers

RamPoke

Type Subroutine

Invocation RamPoke(value, address)

Parameter Method Type Description

value ByVal Byte The value to write to RAM.

address ByVal integral The RAM address to which to write.
Discussion

This routine will write the given value to the specified RAM address.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM
used by the system may cause your program to malfunction.

Examples
Dimb as Byte

Cal | RanPoke(&H55, MemAddress(b))
Cal | RanPoke(&H55, b. Dat aAddress)

See Also RamPokeDword, RamPokeWord

ZBasic System Library 259 ZBasic Microcontrollers

RamPokeDword

Type Subroutine

Invocation RamPokeDword(value, address)

Parameter Method Type Description

value ByVal any 32-bit The value to write to RAM.

address ByVal integral The RAM address to which to write.
Discussion

This routine will write the given value to the four bytes at the specified RAM address, least significant byte

first.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM

used by the system may cause your program to malfunction.

Example
Di m ul as Unsi gnedLong

Cal | RanPokeDwor d(&H117355aa, MemAddress(ul))
Cal | RanPokeDwor d(&H117355aa, ul.DataAddress)

Compatibility

This routine is not available in Basic X compatibility mode.

See Also RamPoke, RamPokeWord

ZBasic System Library 260

ZBasic Microcontrollers

RamPokeWord

Type Subroutine

Invocation RamPokeWord(value, address)

Parameter Method Type Description

value ByVal int16 The value to write to RAM.

address ByVal integral The RAM address to which to write.
Discussion

This routine will write the given value to the two bytes at the specified RAM address, least significant byte
first.

Caution
Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM

used by the system may cause your program to malfunction.

Example
Di m u as Unsi gnedl nt eger

Cal | RanPokeWsrd(&H55aa, MemAddress(u))

Compatibility

This routine is not available in Basic X compatibility mode.

See Also RamPoke, RamPokeDword

ZBasic System Library 261 ZBasic Microcontrollers

Randomize

Type Subroutine
Invocation Randomize()
Discussion

This routine seeds the random number generator with the value of Register. RTCTick. This is can be
used to introduce some randomness into the sequence of values returned by Rnd() especially if the time
that Randomize() gets called has some uncertainty due to external events, e.g. the time that a user takes
to press a key.

See Also Rnd

ZBasic System Library 262 ZBasic Microcontrollers

RCTime (subroutine form)

Type Subroutine

Invocation RCTime(pin, level, interval)

Parameter Method Type Description

pin ByVval Byte The pin to use.

level ByVval Byte The expected initial logic level of the pin.

interval ByRef Single The variable in which to return the charge/discharge interval.
Discussion

This routine measures how long the specified pin stays at the given logic level after it is made a tri-state
input. The return value is expressed in seconds with a default resolution as shown in the table below this
can be changed using Regi st er. Ti mer Speed2. If the maximum time elapses (32,767 units times the
resolution) and the pin has not changed logic levels, the return value will be zero. If the pinis not at the
specified level when called, the routine returns immediately with a value of approximately one unit of
resolution. The pin will be left in the input tri-state mode.

RCTime Resolution

Target I/0 Scaling Resolution

ZX devices running at 14.7456MHz True 1.085 S
False 0.542 1S

all other targets n/a 1/F_TS2

This function can be used with an external resistor-capacitor circuit to measure the value of one element
when the other one is known. The charge/discharge time depends on the values of R and C as well as
the initial and final voltages. Before calling this routine, you should make the specified pin an output and
set it to the level specified.

Resource Usage

This routine uses the I/O Timer. If the timer is already in use when this routine is called, it will return
immediately with a zero value. The same is true if the specified pin is invalid.

Task switching is suspended and interrupts are disabled while the charge/discharge time is being
measured. However, RTC ticks are accumulated during the process and the RTC is updated when the
process has completed so that the RTC does not lose time.

Example

See the function form of this routine for more information.

Compatibility
In BasicX, the ability to change the resolution using Regi st er . Ti mer Speed?2 is not supported.

The Basic X documentation indicates that the maximum value that can be returned is about 71ms. In this
implementation, the maximum value that can be returned is about 32,767 units of resolution.

The Basic X implementation will miss RTC ticks if the charge/discharge time is too long.

ZBasic System Library 263 ZBasic Microcontrollers

RCTime (function form)

Type Function returning Integer

Invocation RCTime(pin, level)

Parameter Method Type Description

pin ByVval Byte The pin to use.

level ByVval Byte The expected initial logic level of the pin.
Discussion

This function measures how long the specified pin stays at the given logic level after it is made a tri-state
input. The return value has units as shown in the table below by default but this can be changed using
Regi st er. Ti ner Speed2. If the maximum time elapses (32,767 units) and the pin has not changed
logic levels, the return value will be zero. If the pin is not at the specified level when called, the routine
returns immediately with a value of 1. The pin will be left in the input tri-state mode.

RCTime Units
Target I/0 Scaling Resolution
ZX devices running at 14.7456MHz True 1.085 S
False 0.542 S
all other targets n/a 1/F_TS2

As an example, this function can be used with an external resistor-capacitor circuit to measure the value
of one element when the other one is known. The charge/discharge time depends on the values of R and
C as well as the initial and final voltages. Before calling this routine, you should make the specified pin an
output and set it to the level specified.

Example

Const pin as Byte = 12

Call PutPin(pin, 1) ' make the pin an output high to start charging
Cal| Delay(1l.4e-4) ' delay a bit to allow nearly full charging
i = RCTime(pin, 1) ' measure the time to reach logic zero |evel

Resource Usage

This routine uses the /O Timer. If the timer is already in use when this routine is called, it will return
immediately with a zero value. The same is true if the specified pin is invalid.

Task switching is suspended and interrupts are disabled while the charge/discharge time is being
measured. However, RTC ticks are accumulated during the process and the RTC is updated when the
process has completed so that the RTC does not lose time.

Compatibility

In Basic X, the ability to change the resolution using Regi st er. Ti ner Speed2 is not supported.

The Basic X implementation will miss RTC ticks if the charge/discharge time is too long.

ZBasic System Library 264 ZBasic Microcontrollers

Reset1Wire

Type Function returning Byte

Invocation Reset1Wire(pin)

Parameter Method Type Description

pin ByVval Byte The pin to be used for 1-Wire I/O.
Discussion

This function generates a reset signal on the given pin using the 1-Wire protocol. The return value is the
“presence” bit sent by the attached 1-Wire device(s), if any. It will be zero if a 1-Wire device responded, 1
otherwise.

To perform a 1-Wire operation, this function along with related 1-Wire routines must be used in the proper
sequence. See the specifications of your 1-Wire device for more information.

Resource Usage

This routine uses the I/O Timer and disables interrupts for approximately 1msS.

Example
Dimb as Byte

b = Reset 1Wre(12)

Compatibility

This routine is not available in Basic X compatibility mode.

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWire, PutlWireByte, PutlWireData

ZBasic System Library 265 ZBasic Microcontrollers

ResetProcessor

Type Subroutine
Invocation ResetProcessor()
Discussion

Calling this routine will cause a WatchDog reset of the processor within approximately 40ms. When the
processor begins running again, the value of Regi st er. Reset Fl ags will indicate that a WatchDog
reset has occurred. If you need to be able to distinguish between an actual WatchDog reset and a call to
Reset Processor () itis recommended that you define a persistent variable and set its value to indicate
the source of the reset.

Compatibility

Basic X does not support Regi st er. Reset Fl ags.

ZBasic System Library 266 ZBasic Microcontrollers

ResetX10

Type Subroutine

Invocation ResetX10(chan, mask)

Parameter Method Type Description

chan ByVal Byte The X-10 communication channel of interest.
mask Byval Byte A mask value indicating which state flags to clear.
Discussion

Calling this routine will clear some of the flags that are returned by the Status X10() function. The mask
parameter should contain a value with a 1 in the bit positions corresponding to the state flags that you
want to be cleared. Note that only a subset of the flags can be reset; asserted bits in the other bit
positions are ignored. See the description of Status X10() for more information.

Compatibility

This subroutine is supported only for native mode devices and is not available in Basic X compatibility

mode.

See Also Status X10

ZBasic System Library 267 ZBasic Microcontrollers

ResumeTask

Type Subroutine
Invocation ResumeTask(taskStack)
ResumeTask()
Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.
Discussion

This routine attempts to change the status of a task to a ready-to-run state. If no task stack is explicitly
given, the task stack for the Mai n() routine is assumed. The table below shows the effect for various

task states (as returned by St at usTask()).

Effect of Resuming a Task in Various States

Status State Effect
0 Ready to run. None, the task is already ready to run.
1 Sleeping. The task is awakened.
2 Awaiting | nput Capt ure() . The task resumes as if the | nput Capt ur e() had completed.
3 Awaiting interrupt O. The task resumes as if the interrupt had occurred.
4 Awaiting interrupt 1. The task resumes as if the interrupt had occurred.
5 Awaiting interrupt 2. The task resumes as if the interrupt had occurred.
6 Awaiting interval expiration. The task resumes as if the interval had expired.
7 Awaiting analog compare. The task resumes as if the comparison interrupt had occurred.
8 Awaiting pin change event 0. The task resumes as if the pin change had occurred.

9 Awaiting pin change event 1. The task resumes as if the pin change had occurred.

10 Awaiting pin change event 2. The task resumes as if the pin change had occurred.

11 Awaiting pin change event 3. The task resumes as if the pin change had occurred.

12 Awaiting Qut put Capture(). The task resumes as if the Qut put Capt ur e() had completed.
13 Awaiting interrupt 3. The task resumes as if the interrupt had occurred.

14 Awaiting interrupt 4. The task resumes as if the interrupt had occurred.

15 Awaiting interrupt 5. The task resumes as if the interrupt had occurred.

16 Awaiting interrupt 6. The task resumes as if the interrupt had occurred.

17 Awaiting interrupt 7. The task resumes as if the interrupt had occurred.

18 Awaiting pin change event AO. The task resumes as if the pin change event had occurred.
19 Awaiting pin change event A1. The task resumes as if the pin change event had occurred.
20 Awaiting pin change event BO. The task resumes as if the pin change event had occurred.
21 Awaiting pin change event B1. The task resumes as if the pin change event had occurred.
22 Awaiting pin change event CO. The task resumes as if the pin change event had occurred.
23 Awaiting pin change event C1. The task resumes as if the pin change event had occurred.
24 Awaiting pin change event DO. The task resumes as if the pin change event had occurred.
25 Awaiting pin change event D1. The task resumes as if the pin change event had occurred.
26 Awaiting pin change event EO. The task resumes as if the pin change event had occurred.
27 Awaiting pin change event E1. The task resumes as if the pin change event had occurred.
28 Awaiting pin change event FO. The task resumes as if the pin change event had occurred.
29 Awaiting pin change event F1. The task resumes as if the pin change event had occurred.
30 Awaiting pin change event HO. The task resumes as if the pin change event had occurred.
31 Awaiting pin change event H1. The task resumes as if the pin change event had occurred.
32 Awaiting pin change event JO. The task resumes as if the pin change event had occurred.
33 Awaiting pin change event J1. The task resumes as if the pin change event had occurred.
34 Awaiting pin change event KO. The task resumes as if the pin change event had occurred.
35 Awaiting pin change event K1. The task resumes as if the pin change event had occurred.
36 Awaiting pin change event Q0. The task resumes as if the pin change event had occurred.

ZBasic System Library

268

ZBasic Microcontrollers

37 Awaiting pin change event Q1. The task resumes as if the pin change event had occurred.
38 Awaiting analog comp. AO. The task resumes as if the analog event had occurred.

39 Awaiting analog comp. Al. The task resumes as if the analog event had occurred.

40 Awaiting analog comp. AW. The task resumes as if the analog event had occurred.

41 Awaiting analog comp. BO. The task resumes as if the analog event had occurred.

42 Awaiting analog comp. B1. The task resumes as if the analog event had occurred.

43 Awaiting analog comp. BW. The task resumes as if the analog event had occurred.
254 Task exiting. None, exiting tasks can’'t be resumed.

255 Terminated. None, halted tasks can't be resumed.

If this routine is invoked using an array other than one that is or was being used for a task stack the result
is undefined. See the section on Task Management in the ZBasic Reference Manual for additional

information regarding task management.

Compatibility

This routine is not available in Basic X compatibility.

See Also

ZBasic System Library

269

ExitTask, RunTask, StatusTask, WaitForlnterrupt

ZBasic Microcontrollers

Right

Type Function returning String

Invocation Right(str, length)

Parameter Method Type Description

str Byval String The string from which to extract characters.

length ByVal int8/16 The number of characters to extract from the string.
Discussion

This function returns a string consisting of the rightmost characters of the string passed as the first
parameter. The maximum number of characters in the returned string is the smaller of 1) the number of
characters in the passed string and 2) the value of the second parameter. Internally, the length is
interpereted as a 16-bit signed value and negative values are treated as zero.

This function produces the same result as M d(str, Len(str) — length + 1 , length)
assuming that the passed string is at least | engt h characters long.
Example

Dims as String, s2 as String

s = "Hello, world!"
s2 = Right(s, 6) " the result will be "world!"
See Also Left, Mid, Trim

ZBasic System Library 270 ZBasic Microcontrollers

Rnd

Type Function returning Single
Invocation Rnd()
Discussion

This function will return a pseudo-random value in the range of 0.0 to 1.0. The first time that Rnd() is
called after the processor starts up the pseudo-random number generator is initialized with a seed value.
The sequence of values returned will be repeatable when starting from the same seed.

You can alter the sequence of returned values in two ways. Firstly, you can set the value of
Regi st er. SeedPRNG. The next call to Rnd() will initialize the pseudo-random number generator with

that seed value before returning the first random value. The second way to modify the sequence is to call
the Randoni ze() subroutine. Doing so will initialize the pseudo-random number generator with the
current value of Regi st er . RTCTi ck. This provides a way to introduce some non-repeatability into the
sequence of values returned by Rnd() . It is especially effective if the time at which Random ze() is
called is controlled by some external, unpredictable event like a user pressing a key.

Example

Dimi as Integer

print 10 random val ues
For i = 1to 10
Debug. Print CStr(Rnd())
Next
Compatibility

Basic X does not support Regi st er. seedPRNG. Instead, it has a system global variable named
seedPRNG. This built-in variable is also supported in ZBasic for com patibility.

See Also Randomize

ZBasic System Library 271 ZBasic Microcontrollers

RunTask

Type Subroutine
Invocation RunTask(taskStack)
RunTask()
Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

Calling this routine alters the normal task rotation regimen by immediately attempting to run the specified
task or, if no task stack is explicitly given, the Mai n() task. If the specified task cannot run (because it is
sleeping, waiting for InputCapture, etc.) the list of tasks is examined in order beginning with the task
immediately following the specified task and the first ready-to-run task that is found will be run.

Because this routine interferes with the normal task rotation it must be used carefully to awid starving out
one or more tasks. If this routine is invoked using an array other than one that is or was being used for a
task stack the result is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information
regarding task management.

Compatibility

This routine is not available in Basic X compatibility mode.

See Also ExitTask, ResumeTask, StatusTask

ZBasic System Library 272 ZBasic Microcontrollers

SearchQueue

Type Function returning Unsignedinteger

Invocation SearchQueue(gqueue, val)
SearchQueue(queue, datalen, data)

Parameter Method Type Description

queue ByRef array of Byte The queue of interest.

val ByVal Byte The byte value for which to search.

dataLen ByVal Integral The length of the byte sequence for which to search.
data ByRef Any type The byte sequence for which to search.

Discussion

This function searches the data in a queue looking for the specified byte value (first form) or a sequence
of bytes (second form). If the queue is empty or does not contain the byte value/byte sequence, zero is

returned. Otherwise, the return value indicates the number of bytes in the queue up to and including the
sought byte value/byte sequence.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Examples

Dimqg(l to 40) as Byte
Dimdata(l to 4) as Byte
Di m dat aLen as Unsi gnedl nt eger

' search for a byte value (linefeed)
dat aLen = SearchQueue(q, &H0a)

' search for a byte sequence (carriage return, |inefeed)
data(l) = &HOd

data(2) = &HOa

dat aLen = SearchQueue(q, 2, data)

Compatibility
This function is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-24).

Moreover, it is not available in Basic X compatibility mode.

See Also GetQueue, GetQueueStr, OpenQueue

ZBasic System Library 273 ZBasic Microcontrollers

Semaphore

Type Function returning Boolean

Invocation Semaphore(var)

Parameter Method Type Description

var ByRef Boolean A variable used as a semaphore.
Discussion

This function will test the provided variable and if it is already True, the function will return False.
Otherwise, if the semaphore variable is False, the call will set it to True and return True. This is referred
to in computer science as an “atomic test and set” operation.

A semaphore is a signaling and synchronization mechanism used in multi-tasking systems. The idea is
that if two or more tasks each want to use a particular resource they first request ownership of a
semaphore. The request mechanism ensures that even if multiple requests occur near the same time,
one and only one request will be satisfied. Therefore, the task that is granted the semaphore will have
exclusive access to the resource until it has completed its objective. Subsequently, other tasks can
request the semaphore and, if they receive it, they can perform their objective. Thus you can see that a
particular semaphore can control access to some set of resources that you define. Your system may
have multiple semaphores, each controlling access to a set of resources. Note, however, that if multiple
semaphores are required to complete an operation the possibility of deadlock exists. This problem will
occur if one task obtains one semaphore, another task obtains another semaphore and then both tasks
wait for the other semaphore to be available.

In order for this mechanism to be effective, the same semaphore variable must be used by each task for
gaining access to a particular set of resources. For this reason, the semaphore variable passed to
Semaphor e() will almost always be a global variable but it may be public or private as suits your
application. The semaphore variable must be initially False, otherwise no Semaphor e() request on that
semaphore can ever succeed. Also, after a task has successfully gotten the semaphore and has finished
using the related resources, the semaphore must be set False again so that a future Semaphor e() call
will succeed.

Example
Di m ser Sem as Bool ean

ser Sem = Fal se

" wait until we get the semaphore

Do While (Not Semaphore(serSem)
Cal |l Del ay(0.5)

Loop

' now we can use the controlled resources

[add code here]

' finished with the resources, release the semaphore

ser Sem = Fal se

ZBasic System Library 274 ZBasic Microcontrollers

SerialGetByte

Type Function returning Byte

Invocation SerialGetByte(inAddr, mask, loopCnt, flags, delay Cnt)
SerialGetByte(inAddr, mask, loopCnt, flags)
SerialGetByte(inAddr, mask, loopCnt)

Parameter Method Type Description

inAddr ByVal integral The address of the input register of a port.
bitMask ByVal Byte A bit mask for the input pin of the port.
loopCnt ByVal integral The loop count to effect the baud rate.

flags ByVal Byte Flag bits controlling the reception process.
delay Cnt ByVal integral The delay count to effect the start of sampling.
Discussion

This function reads a byte, transmitted in 8-N-1 serial form (8 data bits, no parity, 1 stop bit) via a pin. ltis
intended to be called from a routine (e.g. an ISR) that has detected the presence of the start bit.

The pin, assumed to be configured as an input, is specified by giving the address of the input register of
the port containing the pin (i nAddr) and a bit mask containing a single 1 bit corresponding to the bit
position in the port (bi t Mask). The |l oopCnt parameter controls the timing of the bit window sampling,

specifying a number of 4-cycle loops to delay for each iteration. Note that, in addition to the delay loop,
there is an 11-cycle loop overhead that must be taken into account. Consequently, the total number of
cycles between each sample is 11 + | oopCnt * 4.

The f | ags parameter allows control of some aspects of the reception process. The table below
describes the meaning of the fields. If the f| ags parameter is omitted, zero is assumed.

Flag Parameter Values

Function Hex Value Bit Mask
Non-inverted Logic &HOO XXXX XXX0
Inverted Logic &HO1 XXXX XXX1

The remaining bits are currently undefined but may be used in the future. For compatibility with new
functionality that may be added in the future, the unused bits should always be zero.

If the delayCnt parameter is specified, it gives the number of 4-cycle loops to execute before beginning
sampling; this allows for adjusting the beginning of the sampling cycle which should optimally begin in the
approximate middle of the start bit. The actual delay from entry to the first sample is approximately 16 +
delayCnt * 4. For diagnostic purposes, you may configure a pin to be an output and then specify that pin
as the read strobe pin using the compiler directive Option SerialReadStrobe. Immediately before taking
the first sample (the start bit) the pin's state will be toggled. Observing this signal transition and its
position relative to the center of the start bit can provide information to adjust the delayCnt parameter. It
should be noted that the toggling operation adds 3 more cycles before the first sample.

Compatibility

This function is not available in Basic X compatibility mode nor on VM-based devices.

See Also Serialln, SerialOut

ZBasic System Library 275 ZBasic Microcontrollers

Serialln

Type Function returning Byte

Invocation SerialIn(pin, baudRate)

Parameter Method Type Description

pin ByVal Byte The pin from which to read the data.
baudRate ByVal integral The baud rate for the serial input.
Discussion

This function reads a byte, transmitted in 8-N-1 serial form (8 data bits, no parity, 1 stop bit), via a pin.
The initial state of the pin (expected to be configured as an input) is used to infer logic mode (logic 1
means non-inverted, logic zero means inverted). The function waits for a start bit and then reads eight
data bits, sampling the input at the approximate midpoint of the bit window given the specified baud rate.
If no start bit is ever detected the function will never return.

While waiting for the start bit, interrupts are not disabled but when the start bit is detected interrupts are
disabled for the remainder of the character time, typically about 9.5 bit times. Note that the logic level of
the stop bit is not verified. Because relatively precise timing is required for reliable start bit detection and
synchronization, this function is best used when few interrupts (preferably none) will occur. In some
cases, it may be best to disable interrupts before invoking the function (using, for example, an Atomic
block). This strategy, however, has its own shortcomings particularly because it is not known beforehand
how long it will be before the start bit arrives.

The theoretical maximum baud rate varies by processor frequency and is expressed as (F_CPU / 19)
while the theoretical minimum baud rate is (F_CPU / 262159). Note, particularly, that if the RTC is
enabled and the character time (i.e. 10 / baudRate) is greater than approximately 1.5 times the RTC
interrupt interval, the RTC may lose time. At 14.7MHz with a 1024Hz RTC interrupt, the minimum
standard baud rate that avoids missing RTC interrupts would be 9600.

This function is useful primarily on devices that have no hardware UARTs and/or in cases where you do
not want to dedicate a timer for the software UART channels, leaving it free for other purposes.

Example

Const pin as Byte = A O
Dimc as Byte

" configure the pin as an input
Call PutPin(pin, zxlnputTriState)

' read a character at 38.4K baud

¢ = Serialln(pin, 38400)

Compatibility

This function is not available in Basic X compatibility mode nor on VM-based devices.

See Also SerialGetByte, SerialOut

ZBasic System Library 276 ZBasic Microcontrollers

SerialNumber

Type Subroutine

Invocation SerialNumber(serNum)

Parameter Method Type Description

serNum ByRef array of Byte The array to which the serial number will be written.
Discussion

A call to this routine will copy six bytes of serial number information to the provided array. At present,
only three of the bytes are defined, representing the version number of the system firmware (for VM mode
devices) or the ZBasic library code (for native mode devices). The first byte is the major version number,
the second is the minor version number and the third byte is the variant number. The remaining bytes are
undefined.

Caution
If the array provided is less than 6 bytes long, subsequent memory will be overwritten, possibly with

detrimental results.

Compatibility

The serial number of this implementation may be different than that of BasicX.

ZBasic System Library 277 ZBasic Microcontrollers

SerialOut

Type Subroutine

Invocation SerialOut(data, pin, baudRate)

Parameter Method Type Description

data ByVal Byte or String The data to be output.

pin ByVal Byte The pin on which to output the data.
baudRate ByVal integral The baud rate for the serial output.
Discussion

This subroutine outputs the data byte, or the characters of the String, at the specified baud rate on the
specified pin. The pin must have been previously configured to be an output in either the high state (for
non-inverted data) or the low state (for inverted data). The initial state of the pin determines whether the
data will be sent in non-inverted or inverted mode.

The characters transmitted in 8-N-1 format, i.e. 8 data bits, no parity, 1 stop bit. The transmission of each
byte is performed with interrupts disabled, comprising an interval of approximately (10 / baudRate)
seconds, also known as the “character time”. Consequently, higher baud rates are preferable to lower
baud rates. The theoretical maximum baud rate varies by processor frequency and is expressed as
(F_CPU / 25) while the theoretical minimum baud rate is (F_CPU / 262165). Note, particularly, that if the
RTC is enabled and the character time is greater than approximately 1.5 times the RTC interrupt interval,
the RTC may lose time. At 14.7MHz with a 1024Hz RTC interrupt, the minimum standard baud rate that
avoids missing RTC interrupts would be 9600.

The serial output mechanism is the same as that used when Opti on Consol e is specified with a pin
designator (which pin is available via the compile-time constant Opt i on. Consol ePi n). See the
description of Opti on Consol e in the ZBasic Language Reference Manual for more Information.

This subroutine is useful primarily on devices that have no hardware UARTs and/or in cases where you
do not want to dedicate a timer for the software UART channels, leaving it free for other purposes.
Example

Const pin as Byte = A O
Const str as String = "Hello, world!" & Chr(&HO0d) & Chr (&HO0a)

configure the pin as an output, send a string
Call PutPin(pin, zxQutputHi gh) ' non-inverted idle state
Call SerialQut(str, pin, 38400) ' send string chars at 38.4K baud

Compatibility

This subroutine is not available in Basic X com patibility mode or on VM-based devices.

See Also SerialGetByte, Serialln

ZBasic System Library 278 ZBasic Microcontrollers

SetBits

Type Subroutine

Invocation SetBits(target, mask, value)

Parameter Method Type Description

target ByRef Byte The byte to be modified.

mask ByVal Byte The mask indicating which bits to modify.
value ByVal Byte The value of the bits to store.
Discussion

This subroutine allows you to set the value of one or more bits in a byte while leaving others unchanged.
Effectively, the result is the same as using the statement below.

target = (target And Not nmask) O (value And mask)

The mask parameter governs which bits will get updated. For each bit of the mask parameter that is a 1,
the corresponding bit of the t ar get will be set to the state of the corresponding bit of the val ue
parameter. Bits of the t ar get that correspond to zero bits of the mask parameter will remain
unchanged.

The advantage to using the Set Bi t s() subroutine instead of the equivalent statement is twofold. Firstly,
it is more efficient, resulting in less code and faster execution time. Secondly, and perhaps more
importantly, it performs the action as an atomic operation, i.e. one that is guaranteed, once begun, to
complete without an intervening task switch. This characteristic makes Set Bi t s() useful for modifying
I/O ports and other Byt e values in a multi-tasking environment.

Example

' set the middle 4 bits of Port Cto the binary value &B0110
Call SetBits(Register.PortC, &H3C, &H18)

Compatibility
This routine is not available in Basic X compatibility mode. Also, it is only supported by ZX firmware later

than v1.0.0.

See Also ToggleBits

ZBasic System Library 279 ZBasic Microcontrollers

SetlInterval

Type Subroutine
Invocation Setinterval(interval)
Parameter Method Type Description
interval ByVal Single orintl6 The interval counter period, in RTC ticks (if an integral
value is specified) or seconds (if